EDEN / Rover Navigation / Motion Generation
 [ Related Publications ]

Crossing a wide open area can be achieved on the basis of a simple reactive "avoid obstacles" loop, whereas traversing a rough and dangerous area requires slowest speeds, finer terrain modeling and finer motion execution control for instance. The rover must therefore be able to choose among a set of various navigation modes (see the introduction on rovers nagivation and [Lacroix 1994Chatila 1997]). The definition and the number of these modes depend on the rover mechanical structure and on the kind of terrains he might encounter during its missions.

As a consequence, we have developped a bunch of different algorithms:

All these algorithms are integrated within a modular, evolutive architecture [Lacroix 2002], and controlled according to the context thanks to navigation strategies.

Related Publications

[Lacroix 1994]  [related pages] [abstract] [download] [copyright] [BibTeX]  [top]

S. Lacroix, R. Chatila, S. Fleury, M. Herrb and T. Siméon. Autonomous Navigation in Outdoor Environment: Adaptive Approach and Experiments. In International Conference on Robotics and Automation. San Diego, CA (USA), 1994.

[Chatila 1997]  [related pages] [abstract] [download] [BibTeX]  [top]

R. Chatila and S. Lacroix. A case study in Machine Intelligence: Adaptive Autonomous Space Rovers. In 1st International Conference on Field and Service Robotics. Canberra (Australia), 1997.

[Lacroix 2002]  [related pages] [abstract] [download] [BibTeX]  [top]

S. Lacroix, A. Mallet, D. Bonnafous, G. Bauzil, S. Fleury, M. Herrb and R. Chatila. Autonomous Rover Navigation on Unknown Terrains: Functions and Integration. In International Journal of Robotics Research, 21(10-11), pages 917-942, 2002.

  General Information
 About the EDEN Project
*  Rovers Navigation
 Photo Gallery
 Related Projects
 Job opportunities

 The Blimp

  Rovers Navigation
 Motion control
 Environment Perception
 Environment Modeling
>Motion Generation
*  Potential fields
*  Circle arcs generation
*  Nearest diagram method
*  On rough terrains
*  Navigation Strategies

  Autonomous Blimps
 Environment Perception

  Multi-Robot Cooperation
 Multi UAV coordination