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Abstract

We address the problem of diagnosing large discrete event systems. Given a flow of
observations from the system, the goal is to explain these observations on-line by
identifying and localising possible failures and their consequences across the system.
Model-based diagnosis approaches deal with this problem but, apart very recent pro-
posals, either they require the computation of a global model of the system which
is not possible with large discrete event systems, or they cannot perform on-line
diagnosis. The contribution of this paper is the description and the implementation
of a formal framework for the on-line decentralised diagnosis of such systems, frame-
work which is based on the “divide and conquer” principle and does not require the
global model computation. This paper finally describes the use of this framework
in the monitoring of a real telecommunication network.
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1 Introduction

The problem we deal with is the supervision of complex and large discrete
event systems such as telecommunication networks, electricity distribution
network, and more generally speaking Immobots [29]. Given a supervision
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system continuously receiving observations (alarms) sent by the system com-
ponents, our purpose is to help operators to identify failures. Two classical
approaches in monitoring such systems are knowledge-based techniques that
directly associate a diagnosis to a set of symptoms, for example expert sys-
tems [17], or chronicle recognition systems [9,7], and model-based techniques
which rely on a behavioural model of the system [22]. The main weakness of
the first approach is the lack of genericity: as the system changes (new compo-
nents, new connections, new technologies), a new expertise has to be acquired.
Therefore, we focus on model-based techniques which are known to be better
suited to that kind of system than expertise-based approaches.

A number of model-based approaches for diagnosing discrete event systems
have been proposed in both the AI and control engineering literature. They
cover continuous-variable systems which, after quantisation, are represented
as discrete systems [15], as well as “discrete by nature” systems such as com-
municating processes which exchange messages and alarms. The majority of
these approaches are centralised approaches [15,23,26]. For instance, the di-
agnoser approach [26] consists in the compilation of diagnostic information in
a data structure (called diagnoser), which maps observations to failures for
on-line diagnosis. The main drawback of centralised approaches is that they
require to explicitly build the global model of the system which is unrealistic
for large, complex systems such as telecommunication networks.

The considered systems are naturally distributed so it is easier to model those
systems in a decentralised way. An approach for diagnosing discrete event
systems using decentralised diagnosers can be found in [8], but the compu-
tation of each decentralised diagnoser is still based on a global model. There
also exist methods relying on a decentralised model [2,6], but these are used
off-line to solve a diagnosis problem a posteriori. Recently, due to the need
of solving a diagnosis problem on-line, a monitoring-based approach [13,14]
has been developed: this method mixes a diagnoser approach [26] with an ex-
tended version of the decentralised model of [2] by computing on-line only the
interesting parts of a centralised diagnoser without computing a global model.
This method still has the problem that it systematically uses global states of
the system which can be a problem when dealing with large discrete event
systems.

In this paper, we propose a formal framework providing an approach which
relies on a decentralised model and computes on-line diagnosis of large discrete
event systems. Firstly, we propose a formalism for decentralised models based
on communicating automata. This formalism allows us to model behaviours
of large discrete event systems in a modular way and to use decentralised
algorithms on it thanks to a generic synchronisation operation.

Secondly, we define the diagnosis problem inside this framework and propose
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an algorithm to make on-line diagnosis. To make an on-line diagnosis system,
efficiency is the key issue. The idea is to split the flow of observations into
temporal windows. For each temporal window, we compute a diagnosis for a
subsystem (subsystem diagnosis) and then we build a diagnosis of the whole
system (global diagnosis) by merging these subsystem diagnoses. The merging
operation is applied thanks to an original strategy which dynamically recog-
nises an efficient way to apply the merging operation based on the observations
of the current temporal window.

The paper is organised as follows. We first introduce the type of systems
that we consider, the monitoring problem, and a small example which will be
used as an illustration throughout the paper (sections 2 and 3). In section 4,
we present the formalism based on communicating automata, which is used to
represent in a decentralised way the model of the system, and a synchronisation
operation which allows us to perform decentralised reasonings on any subpart
of the system in the same way. Section 5 explains the diagnostic task by
defining observations and diagnoses and in section 6, we formally present the
decentralised diagnosis approach and prove its equivalence with respect to the
centralised one in the proposed framework. Section 7 focuses on the choices
about the implementation of the decentralised diagnosis approach in order
to apply the approach on-line. Firstly, partial order reduction techniques are
shown to be well-suited for efficiently representing the diagnoses. Secondly,
the merging operation strategy, taking into account the interactions of the
subsystem diagnoses dynamically, is proved to greatly improve the efficiency
of the global diagnosis computation. In section 8, the incremental aspect of the
diagnosis problem is introduced and is shown to be essential in the context of
dynamical system monitoring. Section 9 presents some results relying on a real
case of telecommunication network. This study has been done in the context
of the MAGDA project 1 and demonstrates the benefits of a decentralised
approach. Finally, section 10 presents related work and section 11 concludes
this paper and discusses several perspectives relying on the presented work.

2 Monitoring large reactive discrete event systems

2.1 System characteristics

A typical system is depicted in Figure 1: components communicate each other
with the help of communication channels. A component is an entity that has

1 RNRT project MAGDA: funded by the French Ministère de la Recherche; the
other partners of this project are France Telecom R&D, Alcatel, Ilog, and Paris-
Nord University.
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a finite set of internal states. The system is event-driven, i.e. it evolves with
the occurrence of events on the components.

An exogenous event (event from the set Σexo) is an event produced by the
environment of the system. Due to the fact that events are instantaneous
(they do not have delay), the probability that two events produced by the
environment occur at the same time is practically null, hence the following
hypothesis.

Hypothesis 1 Two exogenous events cannot occur at the same time on the
system.

Such an event may trigger a change of state in one component. During that
state change, the affected component may produce communication events
(event from the set Σcom) towards its neighbourhood by emitting messages via
its communication channels and also produce observable events (event from
the set Σobs) towards the environment of the system by emitting observable
messages. The reception of a message from a communication channel is also
a communication event and may change the internal state of the component
which receives it. In that case, the component affected by this event may also
emit communication and observable events.

exogenous
events

observable
events

observable
events

exogenous
events

exogenous
events

exogenous
events

ComponentComponent

Component Component

internal events

Communication
channel 

internal events
(emission of messages)

(reception of messages)

Fig. 1. Reactive discrete event system

A communication channel respects the following assumption which guarantees
that the system has a finite set of states.

Hypothesis 2 A communication channel between two components is bounded.
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A communication channel can be of any type: among the channel types, queues
are especially considered, like for example:

• instantaneous queue: such a queue has no buffer, the emission of a message
from a component and the reception of the same message to the destination
is the same event;
• first in first out queue (FIFO): such a queue has a bounded buffer, the

messages conveyed by this queue are received in the same order they have
been emitted;
• queue with loss of messages: such a queue is not reliable, conveyed messages

can be lost due to several types of problems (saturation of the buffer, loss
due to the occurrence of an exogenous event on the channel which affects
its behaviour...).

2.2 Monitoring of the system

In order to help the human agent (or supervisor) in charge of managing the
system, i.e. detecting failures and deciding reconfiguration/repair actions, a
supervision system is needed: its task is to record observations of the supervised
system and to analyse them in order to produce a concise view of the state
and the history of the system for the supervisor.

2.2.1 Observability of the system

Definition 1 (Observation) An observation is the reception, at a given date,
by the supervisor, of a message sent by a component of the supervised system.

Any observation corresponds to the emission of an observable message by a
component. The message of an observation is supposed to contain an informa-
tion about the component which has emitted it, it follows that the supervisor
knows about the component source of every observation.

Because the system is large, the supervisor may not be located next to the
supervised components. In the majority of cases, an observation channel has
to be considered between any component which emits observable messages and
the supervisor. As a consequence, the emission of an observable message is not
necessarily the same event as the reception of this message by the supervisor.

The observation system which is the set of the observation channels respects
the following hypothesis.

Hypothesis 3 The observation system is complete, reliable and efficient.
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Fig. 2. Failure propagations and interferences

The completeness of the observation system means that for every kind of
observable message there exists an observation channel which can convey this
kind of message. The reliability of the observation system means that the
observation channels do not loose messages. Every message emitted by the
components are effectively received by the supervisor. The efficiency means
that any message in an observation channel is conveyed efficiently without
message overtaking. Consequently, in the following, we can assume that any
observation channel is an instantaneous or a reliable FIFO bounded queue.

2.2.2 Monitoring task

The purpose of the monitoring task is to detect, localise, and identify problems
that occur on the system. These problems can be physical (an equipment is
down, a cable is cut) or logical (a station is rebooting, a logical connection is
down...). Our purpose is not to explain in details what is happening on the
system but only what a supervisor agent needs to know. In the following, we
will consider that a failure is any occurrence of an event which is considered as
pertinent for the supervisor in the sense that he wants to trace the occurrences
of this event. For most of the failures on the considered systems, there are some
automatic recovery procedures (recovery events), so failures can disappear
(intermittent failures). A failure that do not have any recovery event is called
a permanent failure.

One of the main difficulties in the monitoring of large discrete event systems
is that the occurrence of a primary failure on a component may have effects
(called secondary failures) on other components. As a consequence, the oc-
currence of a failure on one component (or one communication channel) may
cause the occurrence of several secondary failures in the whole system and
the reception of a huge number of observations by the supervisor. There could
be also several failure propagations at the same time which can interfere and
provide a huge number of possible observation sets depending on the way the
propagations interfere with each other. Moreover, it is also possible that a
secondary failure occurs depending on the way the different propagations in-
terfere. Because of those interferences, we need not only to identify the first
causes of a problem (the primary failures) but also the way they interfere to
also identify the secondary failures. The recovery events have also to be diag-
nosed because they are also part of interferences in the failure propagations.
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Example 1 In Figure 2, four different failure propagations are presented. The
two figures on the left describe two single failure propagations inside a system
composed of three components. f11 and f21 are the primary failures and they
occur respectively on component 1 and component 3. The consequences of f11
are the occurrences of the secondary failures f12 and f13 and the emissions
of the observations o3 o2. The consequences of f21 are the occurrence of the
secondary failure f22 and the emission of the observations o3 o2. In the figures
on the right, f11 and f21 occur both and their respective propagations interfere:
it can happen that the secondary failures are not the same. For example, if f22
occurs then the failure f12 may not occur even if f11 has occurred. This is due
to the nature of f22 and f12 (for instance if f22 is ”power down of the machine”
and f12 is ”reboot of the machine”, when the power is down the machine cannot
reboot but the power can go down when the machine is rebooting).

Another monitoring problem is the fact that the observations that are gener-
ally emitted when a failure occurs can be masked because of the occurrence
of another failure in the past. The consequence of the masking phenomenon
is the fact that it increases the number of failures that can occur without
observable consequences and, therefore, the number of possible explanations
for a given set of observations.

Example 2 In Figure 2, on the right side, when f13 occurs on the component
3, no observation is emitted like in the other figures. The failure f21 has masked
the observation o3 that should have been emitted after f13. In that example, if
we observe o3 o2, there are three possible explanations. The single propagations
(on the left side) and the multiple failure propagation of the right side.

3 Example

This section describes a small example of supervised system that is used as an
illustration of the different ideas presented in this paper (see Figure 3). In the
following, this example is referred as Toynet. This system is composed of three
data switches (SW1, SW2, SW3). These switches are in charge of emitting and
receiving data in a ring network. Two switches SWi and SWj communicate
each other with the help of the connection cnij. Each switch SWi is managed
by a control station CSi.

Here is the behaviour description of the supervised system. A switch transmits
data through two connections: a west connection (for SW1, it is cn12) and an
east connection (for SW1, it is cn31). A connection between two switches
is considered as a bidirectional communication channel. This communication
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Fig. 3. Telecommunication network example and its supervision system.

channel is not reliable and can be affected by the cut failure. If the connec-
tion is cut (cutCnij), SWi emits an observable event (for example, if cn12 is
cut (cutCn12), SW1 emits the observable event SW1cn12 and if cn31 is cut
(cutCn31), SW1 emits the observable event SW1cn31). Then, the switch goes
to its waiting mode. If the connection is reestablished (workCnij), the switch
goes back to its normal mode. A switch can break down (SW1brk), in this case,
an observable event mechanism informs the supervision system by the emission
of the observable event SWidown. Moreover, the control station CSi detects
this problem and tries to reinitialise the switch SWi (SWireboot). After a
reinitialisation (SWiendreboot), the switch is operational again and emits an
observable event SWiok. Two kinds of failures can happen on a control sta-
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tion. Firstly, the station can hang up (CSioff) and then recovers a normal mode
(CSion). When the station recovers a normal mode, an observable event CSiok
is emitted. This observable event is conveyed via the switch SWi, so the ob-
servable event is masked if the switch is not in its normal mode. A station can
also reboot (CSireboot) and at the end of the reinitialisation (CSiendreboot),
an observable event CSiok is emitted. The communication channel between a
control station and its switch is considered as reliable and instantaneous.

As far as the supervision system is concerned, each switch is connected to it
via an observation channel. In this example, for the sake of simplicity, those
observation channels are instantaneous queues, i.e the emission of an observ-
able message by a switch (an observable event) corresponds exactly to the
reception of this message by the supervision system (the observation).

4 Decentralised model of the system

As said in the introduction, we decided to use model-based approaches which
are recognised to be better suited to systems that can evolve (new compo-
nents, new technologies). Due to the great number of components, it is quite
unrealistic to rely on a global model of such systems. This section explains
how the model of the system is described in a decentralised way by means
of local models, which describe the behaviours of each component and each
communication channel of the system and a generic synchronisation operation
which describes the way the local models interact each other.

The formalism used to model a system is based on the formalism defined in
[24]. In this former article, the authors propose to model a component as a
communicating automaton which represents the way messages are received or
emitted via a set of ports belonging to the component. The model of the system
is then represented as a set of communicating automata and a set of links. A
link is an association between an output port (port from where messages are
emitted) and an input port (port where messages are received) which defines
synchronisation rules between components (the emission and the reception of
a message on a link is synchronised). 2 From a practical point of view, this
formalism is very intuitive and allows to model the system in a modular and
hierarchical way. For the sake of simplicity and without loss of generality, 3 we
present in this paper an abstraction of this formalism. In this formalism, the

2 A link does not correspond to a communication channel previously described. In
the formalism of [24], a communication channel is represented like a component.
See section 4.2 for details.
3 The temporal aspects (delays) that are defined in [24], are nevertheless not con-
sidered at all in this paper.
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Fig. 4. Abstraction of ports, messages and links

notions of port, message and link are abstracted with the help of the notion of
event: an event is the reception or the emission of a message via a port. If a
port is linked to another port, then the emission of a message from the output
port and the reception of the same message by the associated input port is
represented in our formalism by a communication event (see Figure 4).

Although we present the abstracted version of our formalism for the sake of
simplicity, in practice we use the non-abstracted version so that we can benefit
of the modularity and the hierarchical way of modelling a system.

4.1 Model of a component

A component ci receives two kinds of events:

(1) exogenous events Σi
exo , events from the environment (Σi

exo ⊆ Σexo);
(2) communication events Σi

com rcv , reception of messages coming from other
components of the system (Σi

com rcv ⊆ Σcom).

Hypothesis 4 A component ci cannot receive two different events from Σi
exo∪

Σi
com rcv at the same time.

A component can also emit two kinds of events:

(1) observable events Σi
obs , emission of messages that can be observed by a

supervision system (Σi
obs ⊆ Σobs);

(2) communication events Σi
com emit , emission of messages to other compo-

nents of the system (Σi
com emit ⊆ Σcom).

Note 1 Because of the way the abstraction is defined, a communication event
is involved only in two components: the sender of the message and the receiver
of the message (see Figure 4).

Definition 2 (Model of a component) The model of the component ci is
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Fig. 5. Model of the control-part of SW1 (noted SW1ctl).

described by the communicating finite state machine:

Γi = (Σi
rcv , Σ

i
emit , Qi, Ei)

• Σi
rcv is the set of received events (Σi

rcv = Σi
exo ∪ Σi

com rcv);
• Σi

emit is the set of emitted events (Σi
emit = Σi

obs ∪ Σi
com emit);

• Σi
rcv ∩ Σi

emit = ∅ ;
• Qi is the set of component states;
• Ei ⊆ (Qi × Σi

rcv × 2(Σi
emit

) ×Qi) is the set of transitions.

Note 2 For any component transition q
t
−→ q′, we will note by rcv(t) the

event from Σi
rcv which triggers the transition t, emit(t) the set of events emitted

by t, and among the events of emit(t), obs(t) the set of observable events.

The model of the control-part of the component SW1 (noted SW1ctl) is de-

picted on Figure 5 (transitions are noted q
rcv(t)/emit(t)
−→ q′). The failure exoge-

nous events are: SW1brk (SW1 begins to break down), SW1reboot (SW1 begins
to reboot) and SW1endreboot (SW1 terminates its reboot). The received com-
munication events are: CS1operational (reception of a message “the control
station becomes operational”) and chgCn12SW1, chgCn31SW1 (reception of a
message “the status of a connection has changed”). Among the emitted events,
here are the observable ones: SW1down, SW1ok, SW1cn31, SW1cn12 and
CS1ok. There is also one emitted communication event: SW1toreboot (emis-
sion of a message “the switch has to reboot”).

4.2 Model of a communication channel

As said in section 2.1, the components are connected by any kinds of bounded
communication channels. In the case where the channel is not an instanta-
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neous queue between two components (i.e. in the case where the emission and
the reception of a message are not instantaneous) or in the case where the
channel is not reliable, we need to model the behaviour of the channel. In
that case, our proposal is to model the communication channel like a compo-
nent by using a communicating automaton. Every emission of message from a
component c1 to a component c2 corresponds to the reception of this message
by a communication channel between c1 and c2 and the reception of the mes-
sage by the component c2 corresponds to the emission of the same message by
that channel. If a failure occurs on a channel, that failure changes the internal
state of the channel and may disturb the transmission of messages between
components.

Example 3 In Toynet, the connection cnij is considered as a component.
This component can receive two failure events: cutCnij (the connection is cut)
and workCnij (the connection is reestablished). The communication channel
between a control station and a switch is not considered as a component because
this channel is instantaneous and reliable.

In the following, without loss of generality, no distinction will be made be-
tween component and communication channel: their model are both based on
a communicating automaton. The notation ci will refer to the ith component
(or channel) of the system and the notation Γi will refer to the model of ci.

4.3 Model of a system

In this subsection, the decentralised model of a system Γ = {c1, . . . , cn}, where
each behaviour of component ci is represented by a model Γi, is formally given.
Before defining the model of a supervised system, we formally define the model
of one of its subsystems.

4.3.1 Model of a subsystem

A subsystem is a set of k components γ = {ci1, . . . , cik} from the system where
k ≤ n and ij ∈ {1, . . . , n}.

Definition 3 (Model of a subsystem) The model of the subsystem γ =
{ci1 , . . . , cik} is the set of automata {Γi1, . . . , Γik}.

Based on the previous definition of a subsystem, several sets of events are
introduced. Σγ

rcv is the set of received events of the subsystem γ:
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Σγ
rcv , (

⋃

j∈{1,...,k}

Σij
rcv) \ (

⋃

j∈{1,...,k}

Σ
ij
emit).

There are two types of received events: Σγ
exo is the set of exogenous events

that occur in γ (Σγ
exo , Σγ

rcv ∩Σexo) and Σγ
com rcv is the set of communication

events received by γ whose source is a component which is not in γ (Σγ
com rcv ,

Σγ
rcv \ Σγ

exo).

Σγ
emit is the set of emitted events of the subsystem γ:

Σγ
emit , (

⋃

j∈{1,...,k}

Σ
ij
emit) \ (

⋃

j∈{1,...,k}

Σij
rcv).

In the set of emitted events Σγ
emit is included the set Σγ

obs of observable events
emitted by γ. The emitted events that are not observable correspond to com-
munication events towards components that do not belong to the subsystem
and are noted Σγ

com emit.

Σγ
int is the set of internal events of the subsystem γ:

Σγ
int , (

⋃

j∈{1,...,k}

Σ
ij
emit) ∩ (

⋃

j∈{1,...,k}

Σij
rcv).

An internal event in the subsystem γ is a communication event associated to
two components of the subsystem: it belongs to the set of emitted events of
the first component and to the set of the received events of the second one.
The set {Σγ

rcv, Σ
γ
emit, Σ

γ
int} is a partition of the events occurring in γ.

4.3.2 Synchronisation operation in a subsystem

The model of a subsystem represents the propagation of failure events (exoge-
nous events) inside the subsystem as well as events emitted by components
that do not belong to the subsystem. It is possible to compute the explicit
behaviour of the subsystem thanks to a synchronisation operation applied to
the component models {Γi1 , . . . , Γik} of the subsystem.

The synchronisation operation is based on a transition system product [1]. As
it is done in [1] and for the sake of simplicity in the product definition, some

null transitions (noted q
e|{}
−→ q) are systematically added to each state q of

each communicating automaton. Such a transition means that a component
may stay on a given state while other components evolve (asynchronism).
Given those transitions, the behaviour of a subsystem can be exhaustively
represented by a synchronised product, even if the subsystem has finite asyn-
chronous behaviours.
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Definition 4 (Free product) The free product of m communicating au-
tomata Ti = (Ii, Oi, Qi, Ei), i ∈ {1, . . . , m} is the communicating automaton
(I, O, Q, E) such that:

• I = I1 × . . .× Im;
• O = O1 × . . .×Om;
• Q = Q1 × . . .×Qm is the set of states;
• E = E1 × . . .× Em is the set of transitions

(q1, . . . , qm)
(t1 ,...,tm)
−→ (q′1, . . . , q

′
m) = (q1

t1−→ q′1, . . . , qm
tm−→ q′m).

In the following, such a product will be noted by 〈T1, . . . , Tm〉. By definition
of this product, 〈T1, . . . , Tm〉 is isomorphic to 〈Tj1, . . . , Tjm

〉 where {j1, . . . , jm}
is a permutation of {1, . . . , m}.

Definition 5 (Synchronised transition) Given {Γi1, . . . , Γik} the model of

the subsystem γ, the transition q
t
−→ q′ = (qi1

ti1−→ q′i1 , . . . , qik

tik−→ q′ik) of the
product 〈Γi1, . . . , Γik〉 is synchronised iff:

• tj is null for all j ∈ {i1, . . . , ik}, or
• the three following conditions hold:
(1) ∃tj, j ∈ {i1, . . . , ik} such that rcv(tj) ∈ Σγ

rcv;
(2) card({tj, j ∈ {i1, . . . , ik}|rcv(tj) ∈ Σγ

exo}) ≤ 1;
(3) for each j of {i1, . . . , ik} such that tj is not null,

(a) ∀e ∈ emit(tj) ∩ Σγ
int, ∃l ∈ {i1, . . . , ik}|e = rcv(tl);

(b) ∀rcv(tj) ∈ Σγ
int, ∃l ∈ {i1, . . . , ik}|rcv(tj) ∈ emit(tl).

Condition 1 means a synchronised transition q
t
−→ q′ can only be triggered by

a set of received events on the subsystem γ. Condition 2 means that, among
these events, only one can be exogenous (event from Σγ

exo) in accordance with
the hypothesis 1. The conditions 3.a and 3.b describe the synchronisation rules

for internal events inside γ occurring in q
t
−→ q′. If, in q

t
−→ q′, an internal

event is emitted by an automaton Γj of γ towards another automaton Γl of γ,

this event has to appear as a received event of Γl in q
t
−→ q′ and vice-versa.

These conditions represent a propagation of events in the subsystem γ.

A synchronised transition q
t
−→ q′ is thus associated to the sets of events:

(1) Rcv(t) is the set of received events which triggers the transition;
(2) Int(t) is the set of internal events that occur in γ when the transition is

triggered;
(3) Emit(t) is the set of emitted events that are emitted outside γ when

the transition is triggered, among them, Obs(t) is the set of observable
events.
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Note 3 In the following, a synchronised transition q
t
−→ q′ will be sometimes

written as follows:

q
Rcv(t)/Int(t)Emit(t)

−→ q′.

1

1

1

2

2

SW1brk/
{SW1toreboot,

SW1down}

SW1toreboot/ {}

e |{}

1,1,1 2,2,1

{SW1brk}/
{SW1toreboot}
{SW1down}

SW1cn

SW1ctl

CS1
{CS1,SW1ctl,SW1cn}

1

Fig. 6. Synchronised transition in the subsystem {CS1, SW1ctl, SW1cn}.

Example 4 Figure 6 shows an example of synchronised transitions in the
subsystem {CS1, SW1ctl, SW1cn} of Toynet. The event SW1brk is exogenous
(the switch breaks down). When this event occurs, an event SW1toreboot is
produced between SW1ctl and CS1 (the control station CS1 knows that the
switch SW1 has to reboot). An observable event SW1down is also emitted. The
connection-part of the switch SW1 (called SW1cn) triggers a null transition.
The transition on the right is the synchronisation of the three transitions in
the left.

Based on this notion of synchronisation, the behaviour of the subsystem γ can
be formally defined as follows.

Definition 6 (Behaviour of the subsystem) The explicit behaviour of the
subsystem γ = {ci1 , . . . , cik} is the finite state machine (I, O, Q′, E ′) from the
free product 〈Γi1 , . . . , Γik〉 = (I, O, Q, E) such that Q′ ⊆ Q is the set of states
and E ′ ⊆ E is the set of synchronised transitions of E.

In the following, the result of the synchronised product of the automata
{Γi1 , . . . , Γik} will be noted by ‖Γi1 , . . . , Γik‖. By extension, we will also denote
the explicit behaviour of every subsystem γ by ‖γ‖ where {Γi1 , . . . , Γik} is the
model of γ.

By definition, the behaviour of a subsystem only composed of one component ci

is the communicating automaton Γi itself: every transition t of any automaton
Γi respects the conditions of a synchronised transition (Rcv(t) = {rcv(t)},
Int(t) = ∅, Emit(t) = emit(t) and Obs(t) = obs(t)), hence Γi = ‖Γi‖ = ‖ci‖.

The behaviour ‖γ‖ of any subsystem γ is a communicating automaton and
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can be thus considered like the model of a component. Moreover, a subsystem,
being defined by a set of components, can also be defined by a set of subsystems
γ1, . . . , γm. Modelling a subsystem by a set of component models or by a set of
subsystem behaviours is equivalent because of the following property on the
automata synchronisation.

Theorem 1 Let γ1 and γ2 be two disjoint subsystems, then

‖γ1 ∪ γ2‖ = ‖‖γ1‖, ‖γ2‖‖.

PROOF. See appendix A.

This property shows that the synchronisation is an associative and commuta-
tive operation. Considering any partition of the set of components that defines
a subsystem γ, each partition element is also a subsystem. The behaviour ‖γ‖
can be obtained by synchronising the behaviours from every subsystem that
the partition defines.

In the following, we will also use the notion of path in a subsystem defined as
follows.

Definition 7 (Transition path) A transition path P in a subsystem γ is a
sequence (possibly infinite) of consecutive transitions of ‖γ‖.

In the following, |P | will denote the length of P if P is finite and the value ∞
otherwise.

4.3.3 Decentralised model of the system

The system Γ = {c1, . . . , cn} is a particular subsystem. This subsystem receives
only events from the environment and only emits observable events. Here is
the definition of its model.

Definition 8 (Model of the system) The model of the system Γ is the
model of the subsystem {c1, . . . , cn} modelled by {Γ1, . . . , Γn}.

The behaviour of Γ, noted ‖Γ‖, is called the global model of the system. By
definition, every synchronised transition of the global model is triggered by
one exogenous event (see conditions 1 and 2 in the synchronised transition
definition) and expresses the consequences of this event inside the system
(emission of observable events, change of internal state).

Example 5 Toynet is modelled by a set of 12 components: one per control-
station, one per connection between switches and two per switches (the control-
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part of the switch SWictl and the connection-part of the switch SWicn). The
global model of Toynet is a communicating automaton which contains 8000
states and 76000 transitions.

5 Diagnosis of the system

5.1 Observable behaviour

From the model, we can define the observable behaviour of any subsystem γ.
Informally, the observable behaviour corresponds to the set of all the sequences
of observable events that the subsystem can emit towards the supervision
system. Here is the formal definition.

Definition 9 (Observable behaviour) Given P = q1
t1−→ . . .

tm−→ qm+1 . . .
a path of transitions from ‖γ‖, the observable behaviour of P (noted Obsγ(P ))
is the partially ordered set of observable events produced by P . The correspond-
ing partial order relation is defined as follows:

∀i ∈ {1, . . . , |P |}, ∀j ∈ {1, . . . , i− 1}, ∀oj ∈ Obs(tj), ∀oi ∈ Obs(ti), oj ≺ oi.

The observable behaviour of the subsystem γ is the set of observable behaviours
from all the paths of ‖γ‖.

By definition, the observable behaviour of the system is the observable be-
haviour of the subsystem Γ.

Example 6 Figure 7 presents the observable behaviour corresponding to a
path P . In this example, the emission of o2 and o3 is not ordered. The observ-
able behaviour corresponds to two possible observable sequences: o1o2o3o4 or
o1o3o2o4.

5.2 Observed behaviour

An observation is the reception by the supervision system of a message emit-
ted by the system through an observation channel. Thus, every observation
corresponds to an observable event of the system. The problem is that, be-
cause of the existence of observation channels between the supervised system
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Fig. 7. Observable behaviour of a path P .

and the supervision system, the order of reception of messages by the super-
vision system is not necessarily the order of the emissions of these messages
by the system. In other words, given the sequence σγ of received observations
from any subsystem γ, a set of emission orders are possible, depending on the
nature and the number of the observation channels between the subsystem γ
and the supervision system.

In order to deal with this problem, two solutions are possible. In the first one,
the set of observation channels is modelled with the supervised system with the
help of communicating automata just as we do for communication channels.
In that case, the observable behaviour of the model corresponds exactly to
the observed behaviour, the difference between emission and reception from
observation channels being described inside the model. The problem of this
solution is that the size of the model can dramatically increase. The second
solution consists in guessing the order of emission on-line. In that case, it is not
necessary to model the observation channels. Given their properties (message
propagation delays inside an observation channel, potential synchronisations
between two observation channels,...), it is possible to define a partial order
relation between two observations received from γ so that we know the possible
orders of their emission by γ. In the following, such a solution is considered.

Definition 10 (Observed behaviour) Given the sequence σγ of received
observations from any subsystem γ, the observed behaviour Oγ = (σγ ,≺γ)
of the subsystem γ is a partially ordered set composed of the observations of
σγ with a partial order relation ≺γ on them.

The partial order relation is induced by the characteristics of the observation
channels on a subsystem. With the help of the hypothesis 3, if we consider
any subsystem γ only composed of one component emitting observable events,
then γ is associated with only one instantaneous or bounded FIFO observation
channel. In that case, Oγ is totally ordered. Moreover, the partial order relation
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Fig. 8. Observed behaviour Oγ .

on observations has the following properties: given two disjoint subsystems γ1

and γ2 and their respective relations ≺γ1
and ≺γ2

, given the relation ≺γ1∪γ2

on the subsystem γ1 ∪ γ2, we have:

∀o, o′ ∈ Oγ1
, o ≺γ1

o′ ⇒ o ≺γ1∪γ2
o′

∀o, o′ ∈ Oγ2
, o ≺γ2

o′ ⇒ o ≺γ1∪γ2
o′.

Some new orders can also be defined between observations from γ1 and γ2 by
≺γ1∪γ2

, expressing characteristics between observation channels from γ1 and
γ2.

Example 7 Figure 8 depicts an observed behaviour. In this example, let con-
sider that a subsystem γ is observed with the help of two observation channels.
The observation channels convey the observations o1 and o2 (for channel 1),
and o3 and o4 (for channel 2). The received sequence is σγ = o3o1o2o4. The
two observation channels are FIFO so o1 ≺γ o2 and o3 ≺γ o4. Moreover, if
we know that the maximal propagation delay of channel 1 is d and the times
t2 (reception of o2) and t3 (reception of o3) are such that 0 ≤ t3 < t2− d, it
follows that o3 ≺γ o2.

5.3 Definition of the diagnosis

As said in section 2.2.2, the diagnosis problem consists in identifying failure
events (modelled as exogenous events) and their propagations (modelled as
sets of communication events) which explain the observed behaviour of the
system. Such a failure propagation in the system is represented by a path of
transitions from ‖Γ‖. A path explains an observed behaviour if its observable
behaviour is compatible with the observed behaviour. This compatibility is
defined below as an operator � between two partially ordered sets.

Definition 11 Given S1 = (E,≺1) and S2 = (E,≺2) two partially ordered
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Fig. 9. Joint set Obsγ(P ) � Oγ .

sets, the joint set S1 � S2 is the partially ordered set (E,≺12) where ≺12 is
recursively defined by

∀e1, e2 ∈ E, e1 ≺12 e2 ,

(e1 ≺1 e2 ∨ e1 ≺2 e2 ∨ (∃e3 ∈ E|e1 6= e3 6= e2 ∧ (e1 ≺12 e3 ∧ e3 ≺12 e2)).

The joint set of two sets S1 and S2 contains the same elements as S1 and S2 but
the order relation is more restrictive. Informally, the joint set is the partially
ordered set whose linear extensions 4 exactly correspond to the intersection of
the linear extensions of the observable behaviour and the observed behaviour.

Example 8 Figure 9 depicts the joint set of Obsγ(P ) from Figure 7 and Oγ

from Figure 8. Oγ brings a new constraint to Obsγ(P ) (o3 ≺γ o2) so that the
joint set Obsγ(P ) �Oγ represents the unique sequence o1o3o2o4.

Such a set may not exist. Based on the relations ≺1 and ≺2, the relation ≺12 is
not defined for all ≺1 and ≺2 relations: for example, if e1 ≺1 e2 and e2 ≺2 e1,
≺12 is a relation such that e1 ≺12 e2 ∧ e2 ≺12 e1, and as a consequence, the
relation ≺12 is not an order relation (not antisymmetric). In the case where
we cannot define an order relation ≺12, the relations ≺1 and ≺2 are said to be
incompatible and S1 � S2 does not exist.

Example 9 If in Figure 8, the relation o4 ≺γ o2 is added, then, because
o2 ≺ o4 in Obsγ(P ), Oγ and Obsγ(P ) (Figure 7) are incompatible.

With the help of this operator, here is the formal definition of the diagnosis
of a system, called global diagnosis.

Definition 12 (Global diagnosis) Given the decentralised model of the sys-
tem Γ, given OΓ the observed behaviour of the system, the global diagnosis
∆(OΓ) is the set of paths P of ‖Γ‖ explaining OΓ, i.e. such that ObsΓ(P ) �OΓ

exists.

4 A linear extension (also called linearisation) of a partially ordered set is a sequence
of the elements of the set such that if e1 ≺ e2 then e1 is before e2 in the sequence.
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This definition expresses the fact that a diagnosis is a set of behaviours con-
strained by the observations OΓ. Each path of the diagnosis is a possible expla-
nation of the observations. This explanation contains the sequence of failure
events that have potentially occurred on the system and their propagations in
the system.

5.4 Presentation of the result to the supervisor

The diagnosis, like defined in the previous section, contains the complete and
necessary information to understand what has happened in the system. In
that sense, a diagnosis can be seen as a database which is updated on-line.
However, this information can be too complex to be given to the supervisor
on-line. When the supervisor is monitoring the system, the information he
needs can be only the list of primary failures for instance. This information is
just an abstraction of the complete diagnosis and can be easily computed at
the same time.

Once the supervisor wants to deeply analyse the reason why a particular fail-
ure has occurred (off-line analysis), he will query for the set of behaviours that
could explain the failure. For example, in the MAGDA project (see section 9),
this query is implemented with the help of a graphical user interface represent-
ing the topology of the supervised network. This interface provides a way to
browse the behaviours that are related to the particular failure and to project
them in the topology presented by the interface, so that the supervisor is able
to see the failure propagations directly on a representation of the topology of
the supervised system. The implementation of such an interface is only based
on simple searches in graphs and does not need the use of complex algorithms.

5.5 Conclusion

In the framework of supervision of large discrete event systems the diagnosis
information has to be rich. Not only the identification of the failures is needed
but also their propagations in the system are important because they can
explain every emitted alarm. This is particularly true in applications like the
supervision of telecommunication networks. As a consequence, the diagnosis
must summarise those propagation of failures, it is why such a definition is
proposed for the diagnosis of a given dynamic system. This definition, as a set
of sequences, can be compared to the definitions given in [2,6].

Because the computed diagnosis information is very rich, an ergonomic in-
terface has to be implemented in order to help the supervisor. The purpose
of the interface is to extract pertinent information for on-line analysis (list of
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failures,...) and to offer the possibility to deeply analyse off-line the behaviours
that are related to the diagnosed failures.

Using a centralised approach like [25,23] or any approach which needs the
explicit computation of the global model ‖Γ‖ [8,27] is problematic. Because
‖Γ‖ is based on a Cartesian product, its size is in the worst case exponential
to the number of components in the system. Computing the global model of
a system which contains more than one hundred components is thus impossi-
ble with common computer resources. Thus, using a centralised approach for
computing the diagnosis of such a system is impossible due to the intractable
size of the global model. It is the reason why we propose an approach which
relies on component models and does not require the explicit computation of
the global model ‖Γ‖.

6 Decentralised diagnosis approach

The proposed decentralised approach is based on the divide and conquer prin-
ciple. Because the computation of a diagnosis based on the global model is
impossible, the problem is divided so that smaller diagnoses are computed on
smaller models (component models). These diagnoses are then progressively
merged to obtain subsystem diagnoses and finally the global diagnosis of the
system.

6.1 Subsystem diagnosis

The subsystem diagnosis definition is a generalisation of the global diagnosis
definition. The purpose of the subsystem diagnosis of γ = {ci1 , . . . , cik} is to
explain the set of observations emitted by γ using the model of the subsystem
γ.

Definition 13 (Subsystem diagnosis) Given γ a subsystem, given Oγ the
observed behaviour of this subsystem, the subsystem diagnosis ∆γ(Oγ) is the
set of paths P of ‖γ‖ explaining Oγ, i.e. such that Obsγ(P ) �Oγ exists.

Every path of the subsystem diagnosis provides an explanation of the obser-
vations from this subsystem. This explanation is local, in other words, this
explanation does not take into account the behaviour of the components that
do not belong to γ. Each explanation makes the hypothesis that every mes-
sage, exchanged with a component that do not belong to γ, is possible. By
definition, the diagnosis of the subsystem Γ is the global diagnosis itself.
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6.2 Merging operation

As said in the previous subsection, the subsystem diagnoses make the hypoth-
esis that every message exchange is possible between two subsystems. The
purpose of the merging operation is to check if such exchanges are possible or
not, according to the global model of the system. This check consists in syn-
chronising every path of a subsystem diagnosis with every path of the other
subsystem diagnoses. The merging operation is based on the theorem 2. Before
presenting this theorem, the notion of path synchronisation is introduced.

Given γ1, γ2 two disjoint subsystems and P1, P2 two transition paths belonging
to ‖γ1‖ and ‖γ2‖ respectively, the notation ‖P1, P2‖ will denote the set of
paths resulting from the synchronisation of P1 and P2. Formally, ‖P1, P2‖
could be obtained firstly by synchronising the set of transitions from ‖γ1‖
that occur in P1 with the set of transitions from ‖γ2‖ that occur in P2 and
secondly by extracting from this synchronised finite state machine the set of
paths P such that every transition of P1 and P2 is triggered in P in the same
order as in P1 and P2. By construction, every path of ‖P1, P2‖ is a path of
‖‖γ1‖, ‖γ2‖‖ = ‖γ1 ∪ γ2‖. Moreover, the set of paths ‖P1, P2‖ may be empty;
in this case, the paths P1 and P2 are not synchronisable. The notation is
extended to a set of paths P1, . . . , Pm on a set of disjoint subsystems γ1, . . . , γm:
‖P1, . . . , Pm‖ will denote the set of paths resulting from the synchronisation
of the paths Pi, the set of paths being obtained in the same manner as the set
‖P1, P2‖.

Theorem 2 Given γ1 and γ2 two disjoint subsystems,

P ∈ ∆γ1∪γ2
(Oγ1∪γ2

)⇔

∃P1 ∈ ∆γ1
(Oγ1

)∧∃P2 ∈ ∆γ2
(Oγ2

)∧P ∈ ‖P1, P2‖∧Obsγ1∪γ2
(P )�Oγ1∪γ2

exists.

PROOF.

(⇐) P1 ∈ ∆γ1
(Oγ1

) and P2 ∈ ∆γ2
(Oγ2

) so P1 ∈ ‖γ1‖ and P2 ∈ ‖γ2‖. P ∈
‖P1, P2‖, so P ∈ ‖γ1 ∪ γ2‖ by construction. Obsγ1∪γ2

(P ) � Oγ1∪γ2
exists,

therefore P ∈ ∆γ1∪γ2
(Oγ1∪γ2

).
(⇒) P ∈ ∆γ1∪γ2

(Oγ1∪γ2
) so Obsγ1∪γ2

(P ) � Oγ1∪γ2
exists. By definition, P is

a path from ‖γ1 ∪ γ2‖. This path can be obtained from the synchronised
product ‖‖γ1‖, ‖γ2‖‖ (see theorem 1), thus there are some paths P1 from
‖γ1‖ and P2 from ‖γ2‖ such that P ∈ ‖P1, P2‖.

Suppose for the sake of contradiction that Obsγ1
(P1) �Oγ1

does not exist.
Therefore, P1 explains all the observations of Oγ1

but in an order which
is incompatible with the order of Oγ1

. In other words, there exist at least
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two different observations o1 and o2 such that o1 ≺ o2 in Oγ1
and o2 ≺ o1

in Obsγ1
(P1). If o1 ≺ o2 in Oγ1

, then o1 ≺ o2 in Oγ1∪γ2
(definition 10).

Moreover, if o2 ≺ o1 in Obsγ1
(P1) then o2 ≺ o1 in Obsγ1∪γ2

(P ) (definition
9). Consequently, Obsγ1∪γ2

(P ) �Oγ1∪γ2
does not exist.

The existence of Obsγ2
(P2)�Oγ2

can be shown in the same manner. Finally,
the existence of Obsγ1∪γ2

(P )�Oγ1∪γ2
implies the existence of Obsγ1

(P1)�Oγ1

and Obsγ2
(P2) � Oγ2

, so P1 and P2 respectively belong to ∆γ1
(Oγ1

) and
∆γ2

(Oγ2
). 2

Corollary 1 Given {γ1, . . . , γm} a set of subsystems which is a partition of
the set of components of the system Γ:

P ∈ ∆Γ(OΓ)⇔

(
m∧

i=1

∃Pi ∈ ∆γi
(Oγi

)) ∧ P ∈ ‖P1, . . . , Pm‖ ∧ ObsΓ(P ) �OΓ exists.

PROOF. Because of theorem 2,

P ∈ ∆Γ(OΓ)⇔

∃P1,...,l ∈ ∆⋃l

i=1
γi

(O⋃l

i=1
γi

) ∧ ∃Pl+1,...,m ∈ ∆⋃m

i=l+1
γi

(O⋃m

i=l+1
γi

)

∧P ∈ ‖P1,...,l, Pl+1,...,m‖ ∧ObsΓ(P ) �OΓ exists.

The result is obtained by applying recursively the same theorem on P1,...,l

and Pl+1,...,m and by noticing that, by construction, if two paths P2 and P3

respectively belong to ‖P4, P5‖ and ‖P6, P7‖ then a path P1 belongs to ‖P2, P3‖
iff the path P1 belongs to ‖P4, P5, P6, P7‖. 2

6.3 Summary

We have defined a formal framework for the decentralised diagnosis approach
(see Figure 10). The model of the system Γ is represented in a decentralised
way as a set of communicating automata {Γ1, . . . , Γn} and a synchronisation
operation. The idea is then to compute the diagnosis for each component
ci (corresponding to the more basic subsystems) based on its model Γi and
then to progressively merge the results in order to obtain diagnoses on bigger
subsystems and finally to obtain the global diagnosis. Within this framework,
due to the fact that the synchronisation is an associative and commutative
operation, we have the guarantee that, by merging the subsystem diagnoses
in any order, the result is the same and is the global diagnosis (see corollary 1).
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7 On-line diagnosis implementation

This section presents the implementation of the decentralised diagnosis ap-
proach based on a decentralised model of the system. In order to make an
on-line diagnosis approach, the algorithms must be efficient and based on an
efficient representation of the diagnoses. Firstly, partial order reduction tech-
niques are shown to be well-suited for efficiently representing the diagnoses.
Secondly, a merging operation strategy, taking into account the interactions
of the subsystem diagnoses dynamically, is presented.

7.1 Diagnosis representation

7.1.1 Finite representation

In the framework, the diagnosis ∆γ(Oγ) is defined as a set of paths of transi-
tions of ‖γ‖. A path may be infinite because of an infinite sequence of silent
transitions (in the behaviour ‖γ‖, such sequences are represented by loops of
unobservable transitions). Because of the merging operation, a finite represen-
tation of the diagnosis is needed. This representation is based on a finite state
machine which also represents infinite silent sequences by loops. Here is the
definition of this representation.

Let ‖γ‖ = (I, O, Q, E) be the behaviour of the subsystem γ. Let σγ be a
finite observation sequence and Oγ = (σγ ,≺γ) be the corresponding observed
behaviour. Consider every transition path P from ∆γ(Oγ), P is such that P =

q1
t1−→ . . .

tm−→ qm+1 . . . where qi ∈ Q, i ∈ {1, . . . , |P |} and qi
ti−→ qi+1 ∈ E, i ∈

{1, . . . , m}. Consider a transition qi
ti−→ qi+1 of P and Pi = q1

t1−→ . . .
ti−1

−→ qi

the sub-path of P from q1 to qi, the state qi can thus be represented by the
state qfinite

i = (qi, Obsγ(Pi) �Oi
γ) where Oi

γ is the observed behaviour (σi
γ ,≺γ)

where σi
γ is the prefix sequence of σγ such that Obsγ(Pi)�O

i
γ exists. Such a set

Obsγ(Pi) � Oi
γ always exists because Obsγ(P ) � Oγ exists by definition. qfinite

i

expresses the fact that the state qi is a possible current state of ‖γ‖ after the
explanation of the observed behaviour Oi

γ. The state qi+1 is then associated to

the state qfinite
i+1 = (qi+1, Obsγ(Pi+1) � Oi+1

γ ). The transition qi
ti−→ qi+1 is thus

represented by qfinite
i

ti−→ qfinite
i+1 .

Let Qfinite be the set of states qfinite defined as above for every path from
∆γ(Oγ), by construction Qfinite is a finite set (Qfinite ⊆ Q × Pr(Oγ), where
Pr(Oγ) is the set of partially ordered sets containing a subset of the elements

of Oγ). Let Efinite be the set of transitions qfinite
i

ti−→ qfinite
i+1 defined as above

for every path from ∆γ(Oγ), Efinite is also finite by construction. Qfinite and
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Global
diagnosis

Fig. 10. Centralised / decentralised approach

Efinite define a finite representation of the diagnosis ∆γ(Oγ).

Definition 14 (Finite representation) Let ‖γ‖ = (I, O, Q, E) be the be-
haviour of the subsystem γ, the finite representation of ∆γ(Oγ) is the finite
state machine ∆finite

γ (Oγ) = (I, O, Qfinite, Efinite) where Qfinite and Efinite are
respectively the set of states and transitions defined above.

The diagnosis of ∆γ(Oγ) can be represented by ∆finite
γ (Oγ) (see Figure 11).

The states qfinite ∈ Qfinite such that qfinite = (q, ∅) are called the initial states
of the diagnosis. According to the observations, the subsystem γ could have
been in one of these states q before the emission of any observable event. The
states qfinite ∈ Qfinite such that qfinite = (q, O) with |O| = |Oγ| are called the
final states of the diagnosis. According to the observations, the subsystem γ
is in one of these states q.

Nevertheless, the representation has a problem: its size. Each path of ∆finite
γ (Oγ)

represents a path of diagnosis, i.e. a sequence of events. Because of the dis-
tributed nature of the diagnosed systems, a lot of events (failure events) may
occur in a concurrent way, so dealing with sequences means enumerating the
sequences where a failure event f1 occurs independently before an event f2
and where f2 occurs before f1 . From a diagnosis point of view, because f1 and
f2 are independent, if they occur both, it is not important to know about the
order. It is the reason why, a reduced representation of the diagnosis has been
introduced. This reduction is based on a partial order reduction method [18].
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 {SW1cn12,SW2waitCn12}

(1,1,1,4)
{CS1ok,

 SW1cn12,
 SW1cn12}

{workCn12}/
{SW1endwaitCnx12,chgCn12SW1}

{SW1cn12,CM2endwaitCnx12}

{CS1reboot}/{}{}

{CS1off}/{}{}

(1,1,1,1)
{CS1ok,

 SW1cn12,
 SW1cn12}

{workCn12}/
{SW1endwaitCnx12,chgCn12SW1}

{SW1cn12,CM2endwaitCnx12}

{CS1reboot}/{}{}

(1,1,1,3)
{CS1ok,

 SW1cn12,
 SW1cn12}

{workCn12}/
{SW1endwaitCnx12,chgCn12SW1}

{SW1cn12,CM2endwaitCnx12}
{CS1off}/{}{}

{CS1reboot}/{}{}

{CS1reboot}/{}{}

Fig. 11. Subsystem diagnosis represented by ∆finite
γ (Oγ) where

γ = {Cn12, SW1cn, SW1ctl, CS1} and Oγ = {CS1ok ≺ SW1cn12 ≺ SW1cn12}.

7.1.2 Partial order reduction

In the following, a summary of partial order reduction theory is given. For
more details, see [18,16,5]. We will call an action a transition label from any
behaviour ‖γ‖ and the set of ‖γ‖ actions will be noted Aγ. We will also note
enq the set of actions that can be triggered from the state q in ‖γ‖.
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Definition 15 (Independence) Two actions t1 and t2 from Aγ are inde-
pendent in ‖γ‖ = (I, O, Q, E) iff ∀q ∈ Q, if t1, t2 ∈ enq

(1) t1 ∈ enq′ where q
t2−→ q′ ∈ E;

(2) ∃q′, q′′, q′′′ such that q
t2−→ q′

t1−→ q′′ ∈ E ∧ q
t1−→ q′′′

t2−→ q′′ ∈ E).

Intuitively, two actions are independent if the occurrence of one of them does
not affect the occurrence of the other one (condition 1). Moreover, the order in
which those actions can occur does not change the state after both occurrences
(condition 2).

Definition 16 (Dependence relation) A dependence relation D is a re-
flexive, symmetric, binary relation such that ∀(t1, t2) ∈ D, t1 and t2 are not
independent.

This relation induces an equivalence relation between finite sequences of ac-
tions. Given two finite sequences v, w of actions from A?

γ, v is equivalent to
w according to the relation D iff there exists a set of sequences {u0, . . . , un}
such that v = u0, w = un and ∀i ∈ {0, . . . , n− 1}, ui = ut1t2û ∧ ui+1 = ut2t1û
where u, û ∈ A?

γ and (t1, t2) 6∈ D.

Example 10 Given v = u0 = t1t2t3t4t5t6, w = u3 = t2t1t3t5t6t4, and (t1, t2),
(t4, t5), (t4, t6) 6∈ D, we have

u0 = t1t2t3t4t5t6,
u1 = t2t1t3t4t5t6 (t1, t2 permutation),
u2 = t2t1t3t5t4t6 (t4, t5 permutation),
u3 = t2t1t3t5t6t4 (t4, t6 permutation),

so v is equivalent to w according to D.

This equivalence relation can be extended to infinite sequences. Given two
infinite sequences v, w from A?

γ, v and w are equivalent iff for any finite prefix
sequence v′ of v there exists a finite prefix sequence w′ of w such that w′

is equivalent to v′ and vice versa. This extended relation (for the finite and
infinite cases) is called the partially ordered relation. This relation is noted
≡D.

Definition 17 (Trace) Given a dependence relation D, a trace is an equiv-
alence class of sequences defined by the relation ≡D.

Thus, a trace represents a set of sequences. Each sequence of the class can
be obtained from another one by simply swapping the order of adjacent and
independent actions. If s is such a sequence, we note by [s]D the corresponding
trace in which s is included.
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7.1.3 Reduced representation

The principle of the reduced diagnosis representation is the following. The
diagnosis must represent a set of action sequences, so the idea is to only keep
one sequence of each trace that must be represented in a given diagnosis. In
order to do that, a dependence relation Dγ between transition labels from
‖γ‖ must be defined. This relation must describe what the dependence of two
labels is.

Before giving the definition of Dγ, some notations have to be introduced.
Given t ∈ Aγ, Et , Rcv(t) ∪ Emit(t) ∪ Int(t) is the set of events that occur
in γ when t is triggered. Given any subsystem γ ′ disjoint of γ, Cγ′(t) , {ci ∈
γ′|Et ∩ Σi

rcv 6= ∅ ∨ Et ∩ Σi
emit 6= ∅} is the set of components that are directly

affected by the transition t in γ ′.

Definition 18 (Relation Dγ) Given t1 and t2 in Aγ, (t1, t2) ∈ Dγ iff one of
the following conditions holds:

(1) CΓ\γ(t1) 6= ∅ ∧ CΓ\γ(t2) 6= ∅;
(2) Cγ(t1) ∩ Cγ(t2) 6= ∅;
(3) (Obs(t1) 6= ∅ ∨ CΓ\γ(t1) 6= ∅) ∧ (Obs(t2) 6= ∅ ∨ CΓ\γ(t2) 6= ∅) ∧ (Obs(t1) 6=

Obs(t2) ∨ CΓ\γ(t1) 6= ∅ ∨ CΓ\γ(t2) 6= ∅).

Intuitively, the relation Dγ describes the three criteria of dependence between
two transition labels t1 and t2. Condition 1 says that if t1 and t2 can affect
components from Γ \ γ, they are dependent because they are part of fault
propagations unknown in γ. Condition 2 says that t1 and t2 are dependent if
they affect common components in γ. Condition 3 is about the observability of
t1 and t2. From a diagnosis point of view, t1 and t2 are also dependent, if they
are or could be observable (due to future synchronisations with observable
transitions from other subsystems) and the set of emitted observations is not
the same.

Because the relation Dγ is just a relation based on events, its computation
does not depend on the number of states and transitions of γ, so it is efficient.
As a consequence, we can detect on-line if the pair of actions (t1, t2) belongs
to Dγ or not.

Theorem 3 The relation Dγ is a dependence relation.

PROOF. By definition, Dγ is symmetric and reflexive. Now, we have to prove
that for any (t1, t2) 6∈ Dγ , t1 and t2 are independent (see definition 15). Let q
denote a state of ‖γ‖ and t1, t2 be two transitions such that t1, t2 ∈ enq.

Condition 1 Suppose that q
t2−→ q′ is a transition of ‖γ‖. Because (t1, t2) 6∈
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Dγ, it follows that Cγ(t1)∩Cγ(t2) = ∅, so t1 affects components in γ different
from the components affected by t2. If t2 is triggered from q, the states of
the components affected by t1 are thus unchanged. Therefore, t1 ∈ enq′ .

Condition 2 Because Cγ(t1)∩Cγ(t2) = ∅, t1 affects components in γ different
from the components affected by t2. Thus, the order of activation of t1 and
t2 does not change the final state. 2

Remark 1 The relation Dγ is not the unique dependence relation. There are
more accurate dependence relations. Nevertheless, the advantage of Dγ is the
low cost for checking the dependency of two actions: the check is only based
on communication events and does not require a deeper and more expensive
on-line analysis of the model.

Given the dependence relation Dγ , the reduced representation of the diagnosis
of γ is defined as follows.

Definition 19 (Reduced representation) The reduced representation of
the diagnosis ∆γ(Oγ) is a finite state machine ∆red

γ (Oγ) = (I, O, Q′, E ′) such
that:

• ∆finite
γ (Oγ) = (I, O, Q, E);

• Q′ ⊆ Q is the set of states;
• E ′ ⊆ E is the set of transitions such that every trace [t1, . . . , tm]Dγ

of
∆finite

γ (Oγ) from an initial state to a final state is represented by one tran-

sition path q0
t1−→ q1 . . . qm−1

tm−→ qm in ∆red
γ (Oγ).

Remark 2 There are several reduced representations of a diagnosis: it is due
to the fact that any sequence of a trace is a good candidate for representing
the trace.

The notions of initial states and final states in the reduced representation are
defined in the manner as in the finite representation (see section 7.1.1). The
set of final states does not explicitly represent the set of current states of the
subsystem as in the finite representation. However, this set of current states is
implicitly represented, each final state representing a set of current states of
γ that are equivalent according to the dependence relation. This implicit way
of representation is also true in the case of the initial states.

Figure 12 presents the reduced representation of the diagnosis of Figure 11.
The transition t1 = {CS1off }/{}{} and t2 = {CS1reboot}/{}{} are indepen-
dent from t3 = {cutCn12}/{. . .}{. . .} and t4 = {workCn12}/{. . .}{. . .}. We
have (t1, t3), (t2, t3), (t1, t4), (t2, t4) 6∈ Dγ . Each path from an initial state to a
final state represents a trace of events.
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(1,1,1,1)
{}

(1,1,1,3)
{}

{CS1off}/{}{}

(1,1,1,4)
{}

{CS1reboot}/{}{}

{CS1reboot}/{}{}

(1,1,1,1)
{CS1ok}

{CS1on}/
{CS1operational}{CS1ok}

{CS1endreboot}/
{CS1operational}{CS1ok}

(2,3,1,1)
{CS1ok,

 SW1cn12}

{cutCn12}/
{SW1waitCn12,chgCx12SW1}

{SW1cn12,SW2waitCn12}

(2,3,1,4)
{CS1ok,

 SW1cn12}

(1,1,1,4)
{CS1ok,

 SW1cn12,
 SW1cn12}

{workCn12}/
{SW1endwaitCn12,chgCn12SW1}

{SW1cn12,SW2endwaitCn12}

{CS1reboot}/{}{}
(2,3,1,3)
{CS1ok,

 SW1cn12}

{CS1off}/{}{}

(1,1,1,1)
{CS1ok,

 SW1cn12,
 SW1cn12}

{workCn12}/
{SW1endwaitCn12,chgCn12SW1}

{SW1cn12,SW2endwaitCn12}

{CS1reboot}/{}{}

(1,1,1,3)
{CS1ok,

 SW1cn12,
 SW1cn12}

{workCn12}/
{SW1endwaitCn12,chgCn12SW1}

{SW1cn12,SW2endwaitCn12}

Fig. 12. A reduced representation of the diagnosis from Figure 11.
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7.2 Subsystem diagnosis computation

The first step of the decentralised diagnosis approach consists in computing
a set of n subsystem diagnoses from the n components ci. This computation
consists in exploring the model Γi in order to compute traces that explain the
observations Oci

. This exploration is possible because of the tractable size of
every Γi automaton so that the problem of the subsystem diagnosis compu-
tation can be solved by using any centralised diagnosis approach. Moreover,
we assume the observation channel between a component and the supervision
system is either instantaneous or a bounded FIFO queue (see section 2.2.1), it
follows that the computation does not have to take into account the problem
of observation overtaking inside the channel. Depending on the system, some
components may not be observable at all, in that case the subsystem diagno-
sis is isomorphic to the model of the component itself and no computation is
needed.

In order to be efficient, it is possible to use a diagnoser approach [25]. This
data structure is a transition system where each transition is labelled with ob-
servations and each state contains a pre-compilation of diagnosis information
so that it improves the diagnosis computation on-line. More details about this
approach can be found in [19][21].

7.3 Merging algorithm

This section presents the merging operation between two diagnoses ∆red
γ1

(Oγ1
)

and ∆red
γ2

(Oγ2
) in order to compute ∆red

γ1∪γ2
(Oγ1∪γ2

) (see algorithm 1). The pro-
posed algorithm is inspired from the algorithm proposed in [18] which consists
in finding runs with a deadlock in a program by checking independences be-
tween actions to avoid the state-explosion problem during the search. The
proposed algorithm is a decentralised version of the previous algorithm, up-
dated to solve diagnosis problems.

The merging operation has two purposes:

(1) interaction validation: events between γ1 and γ2 diagnosed by the diag-
noses ∆red

γ1
(Oγ1

) and ∆red
γ2

(Oγ2
) have to be checked;

(2) reduced diagnosis computation: the result of the merging operation must
be a reduced representation of the diagnosis of γ1 ∪ γ2.

In order to assure (1), the merging operation must check for any trace (a set
of paths) of one diagnosis if this trace can be synchronised with a trace of the
other diagnosis (see section 6.2). In order to assure (2), every merged path has
to represent a trace of ‖γ1 ∪ γ2‖ according to the dependence relation Dγ1∪γ2

.
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Algorithm 1 (Merging Operation)

1: Inputs: ∆red
γ1

(O1), ∆red
γ2

(O2), Oγ1∪γ2

2: for Given (q0
1, ∅) ∈ ∆red

γ1
(O1), (q

0
2, ∅) ∈ ∆red

γ2
(O2) two initial states do

3: X0 = ((q0
1, q

0
2), ∅); sleep(X0)← ∅; explored(X0)← ∅; unreliable(X0)← ∅

4: traces ← VisitState(X0); PropagateFixedStates(traces)
5: for X ∈ StatesOf (traces) do
6: if Status(X) 6= fixed then Remove(X, traces) end
7: end
8: ∆red

γ1∪γ2
(Oγ1∪γ2

)← ∆red
γ1∪γ2

(Oγ1∪γ2
) ∪ traces

9: end
10: Output: ∆red

γ1∪γ2
(Oγ1∪γ2

)

11: Function VisitState(X)
12: visited(X)← true
13: trans(X)← GiveTransitionsFrom(X) \ sleep(X)
14: while trans(X) 6= ∅ do
15: t← Remove(trans(X)); explored(X)← explored(X) ∪ {t}
16: X ′ ← Target(X, t)
17: newSleep ← (sleep(X) ∪ explored(X)) \ (unreliable(X) ∪ dependent(t))
18: if ¬visited(X ′) then
19: explored(X ′)← ∅; unreliable(X ′)← ∅; sleep(X ′)← newSleep
20: open(X ′)← true; paths ← paths ∪ V isitState(X ′)
21: else if ∃t ∈ sleep(X ′) such that t 6∈ newSleep then
22: explored(X ′)← ∅; unreliable(X ′)← ∅;
23: if ¬open(X ′) then
24: sleep(X ′)← sleep(X ′) ∩ newSleep
25: open(X ′)← true; paths ← paths ∪ V isitState(X ′)
26: else
27: trans(X ′)← trans(X ′) \ sleep(X ′)
28: end
29: end
30: if status(X ′) ∈ {possible, fixed} ∨ open(X ′) then

31: paths ← paths ∪ {X
t
−→ X ′}

32: if open(X ′) then unreliable(X ′)← unreliable(X ′) ∪ {t} end
33: if status(X) 6= fixed then
34: if status(X ′) ∈ {possible, fixed} then status(X)← status(X ′)
35: else status(X)← possible end
37 end
38: end
39: end
40: if IsFinal(X) then status(X)← fixed end
41: open(X)← false
42: return paths
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The merging operation assures (2) with the help of the following property.

Proposition 1 Given γ and γ ′ two disjoint subsystems, given t1, t2 ∈ Aγ two
actions of ‖γ‖, if (t1, t2) 6∈ Dγ then we have:

∀t′1, t
′
2 ∈ Aγ′ , ((t1, t

′
1) ∈ Aγ∪γ′ ∧ (t2, t

′
2) ∈ Aγ∪γ′)⇒ ((t1, t

′
1), (t2, t

′
2)) 6∈ Dγ∪γ′ .

In other words, the defined relation Dγ guarantees that if there are two inde-
pendent actions t1 and t2 in ‖γ‖, then every couple of actions from ‖γ ∪ γ ′‖
based on the actions t1 and t2 is also independent. This property is guaranteed
by the definition of Dγ (see definition 18). If (t1, t2) are not in Dγ, it means
that the actions t1 and t2 do not interact with actions of γ ′ at all (they are
associated to null events from γ ′). So the way t1 and t2 can be enabled in the
subsystem γ ∪ γ′ does not change, they are still independent. On the other
hand, some couples (t1, t2) of Dγ may be associated to actions t′1, t

′
2 of γ′ so

that ((t1, t
′
1), (t2, t

′
2)) may be independent in γ ∪ γ ′.

Thanks to the proposition 1, the merging operation does not have to retest in-
dependent actions computed in ∆red

γ1
(Oγ1

) and ∆red
γ2

(Oγ2
). It has just to detect

new independent actions from the subsystem γ1∪γ2 to compute ∆red
γ1∪γ2

(Oγ1∪γ2
).

The algorithm is a depth-first search algorithm based on the search space
defined by 〈∆red

γ1
(O1), ∆

red
γ2

(O2)〉 (see algorithm 1). Each explored state X is
built on the fly by synchronising transitions from ∆red

γ1
(O1) and ∆red

γ2
(O2). This

synchronisation is done by GiveTransitionsFrom (line 13). Formally, given the

notations (q1, q2)
t=(t1 ,t2)
−→ (q′1, q

′
2), the function GiveTransitionsFrom(X) where

X = ((q1, q2), O12) is defined as the set of transition labels t such that:

(1) (q1, Indγ1
(O12))

t1−→ (q′1, O
′
1) ∈ ∆red

γ1
(O1) where Indγ1

(O12) is the partially
ordered set induced from O12 which contains all the observations from O12

emitted by γ1;

(2) (q2, Indγ2
(O12))

t2−→ (q′2, O
′
2) ∈ ∆red

γ2
(O2) where Indγ2

(O12) is the partially
ordered set induced from O12 which contains all the observations from O12

emitted by γ2;

(3) (q1, q2)
t
−→ (q′1, q

′
2) ∈ ‖γ1 ∪ γ2‖;

(4) there exists O
′γ1∪γ2

12 such that Obsγ1∪γ2
(P.(q1, q2)

t
−→ (q′1, q

′
2)) � O

′γ1∪γ2

12

exists, where P is a transition path from (q0
1 , q

0
2) to (q1, q2) in ‖γ1 ∪ γ2‖

and O
′γ1∪γ2

12 is a subset of Oγ1∪γ2
such that ∀o1, o2 ∈ O

′γ1∪γ2

12 , o1 ≺ o2 in

O
′γ1∪γ2

12 iff o1 ≺ o2 in Oγ1∪γ2
.

Conditions 1 and 2 mean that the transition label t effectively results from
the product of a transition from ∆red

γ1
(O1) and a transition from ∆red

γ2
(O2).

Condition 3 means that the result of the synchronisation effectively belongs
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to the behaviour of γ1 ∪ γ2. Condition 4 means that t has an observable be-
haviour compatible with the observations to explain. If conditions 1, 2, 3 and

4 hold then (q1, q2)
t
−→ (q′1, q

′
2) necessarily belongs to a path of the diagnosis

∆γ1∪γ2
(Oγ1∪γ2

) and ((q1, q2), O12)
t
−→ ((q′1, q

′
2), O

′
12) is a potential candidate

for belonging to ∆red
γ1∪γ2

(Oγ1∪γ2
).

Every explored state X has some associated data structures:

• explored(X) is the set of actions that have been already explored from the
state X;
• sleep(X) is the set of actions to avoid when exploring X;
• unreliable(X) is the set actions which may be avoided;
• status(X) can be fixed (X belongs to a path which represents a trace) or

possible (X may belong to a path which represents a trace, that will depend
on the status of the successors of X), status(X) is initialised with a value
different from fixed and possible;
• visited(X) is true iff X has been or is being explored;
• open(X) is true iff X has to be explored.

The computation of the sleep set is based on the independence property of
actions. The set dependent(t) (line 17) is the set of actions that are dependent
of t in ‖γ1∪γ2‖ given the relation Dγ1∪γ2

on these actions. The principle of the
algorithm is to explore actions that are not in sleep(X) (line 13). An action
t in sleep(X) is such that t has been already explored from a predecessor X ′

of X and all actions from X ′ to X are independent of t. If a trace exists for
t from X, this trace has been already computed by exploring t from X ′ (for
more details, see [18]). In line 21, a cycle has been detected during the search,
if the old sleep set contains an action which is not in the new one, the state
has to be revisited otherwise some traces could be lost.

A state X is fixed if X is guaranteed to belong to a trace of ∆red
γ1∪γ2

(Oγ1∪γ2
).

There exist two cases for fixing a state X.

(1) IsFinal(X) is true (line 40), then the algorithm has detected a path from
X0 to X which is the representative of one trace. Given X = (q, O12)
IsFinal(X) is defined by:

IsFinal(X) ≡

O12 = Oγ1∪γ2
∧ (∃q

t′
−→ q′ ∈ ‖γ1 ∪ γ2‖ such that Obsγ1∪γ2

(q
t′
−→ q′) 6= ∅).

In other words, X is final if it can explain all the observations and if there
exists a behaviour from q in ‖γ1 ∪ γ2‖ which is observable.

(2) A successor of X is fixed (line 34).

The set paths contains a set of transitions which represents traces from X
to final states of ∆red

γ1∪γ2
(Oγ1∪γ2

). Once X0 has been visited (line 4), traces
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contains traces from X0 to final states of ∆red
γ1∪γ2

(Oγ1∪γ2
). Because of cycles,

some states in traces are not fixed but only possible. In order to know if one of
these states has to be finally fixed or not, one of its successors in traces must
have a fixed status. PropagateFixedStates is in charge of fixing those states
(line 4). Some states might stay with a possible status (they belong to cycles
which are not part from any traces), they must be eliminated (lines 5-7).

In the following, this merging operation implemented by the algorithm 7.3 is
noted �, so we have:

∆red
γ1∪γ2

(Oγ1∪γ2
) = ∆red

γ1
(Oγ1

)�∆red
γ2

(Oγ2
).

As it is said in Remark 2, there are several reduced representations of a di-
agnosis. Due to the fact that the � is based on a search in a state-space the
result can be different depending on the order of merging. Nevertheless, even
if the results are different, they are both a reduced representation of the same
diagnosis. With �, we guarantee that the result (a set of traces) is given by
using any order of merging the subsystem diagnoses.

7.4 Merging strategy

The merging operation is based on a Cartesian product on subsystem diag-
noses. As a consequence, this operation can be very inefficient and has to be
used carefully. In order to be as efficient as possible, the idea is to only apply
the merging operation when it is necessary. It is the reason why a merging
strategy is needed. This merging strategy is based on several criteria defined
on the subsystem diagnoses to merge. In this section, we always consider the
reduced representation of a diagnosis, but for the sake of clarity, diagnosis
notations are simplified: ∆γi

will refer to ∆red
γi

(Oγi
).

7.4.1 Definitions

Each subsystem diagnosis ∆γi
contains traces which claim that the diagnosed

components from γi have interacted with other components by sending or
receiving events belonging to Σint. We note by I∆γi

(γj) the set of events of γi

that are supposed to have been sent to or received from the components of γj

according to the subsystem diagnosis ∆γi
.

Definition 20 (Inconsistent traces) A trace in a diagnosis ∆γi
is incon-

sistent iff there exists a transition in the trace representative which assumes
the emission or the reception of an event e ∈ I∆γi

(γj) such that e 6∈ I∆γj
(γi).
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A diagnosis ∆γi
may claim that an event e belongs to I∆γi

(γj) whereas ∆γj

may claim that e is not in I∆γj
(γi). Traces of ∆γi

that claim the occurrence of
e are said to be inconsistent: they will not participate to the global diagnosis
and can be immediately discarded from the diagnosis.

In the following, we call purged diagnosis of γi, the set of traces of ∆γi
from

which inconsistent traces have been eliminated and note it by ∆′
γi

.

Definition 21 (Matchable subsystems) γi and γj are matchable subsys-
tems iff

I∆γi
(γj) ∩ I∆γj

(γi) 6= ∅.

From this definition, it can be deduced that γi and γj are matchable iff their
purged diagnoses are such that I∆′

γi
(γj) = I∆′

γj
(γi) = I∆γi

(γj) ∩ I∆γj
(γi) 6= ∅.

In the following, we will say that γi and γj are k-matchable subsystems iff they
are matchable and | I∆′

γi
(γj) |=| I∆′

γj
(γi) |=| I∆γi

(γj) ∩ I∆γj
(γi) |= k.

The purpose of the strategy is to detect and compute subsystem diagnoses
that claim no interaction with other subsystems.

Definition 22 (Independent diagnosis) A subsystem diagnosis ∆γ is in-
dependent iff I∆γ

(Γ \ γ) = ∅.

In an independent diagnosis, every trace is a complete explanation of the ob-
servations of the consider subsystem: for the set of observations of the system,
it is impossible to find an explanation where the subsystem has interacted
with other subsystems. Every trace of an independent diagnosis shows that
any observation from another disjoint subsystem is not caused by a reaction
of this subsystem. If an independent diagnosis is detected then it is useless to
perform any merging operation on it, the set of interactions to check being
empty. Therefore, the global diagnosis is totally and easily represented by a
set of independent diagnoses, each diagnosis based on a subsystem disjoined
from the others. In the worst case, there is only one independent diagnosis:
the global diagnosis.

7.4.2 Principles and algorithm

To improve the efficiency of the merging operation, we apply the two following
principles (see algorithm 2) based on the previous definitions.

(1) Detecting and eliminating inconsistent traces. Inconsistent traces uselessly
increase the cost of the merging operation. The first principle consists in
detecting and eliminating them before performing any merging operation
(lines 5-12). Given a diagnosis ∆γi

of the current diagnoses set, the events
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that are sources of inconsistent traces are determined and the elimination
is then performed in order to finally obtain the purged diagnosis ∆′

γi
.

(2) Giving priority to the most matchable subsystems. The merging of two
diagnoses allows to eliminate some traces by checking the interactions which
are claimed by them. Thus, merging two diagnoses which do not claim any
interaction between their respective components is not really interesting:
the second principle consists in avoiding this useless computation and in
giving priority to the most matchable subsystems. Thus, the second stage
of the algorithm consists of the computation of sets kInter(γi) (lines 14-17).
Each element of kInter(γi) is a couple (γj, |I∆′

γi
(γj)|) meaning that γi and

γj are k-matchable where k = |I∆′

γi
(γj)|. The merging strategy then builds

partition of diagnoses (with ChoosePartition line 20) such that:
• a part has two diagnoses at the most;
• selected diagnoses are such that the set of exchanged events claimed by

those diagnoses is as big as possible.
Once a partition of diagnoses is chosen, the diagnoses of each element of
the partition (only elements which contain two diagnoses) are merged (line
21), this operation can be done in a parallel way. A new set of diagnoses
is obtained where one diagnosis is associated to each element of the parti-
tion. The set of possible exchanged events is updated according to the new
diagnoses set. Then, the algorithm iteratively proceeds by eliminating new
inconsistent traces in the new diagnoses set and then by building the best
new partition of diagnoses and merging it. The last stage of the algorithm
produces a set of independent diagnoses. The traces of every diagnosis of
the resulted set participate to a global trace. In other words, the global di-
agnosis can be explicitly built by applying new merging operations on this
set, but every trace from any independent diagnosis is synchronisable with
any trace from any other independent diagnosis.

8 Incrementality

In on-line diagnosis approaches, the purpose is to follow the observed be-
haviour and to provide a diagnosis as often as possible. Given a time t1 when
a diagnosis has been provided, it is interesting to take into account this diag-
nosis in order to provide another diagnosis at time t2 (t1 < t2), given a new
set of observations that occur between t1 and t2. This section focuses on this
topic. The idea is to propose an incremental diagnosis algorithm by extending
and updating the diagnosis of time t1 in order to compute the diagnosis of time
t2 as efficiently as possible. This problematic is called incremental diagnosis
(see [20]).
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Algorithm 2 (Merging strategy)

1: Input: Decentralised model {Γ1, . . . , Γn} of the system {c1, . . . , cn}
2: Input: Subsystem diagnoses {∆ci

, i ∈ {1, . . . , n}}
3: D ← {∆ci

, i ∈ {1, . . . , n}}
4: do {We note D = {∆γ1

, . . . , ∆γl
}}

5: 1-Inconsistent trace elimination
6: for i ∈ {1, . . . , l} do
7: ∆′

γi
← ∆γi

8: for j ∈ {1, . . . , l}, j 6= i do
9: ∆′

γi
← ElimInconsTraces(∆′

γi
, I∆γi

(γj) \ I∆γj
(γi))

10: end
11: Replace(D, ∆γi

, ∆′
γi

)
12: end
13: 2 - Looking for matchable subsystems
14: for i ∈ {1, . . . , l} do
15: kInter(γi)← {(γj, |I∆′

γi
(γj)|), I∆′

γi
(γj) 6= ∅}

16: end
17: M ← {kInter(γi), i ∈ {1, . . . , l}}
18: if M 6= ∅ then
19: 3 - Applying the merging operation
20: πD ← ChoosePartition(D, M)
21: D ← {∆′

γi
�∆′

γj
, {∆′

γi
, ∆′

γj
} ∈ πD} ∪ {∆

′
γi

, {∆′
γi
} ∈ πD}

22: end
23: while M 6= ∅
24: { The set D is a set of independent diagnoses }
25: Output: D

8.1 Principles and difficulties

Incremental diagnosis is based on two basic concepts.

Definition 23 (Breakpoint) A breakpoint tj is a date from the supervision
system clock.

Definition 24 (Temporal window) A temporal window Wj is the delay
between two consecutive breakpoints tj and tj+1.

The flow of observations belongs to a set of consecutive temporal windows
Wj, j ∈ {1, . . . , m} (see Figure 13). Given a temporal window Wj, the set
of received observations in Wj is noted in the following OWj and the set of
observations received before Wj is noted Oj−1. The incremental diagnosis is
then the problem of computing the diagnosis ∆j explaining the observations
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Fig. 13. Temporal windows and breakpoints

Oj given the diagnosis ∆j−1 (which explains Oj−1) and the observations OWj .

As already mentioned, the supervision system receives a flow of observations
during one temporal window Wj. The problem is that there are some de-
lays between the emission of the messages in the observation channels and
their receptions in the supervision system (see Figure 13). Consequently, some
messages emitted during Wj may not be received during Wj. Another more
problematic consequence is that at the end of Wj there is no guarantee that
the supervision system has received enough observations to make a diagnosis.
In fact, some messages may not have been received whereas they have been
emitted before other received messages; this situation is possible if the unre-
ceived messages are conveyed by observation channels with important delays
of transmission.

The choice of the temporal windows is, therefore, fundamental. The update
of a diagnosis ∆j−1 strongly depends on the nature of the chosen temporal
window Wj. In the following subsections, two incremental algorithms are dis-
cussed, based on some properties about the chosen temporal windows.

8.2 Sound temporal windows

In this approach, the solution consists in choosing sound temporal windows.

Definition 25 (Sound window) A breakpoint tj is sound iff every message
emitted before tj is received before tj. A temporal window Wj is sound iff tj
and tj+1 are sound.
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A sound breakpoint is interesting because it guarantees that the set of mes-
sages emitted before this point is effectively received by the supervisor (see Fig-
ure 14). In other words, a sound breakpoint guarantees that ∀o ∈ Oj−1, ∀o′ ∈
Oj \Oj−1, o ≺ o′. As a consequence, any update of the diagnosis ∆j−1, taking
into account the observations Oj, is only based on its final states.

SW1ok

SW1ok CS1ok SW3cn23

SW3cn23 CS1ok
Dmax

SW2cn12

SW2cn12
time of reception

(supervisor)

time of emission

SW3cn23

SW3cn23

breakpoint t

(Sound breakpoint)
breakpoint t

j−1

Window W
j−1

j

Fig. 14. Sound breakpoint

A sound breakpoint can be detected by taking into account the properties
of the observation channels and the date of reception of an observation by
the supervisor. For instance, knowing a maximum delay Dmax of message
propagation inside the observation channels, a sound breakpoint tj is detected
if the first observation after this breakpoint is received by the supervision
system at time t such that t > tj + Dmax (see Figure 14).

In the following, an algorithm which computes the update of the diagnosis is
presented (see Algorithm 3).

Algorithm 3 (Incremental diagnosis on sound temporal windows)

1: Input: BSWj−1

2: Input: OWj

3: for i ∈ {1, . . . , n} do
4: initial(ci)← ExtractStates(BSWj−1, ci)
5: end

6: {∆γ1
, . . . , ∆γp

} ← ApplyMergingStrategy(∆c1(initial(c1), O
Wj
c1 ), . . . ,

∆cn
(initial(cn), O

Wj
cn ), BSWj−1)

7: Output: ∆Wj = {∆γ1
, . . . , ∆γp

}
8: Output: BSWj ← FinalStates(∆γ1

, . . . , ∆γp
, BSWj−1)
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The notation BSWj represents the belief state of the system. 5 . Such a belief
state represents the set of global states in which the system could be after
the observations OWj . Given BSWj−1 , a set initial(ck) corresponding to the
possible initial states of the component ck at breakpoint tj is computed by
extracting them from BSWj−1. Then, the diagnosis of ck explaining the ob-
servations emitted by ck and received during Wj (noted O

Wj
ck ) from the states

initial(ck) is computed (this diagnosis is noted ∆ck
(initial(ck), O

Wj
ck )). Then

the merging operation is applied and a set of independent diagnoses is com-
puted. This merging operation is applied according to the strategy defined
in section 7.4.2 and depends on the current belief state BSWj−1 . Once the
diagnosis ∆Wj is computed, all the observations Oj are explained and we can
extract from the new set of diagnoses the new belief state BSWj which will be
used for the next temporal window.

Once the diagnosis ∆Wj is computed, all the observations Oj are explained.
Nevertheless, the diagnosis ∆j is not totally computed. The explanation of
OWj may have invalidated some traces in ∆Wj−1 (it may be impossible to find
an explanation of the new observations from a given final state of ∆Wj−1)
and therefore in ∆j−1. In order to explicitly obtain ∆j, given ∆j−1 and ∆Wj ,
we must eliminate from ∆j−1 all the traces that have no future in ∆Wj and
append ∆Wj to the new ∆j−1 (see [20] for more details). This operation is
made by a refinement operation noted ⊕. So we have:

∆j = ∆j−1 ⊕∆Wj .

From a practical point of view, ∆Wj is the interesting information in a context
of monitoring; the supervising agent wants to know what have just happened
in the system. Thus, applying the refinement operation during the on-line
diagnosis is not necessary. Refinement operation is only required when a deeper
analysis of the diagnosis is performed, so this operation can be applied off-line
(see section 5.4 page 21).

8.3 General case

In the treated example which derives from a real application (see section 9),
the hypothesis of sound windows can be applied without loss of generality. In
this application, the alarms are instantaneously emitted and received when a
problem occur. A problem causes a large packet of alarms at a given time, so it
is easy to define a sound temporal window that surrounds this packet. So the
algorithm previously defined can be used to solve the problem. Nevertheless,

5 The computation of the belief state is not the topic of this paper. For efficiency
purposes, its representation is symbolic and uses binary decision diagrams [4]
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in theory, sound windows may not exist and this section describes this general
case where the given temporal windows are arbitrarily chosen (see [20] for
more details).

The purpose of the incremental diagnosis is to always provide a diagnosis for
a given temporal window, thus the method in the general case must take into
account two kinds of observations:

(1) the observations that have effectively been received;
(2) the observations that have been emitted but are not received yet.

If the algorithm 3 is used on an unsound temporal window, some explanations
in the resulting diagnosis may be missing. In fact, the merging operation as-
sumes that every emission of message in the observation channels is effectively
received, so explanations that require the emission of observable events which
have not been received yet, are not computed. In the worst case, it is possible
that the only explanations of a given set of observations are based on the fact
that messages are still in the observation channels, in that case, the algorithm
3 is unable to provide any explanation. In the general case, in order to pro-
vide a diagnosis for each temporal window, the unreceived messages must be
guessed, some observations have to be supposed uncertain [12]. In this context,
a new diagnosis structure must be defined that allows to represent traces under
the hypothesis of emitted but unreceived observations. This structure is called
extended diagnosis. Basically, an extended diagnosis has the same representa-
tion of a diagnosis except that an extended diagnosis state X is formed as a
couple (q, O) where O may contain unreceived observations that are also ex-
plained. The set of final states of an extended diagnosis, which corresponds to
the extended belief state BS

Wj

ext , is composed of states (q, O) where OWj
⊆ O.

The computation of an extended diagnosis needs the following hypothesis.

Hypothesis 5 Every observation channel from a component to the supervi-
sion system is bounded by a known number “capacity”.

In fact, if the size of the channel was unknown, an extended diagnosis would
have to guess an unknown number of unreceived observations.

The incremental diagnosis algorithm in the case of unsound temporal win-
dow is obtained by replacing in the algorithm 3 the use of diagnoses (resp.
belief states) by the use of extended diagnoses (resp. extended belief states).
There are two main differences. One difference is on the computation of the
initial(ck) sets (line 4). Instead of extracting states of ck from every state of
the previous extended belief state, we have to only extract them from a subset
of it: the interesting states are only the ones which are compatible with the
new set of received observations (observations that have been supposed to be
received and that have been effectively received). The second difference is on
the computation of the extended diagnoses of components (line 6). For some
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ck, some observations of O
Wj
ck have been already explained in the previous tem-

poral window, it follows that it is not necessary to do it again, secondly, some
assumptions must have been made about possible unreceived observations at
the end of Wj in order to achieve the extended diagnosis computation.

As far as the refinement operation is concerned, the operator is the same and
we have:

∆j
ext = ∆j−1

ext ⊕∆
Wj

ext.

8.4 Relation between diagnosis and extended diagnosis

With the help of the extended diagnosis notion, it is still possible to provide
a diagnosis for any temporal window. The extended diagnosis also assures
that no explanation is missing. In fact, by definition, an extended diagnosis
represents a set of explanations that explain not only the received observations
but also a set of possible unreceived observations. If there is an explanation of
the received observations which does not require assumptions about unreceived
observations, then this explanation is contained in the extended diagnosis. As
a consequence, it can be easily shown that, for any breakpoint tj, we have:

∆j ⊆ ∆j
ext.

Moreover, if we have the guarantee that, after a given temporal window Wj,
the breakpoint tj+1 is sound then no assumption about unreceived events is
required. In that case, it can be shown that:

∆j = ∆j
ext.

This is especially the case when tj+1 is the date when the supervised system
stops working.

9 Experimental results

For testing the approach above, we have used a model of a telecommunication
network coming from the project MAGDA. This model is based on a real
SDH network (Synchronous Data Hierarchy) and it has been defined during
the collaboration between academic and industrial partners of the MAGDA
project.
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9.1 SDH network

The studied network is a ring of 4 ADM multiplexers (ADM: Add and Drop
Multiplexer) (see Figure 15). Each multiplexer is located in a different town
of the area Ile de France: Aubervilliers, Gentilly, Montrouge, and St Ouen.
Whereas the Aubervilliers ADM only transmits data from Gentilly to St Ouen
and vice versa, the other ADMs have connections with clients of the network
via PDH and STM1 connections.

Fig. 15. Topology of the SDH network: a ring of 4 ADMs

This network is managed with the help of managed objects which are defined
in the SDH norms. Each object corresponds to a functionality of a part of a
multiplexer. Figure 16 presents the 23 managed objects associated to the mul-
tiplexer of Montrouge. These objects take into account that the SDH protocol
is hierarchical (from SPI (Synchronous Physical Interface) to LOP (Low Order
Path)). Globally, the network is composed of 72 managed objects, each object
behaviour is modelled by a communicating automaton; the global centralised
model, if it was explicitly built by the free product of these automata, would
have about 5.6× 1047 states.

Each managed object can emit some alarms if it detects a problem. It can also
emit alarms if it receives messages from other managed objects. In particular,
if an object from a ADM x detects a problem, it emits a message to the same
objects from the other ADMs y and z where y and z are the neighbours of
x. Figure 17 shows the model which describes the au3CTP component on the
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Fig. 16. Montrouge Add and Drop Multiplexer
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Fig. 17. Montrouge: model of the component au3CTP
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Montrouge site. The problems that can occur on this component are modelled
by AisFail, AisBack (problem of alarm indication signal), LopFail, LopBack
(loss of pointer). Such problems can also occur on other sites, the component
detects those problems by the reception of messages from the msTTP neigh-
bour such as auAIS,auAISclrd, auAISinhib. This information is propagated
to tu12CTP with the help of events like tuAIS, tuAISclrd. The observations
emitted by this component (in bold) are Dbled (Disabled), Ebled (Enabled),
auAIS and LOP.

9.2 Results

During the MAGDA project, 8 scenarios of faults have been defined. A scenario
consists of a set of failures that occur in the network and the set of alarms that
are observed in reaction of these failures. These scenarios have been defined
in order to characterise typical faulty situations, in particular, some scenarios
contain with multiple faults and masking phenomena (scenarios S5 and S8).
We have experimented our approach by diagnosing each scenario from each set
of alarms using our diagnostic tool DDyp [21]. For these experiments, we have
considered that the set of observed alarms corresponds to a sound temporal
window.

9.2.1 Results on the merging strategy

Table 1 presents the time of computation needed for diagnosing the different
scenarios if we use a unique machine (Pentium III 1Ghz) (computation of the
subsystem diagnoses and the global diagnosis, no parallel computation has
been used in this experiments for better comparisons, see [21] for details on
parallel computations). Based on the set of received alarms, for each scenario,
our approach finds the failures defined in the scenario but also it finds out
other failure scenarios that can explain the same observations.

In order to show that the strategy we propose is fundamental in a decen-
tralised approach, Table 1 presents a comparison between the results from 4
different strategies. The first strategy is the one computed with the help of
the algorithm 2. The second strategy is the same as the first one, except that
the merging order is such that two non-matchable diagnoses are merged. The
third strategy consists in merging like in strategy 1 but without eliminating
incompatible traces before the merging. The fourth strategy is like the strategy
2 but without eliminating incompatible traces before the merging.

Strategy 1 shows that the on-line diagnosis computation is possible on the
SDH network when we are dealing with typical diagnosis situation (single
and multiple failures). Strategy 2 shows the choice in the merging ordering
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Scenarios Observed
alarms

Strategy 1 Strategy 2 Strategy 3 Strategy 4

S1: Laser failure
(St Ouen)

24 3s 590ms 4s 200ms 16s 540ms >5mn

S2: AU3 failure
(Aubervilliers)

4 1s 300ms 1s 300ms 1mn 53s >5mn

S3: Laser failure
(Gentilly)

26 1s 780ms 1s 910ms >5mn >5mn

S4: RS failure
(Aubervilliers)

14 1s 600ms 2s 30ms 49s >5mn

S5: Multiple fail-
ures (S3 with
S4)

36 2s 620ms 5s 500ms 5s 430ms 3mn 45s

S6: BER failure
(Aubervilliers)

11 1s 780ms 2s 320ms 24s 240ms 57s 440ms

S7: RS failure
(Gentilly)

14 1s 480ms 1s 700ms 2mn 55s >5mn

S8: Multiple fail-
ures (S6 and S7)

21 1s 830ms 3s 90ms 3s 30ms >5mn

Table 1
Diagnosed scenarios with different strategies of merging

is important and has to take into account interactions between subsystem
diagnoses. For better comparisons, strategy 2 merges the same diagnoses as
strategy 1 but in a different order. Therefore, strategy 2 is defined according
to strategy 1. In practice, if we do not care about interactions at all, such a
strategy is unable to determine independent diagnoses so the time of compu-
tation can strongly increase because the result of the strategy will be only one
diagnosis. Strategy 3 shows the elimination of the traces a priori has a big
impact on the performance of the merging operation. Strategy 4 is very time-
consuming. The merging of diagnoses that are not matchable corresponds to
the Cartesian product. Moreover, incompatible traces are uselessly computed
and then invalidated by the merging with another diagnoses in future steps.
Strategy 4 shows that trajectory elimination and good ordering strategy have
cumulative and benefit effects on the merging operation.

9.2.2 Characteristics of the computed diagnoses

Table 2 presents some characteristics of the computed diagnoses by the strat-
egy 1 for the scenarios defined in Table 1. The characteristics are the following.
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• Involved comps. max: the maximal number of components that are involved
in a fault propagation.
• Indep. diagnoses: the number of independent diagnoses.
• Red. states max: the number of states in the biggest independent reduced

diagnosis.
• Red. trans. max: the number of transitions in the biggest independent re-

duced diagnosis.
• States max: the number of states in the biggest independent unreduced

diagnosis followed by the reduction rate.
• Trans. max: the number of transitions in the biggest independent unreduced

diagnosis followed by the reduction rate.
• Strategy 1 overhead: the overhead time needed by Strategy 1 to compute

the diagnoses without any reduction.

Scena-
rios

Involved
comps.
max

Indep.
diag-
noses

Red.
states
max

Red.
trans.
max

States
max

Trans.
max

Strategy 1
overhead

S1 36 26 81 82 210 / 61% 609 / 87% 34%

S2 23 28 3 2 3 / 0% 2 / 0% 0%

S3 28 27 10 10 38 / 74% 81 / 63% 7%

S4 40 29 15 14 35 / 57% 62 / 77% 18%

S5 40 25 36 36 190 / 81% 515 / 93% 76%

S6 36 27 19 18 29 / 34% 45 / 60% 0%

S7 28 27 6 5 9 / 33% 11 / 54% 1%

S8 36 25 17 16 35 / 51% 53 / 70% 8%

Table 2
Diagnosis characteristics: comparison of the reduced/unreduced representations.

The first significant result of Table 2 is the fact that for each analysed scenario
our diagnosis system was able to detect several independent diagnoses. This
is due to the fact that the propagation of a failure does not generally involve
the whole system but only a subpart of it (the biggest involved subsystem is
composed of 40 components over 72 in scenario 5), the other parts behaving
independently from the occurrence of the diagnosed failures.

The second result presented in Table 2 is about the reduction of the diagnoses.
Strategy 1 has been applied to merge diagnoses without any reduction tech-
niques in order to analyse the impact of the reduction of the diagnoses. The
reduction percentages are important and show that the set of components of
the system have a high degree of concurrency (independent behaviours) that
are detected by our dependence relation. Moreover, the merging of the re-
duced diagnoses is more efficient than the merging of the non reduced ones.
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The main reasons are that, firstly, the merge of two unreduced diagnoses needs
to explore a bigger state-space and, secondly, the computation of the depen-
dence relation is efficient enough. It results that the overhead for reducing is
neglectable.

9.3 Complexity discussion

Results about the efficiency merging operation have been presented relying
on a real and complex large system. The merging operation is efficient in this
example because it benefits from different approaches that are combined and
well-suited. In this section, an informal discussion about the complexity of the
merging operation is presented.

Firstly, the merging operation is based on the divide and conquer paradigm
and exploits its efficiency. In this case, this paradigm is efficient because the
set of behaviours diagnosed locally is usually very small compared to the num-
ber of possible local behaviours. This fact is true if the diagnosed system has
good observability properties (lot of different observation types, very few unob-
servable components) and the temporal windows are small enough. Moreover,
with good observability properties in the system, we expect that the global
diagnosis is exponentially smaller that the global behaviour.

The second reason of the merging operation efficiency is the strategy. The pur-
pose of the strategy is to minimise the computations by avoiding the merging
of independent diagnoses that is complex (cartesian product) and useless. The
representation of the global diagnosis thanks to the set of independent diag-
noses is exponentially smaller (relatively to the number of independent diag-
noses) than the representation of the global diagnosis as a unique finite-state
machine. In large systems, independent diagnoses exist because a failure does
not usually propagate its consequences on all the components of the system
but on a subpart of it.

The third reason of its efficiency is the use of partial order techniques. Those
techniques are well-known in model-checking to exponentially reduce the com-
plexity of a space search algorithm in the good cases. A good case is a system
with a lot of independent events in it which is typically the case of the systems
we consider. The partial-order techniques are efficient if a trade-off is found
between the amount of detected independent events during the search and the
complexity of the algorithm to detect these independences. In our case, the
independence are detected in a local and incremental manner (during each
merging operation) with a detection algorithm which is constant and does not
consequently create any overhead in the merging algorithm.
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10 Related work

There are several works which propose a framework for the decentralised di-
agnosis of discrete event systems. In [8], the authors propose a monitoring
system based on the fact that the supervised system is observed by a set of
sensors. The framework consists of a set of diagnosers [25,26], each diagnoser
aiming at explaining the observations from one site. When an observation oc-
curs on a sensor, the corresponding diagnoser updates its diagnosis. Because
the diagnoser is computed from a global model of the system, the diagnosis
proposed by the diagnoser is a global diagnosis. The merge operation consists
here in exchanging messages between diagnosers in order to make a consen-
sus of the diagnosis proposed by each diagnoser. This approach is well-suited
for monitoring because the diagnoser approach is efficient. Nevertheless, us-
ing this approach for large discrete event systems is not possible due to the
impossibility of computing the global model of the system.

The authors of [2] propose the framework for the diagnosis of active systems.
In this framework, based also on communicating finite state machines and
communication channels, the diagnosis computation consists in unfolding the
set of automata given the set of observations. The purpose of the approach
is to compute the global diagnosis (also called active space) as an automaton
giving all the explanations. The main difference with our work is about the
efficiency of the approach, the active space approach being an off-line tech-
nique: the set of observations is thus considered as complete (no incremental
diagnosis problem) and the efficiency of the method is not crucial. To compute
the global diagnosis, the authors propose a modular reconstruction based on
the topology of the system by firstly building subsystem diagnoses and sec-
ondly merging the set of diagnoses in a hierarchical manner [3]. The merging
strategy we propose is based on the same idea. Nevertheless, the main differ-
ence with our merging strategy is that the reconstruction plan builds, in any
cases, the global diagnosis of the system. No reduction techniques are used to
compute an efficient representation of the global diagnosis moreover the mod-
ular reconstruction does not manage the fact that some subsystems may have
independent diagnosed behaviours and that the merging of them is useless.
This work has been extended for integrating synchronous and asynchronous
behaviours in the same model in the framework of polymorphic systems [14].

Very recently, in [13], a new technique, called Continuous Diagnosis, has been
proposed in order to extend the active system approach for monitoring pur-
poses. In this approach, the authors propose to mix the diagnoser approach
(well-suited for monitoring) and the active space approach (well-suited for
diagnosing large scale discrete-event systems). The main idea is to compute
on-line, from the model, the state of a finite-state machine called a monitor
that currently gives the diagnosis of the system (failure localisation). In the
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continuous diagnosis approach, the temporal windows only consist of one ob-
servation and is supposed to be sound (like in the classical diagnoser approach
[25,26]). Given a temporal window, the belief state (augmented with a diag-
nosis information) is represented by the current state of the monitor. When
an observation occurs, the computation consists in searching for observable
transitions in the model that match the observation and in computing the un-
observable bahaviour that could occur after the reception of the observation
(called the silent closure in the paper). This approach assumes that the global
unobservable behaviour occuring after an observation is computable on-line.
Our merging strategy with the help of the partial reduction techniques can
contribute to increase the efficiency of the silent closure computation.

Another set of works have also been proposed to monitor stochastic systems.
The idea consists in using probability in order to only compute a set of pre-
ferred explanations (the most likely explanations generally) among the set of
all explanations. As an example, in the Livingstone project [29], the system
is modeled as a set of transition systems and a global probability distribution
which rules the triggering of the transitions in the modeled system. In this
framework, the purpose is to compute a belief state (the set of the most likely
states of the system) by monitoring a sequence of observations. This work has
been extended in [11] to compute also the most likely behaviours (called trajec-
tories in the cited paper). A more recent approach is also proposed in [10]. The
framework is based on a set of stochastic diagnoser agents which are in charge
of computing the most likely local diagnoses for the set of global observations.
An agent only knows about the behaviour of one subsystem. The merging op-
eration is implemented by message exchanges between several agents in order
to check diagnosis interactions but also to check if the result is likely or not.
In this framework, the idea is to never compute a global diagnosis, the local
diagnoses are checked but in order to compute failure propagation, another
computation is needed (association of local diagnosis). In our framework, such
local diagnoses are obtained by projecting the set of independent diagnoses to
the given subsystem. The approaches based on stochastic systems are more
efficient (only a subset of the complet diagnosis is computed) but they have
also several problems. Firstly, a probability information is neccessary and is
difficult to acquire from a real application (the expertise is generally poor
and automatic training methods have to be used). Secondly, the most likely
explanations of a sequence of observations are not necessary the most inter-
esting ones: the occurrence of a serious failure is generally unlikely. Finally,
the monitoring of a system can be very inefficient due to the fact that a likely
explanation for one temporal window can become very unlikely in the next
window and a backtrack is then necessary.
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11 Conclusion and perspectives

In the paper we propose a framework for the on-line diagnosis of large scale
discrete event systems. Dealing with large discrete event systems implies that
the use of a global model is impossible. The proposed formal framework allows
to model large discrete event systems in a modular way. Moreover, thanks to
the properties of the synchronisation operation (associativity and commuta-
tivity), any decentralised reasoning can be performed on the system, following
the divide and conquer paradigm.

Given that framework, we then propose an on-line decentralised diagnosis ap-
proach. Because the system emits observations from several subsystems, we
can divide the diagnosis problem into several diagnosis subproblems based
on a set of subsystems. Then, once those diagnoses are established, a merge
operation, based on the synchronisation operation, is necessary to obtain the
global diagnosis. The purpose of the merge operation is to build the miss-
ing information which is in the global model: interaction checking. In order
to make an on-line diagnosis, this operation has to be efficient. For this rea-
son, several ideas have been developed in this paper. Firstly, the diagnosis
representation has to be efficient. Representation problem efficiency is due to
the concurrency of the system. Our proposal is to use partial order reduction
techniques to solve the problem. The second point is the proposal of a merg-
ing strategy. This strategy dynamically computes an efficient way to merge
the diagnoses. The basic idea is to dynamically recognise diagnostic problems
that are independant from each other and benefit from this dynamic inde-
pendence. This recognition does not result from an a priori analysis, as it is
usually done in the literature, but from a analysis based on observed interac-
tions which provides more accurate results. Finally, in the context of system
monitoring, being efficient also means being incremental. To achieve that, we
define the incremental diagnosis problem which takes advantage from the di-
agnosis previously computed to compute the new diagnosis given a new flow
of observations.

This framework has been implemented for the monitoring of telecommunica-
tion networks [21] and has been integrated and validated in the context of
the MAGDA project. The purpose of this project was to provide a complete
supervision chain from the modeling of the system to the ergonomic view of
failure propagations to a supervisor. The presented framework proposes a way
to model a large discrete event system, to provide, on-line, a complete diagno-
sis of the system. The diagnosis being exhaustive can be presented in several
ways to a supervisor agent depending on his needs (on-line analysis, deep off-
line analysis,...) at a given time. The studied network is a real case and the
promising results of this study have been reported in this paper.
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The perspective of this work are numerous. Firstly, the described framework
can be used to solve the diagnosability problem. Previous works on that prob-
lem needs the computation of a global model, so there is no known algorithm
for dealing with large scale discrete event systems. One challenge is to propose
a solution to this problem inside the proposed framework. Another problem
to deal with is the reconfiguration of systems. In this problem, not only the
diagnosis system has to deal with observations but also with on-line evolution
of the system (connection reconfiguration in the case of telecommunication
networks). Finally, this framework could be extended to model large scale
autonomous systems by mixing diagnosis and planning approaches [29].

A Proof of the theorem 1

Theorem 1 Let γ1 and γ2 be two disjoint subsystems, then

‖γ1 ∪ γ2‖ = ‖‖γ1‖, ‖γ2‖‖.

PROOF. Let γ1 and γ2 denote two disjoint subsystems with {Γi1, . . . , Γik}
and {Γj1 , . . . , Γjl

} the respective component sets of γ1 and γ2. The behaviour
of the subsystem γ1 ∪ γ2 is a finite state machine ‖γ1 ∪ γ2‖ = (I, O, Q, E)
included in the free product

〈Γi1, . . . , Γik , Γj1, . . . , Γjl
〉.

‖γ1‖ is included in the free product 〈Γi1 , . . . , Γik〉 and ‖γ2‖ is included in the
free product 〈Γj1, . . . , Γjl

〉. Therefore, the behaviour of the subsystem com-
posed of the automata {‖γ1‖, ‖γ2‖} is by definition a finite state machine
(I ′, O′, Q′, E ′) included in the free product:

〈〈Γi1, . . . , Γik〉, 〈Γj1, . . . , Γjl
〉〉 = 〈Γi1 , . . . , Γik , Γj1, . . . , Γjl

〉.

Consequently, I = I ′, O = O′ and

Q, Q′ ⊆
∏

p∈{i1,...,ik,j1,...,jl}

Qp.

To prove the result, it suffices now to show that E = E ′.

(E ′ ⊆ E) E is the set of synchronised transitions from 〈Γi1, . . . , Γik , Γj1, . . . , Γjl
〉.

E ′ is the set of synchronised transitions from 〈Γi1 , . . . , Γik , Γj1, . . . , Γjl
〉 re-

sulting from the product of transitions from ‖γ1‖ and ‖γ2‖. Therefore, E ′
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is necessarily contained in E.

(E ⊆ E ′) Every transition T of E is as follows:

T = (qi1

ti1−→ q′i1 , . . . , qik

tik−→ q′ik , qj1

tj1−→ q′j1, . . . , qjl

tjl−→ q′jl
)

with (qi1

ti1−→ q′i1 , . . . , qik

tik−→ q′ik) a transition from 〈Γi1, . . . , Γik〉 and (qj1

tj1−→

q′j1, . . . , qjl

tjl−→ q′jl
) a transition from 〈Γj1, . . . , Γjl

〉. The transition T is syn-
chronised. If the (tj)j∈{i1,...,ik} or the (tj)j∈{j1,...,jl} are null, then by definition
the corresponding transitions from 〈Γi1 , . . . , Γik〉 and 〈Γj1, . . . , Γjl

〉 are syn-
chronised and T is in E ′.

Otherwise, we have card({tj, j ∈ {i1, . . . , ik, j1, . . . , jl}|rcv(tj) ∈ Σγ1∪γ2

exo }) ≤
1. Consequently, we obtain

card({tj, j ∈ {i1, . . . , ik}|rcv(tj) ∈ Σγ1

exo}) ≤ 1,

card({tj, j ∈ {j1, . . . , jl}|rcv(tj) ∈ Σγ2

exo}) ≤ 1.

For each non null tj, j ∈ {i1, . . . , ik, j1, . . . , jl}, we also have:
(1) ∀e ∈ emit(tj) ∩ Σγ1∪γ2

int , ∃r ∈ {i1, . . . , ik, j1, . . . , jl}, e = rcv(tr);
(2) ∀rcv(tj) ∈ Σγ1∪γ2

int , ∃r ∈ {i1, . . . , ik, j1, . . . , jl}|rcv(tj) ∈ emit(tr).
If j ∈ {i1, . . . , ik}, then, from (1), we obtain

∀e ∈ emit(tj) ∩ Σγ1

int, ∃r ∈ {i1, . . . , ik, j1, . . . , jl}, e = rcv(tr).

Because γ1 and γ2 are disjoint, Σγ1

int does not contain any events from the
subsystem γ2, so Σγ1

int ∩ (
⋃

r∈{j1,...,jl} rcv(tr)) = ∅. Finally, from (1), we have

(?) ∀e ∈ emit(tj) ∩ Σγ1

int, ∃r ∈ {i1, . . . , ik}, e = rcv(tr).

Using the same way of reasoning, the property (2) implies:

(??) ∀rcv(tj) ∈ Σγ1

int, ∃r ∈ {i1, . . . , ik}|rcv(tj) ∈ emit(tr).

Finally, we know that:

∃j ∈ {i1, . . . , ik, j1, . . . , jl}|rcv(tj) ∈ Σγ1∪γ2

rcv .

Two cases hold.
(1) If j ∈ {i1, . . . , ik} then ∃j ∈ {i1, . . . , ik}|rcv(tj) ∈ Σγ1

rcv.
(2) If j 6∈ {i1, . . . , ik}, suppose for the sake of contradiction that ∀j ∈
{i1, . . . , ik}|rcv(tj) ∈ Σγ1

int. With the help of (?) and (??), it follows that
the transition (tj)j∈{i1,...,ik} represents a cyclic instantaneous propaga-
tion of events in γ1, which is impossible because of the hypothesis 4,
hence ∃j ∈ {i1, . . . , ik}|rcv(tj) ∈ Σγ1

rcv.
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Therefore, (qi1

ti1−→ q′i1 , . . . , qik

tik−→ q′ik) is a synchronised transition and

belongs to ‖γ1‖. The fact that (qj1

tj1−→ q′j1 , . . . , qjl

tjl−→ q′jl
) is a synchronised

transition and belongs to ‖γ2‖, is shown in the same manner. The transition
T is thus in E ′, hence the result. 2
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