EDEN / Rovers Navigation / Localisation / Panoramic sensing
 [ People Involved ] [ Related Publications ]

View-based localization using panoramic images

Thanks to panoramic images, one can exploit image indexing techniques to qualitatively localize the rover as it re-traverses an already explored area. Our approach relies on the possibility to efficiently and robustly compute the resemblance between panoramic images, indexing them by histograms of local appearances. A database of image indexes is dynamically built during rover motions: when the rover re-perceives an already crossed area, it matches the current image with the stored ones (place recognition), and thus gets a qualitative estimate of its position.

The principle of building and use of the histograms is presented in the figures below [Gonzalez 2002a] [Gonzalez 2002]. The qualitative position is computed using the distance between the histograms that represents the image. The robot orientation is then computed by correlating thin rings extracted from the images.

Learning step: building of the database

Localization step

Related Publications

[Gonzalez 2002a]  [related pages] [abstract] [download] [BibTeX]  [top]

J. Gonzalez and S. Lacroix. Localisation d'un robot mobile par indexation d'images. In 13ème Congrès Reconnaissance des Formes et Intelligence Artificielle. Angers (France), 2002.

[Gonzalez 2002]  [related pages] [abstract] [download] [copyright] [BibTeX]  [top]

J. Gonzalez and S. Lacroix. Rover localization in natural environments by indexing panoramic images. In International Conference on Robotics and Automation. Washington, DC (USA), 2002.

People Involved

Simon Lacroix, José Gonzalez.
  General Information
 About the EDEN Project
 Photo Gallery
 Related Projects
 Job opportunities

 The Blimp

  Rovers Navigation
 Motion control
 Environment Perception
 Environment Modeling
   Stereo Motion Estimation
   Digital elevation maps
>  Panoramic images
   Kalman estimation
   Set-membership estimation
 Motion Generation

  Autonomous Blimps
 Environment Perception

  Multi-Robot Cooperation
 Multi UAV coordination