Abstract | A quaternion-based nonlinear control strategy is here presented to steer and keep a generic multi-rotor platform in a given reference position. Exploiting a state feedback structure, the proposed solution ensures the stabilization of the aerial vehicle so that its linear and angular velocity are zero and its attitude is constant. The main feature of the designed controller is the identification of a zero-moment direction in the feasible force space, i.e., a direction along which the control force intensity can be assigned independently of the control moment. The asymptotic convergence of the error dynamics is confirmed by simulation results on a hexarotor with tilted propellers.
|