
© EuroSTAR 1994 An Experimentation with Statistical Testing 10/1

An Experimentation with Statistical Testing

Hélène Waeselynck* Pascale Thévenod-Fosse
INRETS

20, rue Elisée Reclus
59650 Villeneuve d'Ascq - FRANCE

Tel: (+33) 20 43 83 23
Fax: (+33) 20 43 83 59

E-mail: waeselyn@inrets.fr

LAAS-CNRS
7, Avenue du Colonel Roche

31077 Toulouse Cedex - FRANCE
Tel: (+33) 61 33 62 37
Fax: (+33) 61 33 64 11

E-mail: thevenod@laas.fr

* At LAAS-CNRS at the time of the study reported here.

Abstract

Statistical testing is based on a probabilistic generation of test data: classical structural
or functional criteria serve as guides for defining an input profile and a test size. The
method is intended to compensate for the imperfect connection of current criteria with
software faults, and should not be confused with random testing, a "blind" approach
that uses a uniform profile over the input domain.

This paper reports on experimental results obtained on a software component from the
nuclear field:

• unit testing of four functions – statistical input sets were designed according to
structural criteria; their efficiency was compared to the one of 1) deterministic sets
derived from the same criteria and 2) uniform random sets; the comparison
involved 2816 faults of mutation type seeded one by one in the source codes.

• whole component testing – statistical functional testing was designed from
behaviour models of the component: finite state machines, decision tables,
Statecharts; its efficiency was compared to the one of random testing, using two
versions of the component: the real one, in which a minor fault was found, and a
student version with 12 revealed faults.

The results showed the high fault revealing power of statistical testing, and its best
efficiency in comparison to deterministic and random testing.

Prerequisite Key Words: None

Topic Descriptors: Structural and functional criteria, random and deterministic
test patterns.

10/2 An Experimentation with Statistical Testing © EuroSTAR 1994

Introduction

Testing involves exercising the software by supplying it with input values. In practice,
testing is partial as it is not feasible to exercise a piece of software with each possible
data item from the input domain. When the focus of testing is fault removal, that is,
bug-finding and not reliability assessment, the tester is faced with the problem of
selecting a subset of the input domain that is well-suited for revealing the real, but
unknown, faults; this issue being further compounded by the increasing complexity of
real software systems. Then, the methods for generating test inputs proceed according
to one of two principles: either deterministic or probabilistic.

The deterministic methods for generating test inputs usually take advantage of
information on the target software in order to provide guides for selecting test cases, the
information being depicted by means of test criteria. A lot of test criteria have been
defined (see e.g. [Myers 79], [Howden 87], [Beizer 90]): each of them defines a
specific set of elements to be exercised during testing; these elements being parts of
either a model of the program structure or a model of its functionality. For example, the
program control flow graph is a well-known structural model, and finite state machines
are behaviour models that may be used to describe some software functions. State
coverage (i.e. instruction testing in the case of a program flow graph) and transition
coverage (i.e. branch testing in the case of a program flow graph) are two classical
examples of test criteria associated with these models. Given a criterion, the
deterministic principle consists in selecting a priori a set of test inputs such that each
element defined by the criterion is exercised (at least) once; and this set is most often
built so that each element is exercised only once, in order to minimise the test size.
Unfortunately, an acute question still arises from the definition of test criteria: a strong
limitation is due to the imperfect connection of the criteria with the real faults and,
because of the (current) lack of an accurate model for software design faults, this
problem is not likely to be solved soon. Hence, exercising only once, or very few times,
each element defined by such imperfect criteria is likely to be far from being enough to
ensure that the corresponding test set possesses a high fault exposure power. And this is
the main reason why the efficiency of deterministic testing depends more on the
particular test input values chosen than on the criterion retained [Hamlet 89].

On the contrary, the conventional probabilistic method for generating test inputs, called
random testing, consists in generating random test data based on a uniform distribution
over the input domain [Duran 84]: this is an extreme case of black box testing
approach, no information related to the target piece of software being considered,
except for the range of its input domain. The argument in favour of random testing is its
low cost: large test sets can be generated cheaply, that is, without requiring any
preliminary analysis of the software. Indeed, the fault revealing power of such a "blind"
testing approach is questionable, even if large test sets are used, and previous work has
shown that its effectiveness can be surprisingly high as well as surprisingly low,
depending on both the target software and the particular input values randomly drawn
[Ntafos 81, Duran 84].

Statistical testing is based on an unusual definition of random testing, with the purpose
of removing the blind feature of the conventional probabilistic generation
[Thévenod 89]. It aims at providing a "balanced" coverage of a model of the target
software, no part of the model being seldom or never exercised during testing. And for

© EuroSTAR 1994 An Experimentation with Statistical Testing 10/3

this, the method for generating statistical test inputs combines the information provided
by a model of the target software, that is, by a test criterion, with a practical way of
producing large test sets, that is, a random generation. Indeed, statistical testing aims to
cope with current (imperfect but not irrelevant) criteria and compensate their weakness
by requiring that each element be exercised several times. The statistical test sets are
then defined by two parameters, which have to be determined according to the test
criterion retained: (i) the test profile, or input distribution, from which the inputs are
randomly drawn and, (ii) the test size, or equivalently the number of inputs (i.e. of
program executions) that are generated. As in the case of deterministic testing, test
criteria may be related to a model of either the program structure, which defines
statistical structural testing, or of its functionality, which defines statistical functional
testing.

The experimental investigation summarised in the paper aims to assess and compare the
efficiency of the three methods for generating test data: deterministic, random and
statistical. The experiments were conducted with programs taken from a real, industrial
nuclear reactor safety shutdown system. Although the results got from a single
application are not sufficient to draw general conclusions on the adequacy of the test
methods, they have allowed us to confirm serious limitations of both the random and
the deterministic approaches; the statistical method being likely to be a practical way of
compensating for most of these limitations.

This paper proceeds as follows. Section 1 outlines our experimental framework. Then,
in the light of the results got from our real case study, Sections 2, 3 and 4 concentrate
on the analysis of the strengths and weaknesses of respectively random testing,
deterministic testing and statistical testing.

1. Case Study for Safety Critical Software

1.1. Target Programs

The experiments involved a software component extracted from a nuclear reactor
safety shutdown system, and belonging to the part of the system that periodically
scans the position of the reactor's control rods. At each operating cycle, 19 rod positions
are processed. The information is read through five 32-bit interface cards. After
acquisition, the data are checked and filtered. Then, the measurements of the rod
positions (in Gray code) are converted into a number of mechanical steps. Degenerated
operating modes are obtained when one or more interface card is declared inoperational
in the current cycle, so that the information it supplies is not taken into account. In the
worst situation all cards are inoperational and a minimal service is delivered: no
measure is provided, only routine checks are carried out. Reset operations can bring
back the system from partial to full service.

The implementation of the component approximates a thousand lines of C language
(without comments). It consists of a big controller and four small unit functions FCTi
(i = 1, …, 4): FCT1 and FCT2 perform data acquisition, FCT3 is the filtering unit and
FCT4 the conversion unit. Experimentation was carried out at various levels of
integration: first at the unit level (functions FCTi); then at the level of the whole
component. The latter experiments also involved a second version of the component
developed by a student from the same requirements summarised above.

10/4 An Experimentation with Statistical Testing © EuroSTAR 1994

1.2. Overview of the Experiments

The experiments have been designed according to two main investigation goals:

(1) Comparison of the three methods for generating test data: deterministic, random
and statistical;

(2) Study of input profiles for statistical testing; here, the aim was twofold: first, to
analyse the impact of the test profile (uniform or designed) on the effectiveness of
the probabilistic approach; and second, to show the feasibility of designing proper
profiles from a model of the target software.

Goal (1) was addressed by the unit testing experiments. Classical structural criteria
[Rapps 85] were used to design both statistical and deterministic test sets; random sets
were also generated. The comparison of three types of sets involved 2816 faults of
mutation type [DeMillo 78] seeded one by one in the source codes.

Goal (2) was addressed at both levels: structural profiles were first investigated (see
above); then functional profiles were designed from behaviour models of the
component: finite state machines, decision tables, Statecharts. At the component level,
the comparison with the uniform profile involved 13 real faults, one minor fault related
to the real version and 12 faults residing in the student version.

The next sections comment on the results supplied by each of the testing approaches –
random, deterministic, statistical (see also [Thévenod 91-93], [Waeselynck 93]).

2. Random Testing

In [Ntafos 81], conventional random testing was experimented on five small programs.
The author noticed that uniform testing was surprisingly effective for some programs
but very ineffective for others, and related the effectiveness to the degree of code
coverage achieved by the random data. Our results corroborate his observations and
clearly show that this testing method is likely to be a poor methodology, in most cases.

2.1. Experimental Results on Both Unit and Component Testing

As regards unit testing, the uniform distributions have been investigated for each FCTi
through 1 to 5 test sets, depending on the function complexity; each set was the same
size N as the larger statistical structural test set related to the same function (see 4.2).
Figure 1 tabulates the test sets and displays the numbers of faults they do not reveal.

 # N faults not revealed

 FCT1, 265 seeded faults 1 170 0

 FCT2, 548 seeded faults 1 80 0

 FCT3, 1416 seeded faults 5 405 229–626

 FCT4, 587 seeded faults 5 850 49–61

Fig.1 Numbers of seeded faults not revealed by the random sets in unit testing.
denotes the number of test sets with N inputs per set.

© EuroSTAR 1994 An Experimentation with Statistical Testing 10/5

For FCT1 and FCT2, the uniform distributions provide a 100% paths coverage of the
programs: all the faults are revealed, which can be deemed very cost-effective if one
considers that the test data generation requires little effort. Such efficiency is likely to
be due to the comparative simplicity of both programs. Indeed, the performance of
uniform testing falls off heavily as soon as the program's structure no longer lends itself
to a uniform stimulation. This appears strikingly in the case of FCT3, for which
hundreds of faults are not uncovered by the random sets. Besides, the results vary from
one set to the other: from 229 up to 626 faults are not revealed depending on the set;
and real disparities are observed between the subsets of faults uncovered: 66 faults
revealed by the least efficient set are not revealed by the most efficient one.

The results supplied at the component level were even worse with respect to the 13 real
faults uncovered during the whole set of our experiments. A single uniform test set was
generated: it contains 5300 inputs, the test size being arbitrarily chosen without
preliminary analysis of the component: this is in conformity with the foundation of
uniform testing, that is, large test sets generated cheaply. Indeed, this set is an order of
magnitude larger than the other (statistical) test sets experimented with (see 4.3).
Nevertheless, it does not reveal 8 of the 13 faults. This is not a surprising result, since it
was verified that the set poorly probes both component versions from both a structural
and a functional viewpoint (with respect to the structural coverage, four blocks of
instructions of the student version and one block of the real version are never
exercised).

2.2. Explanation for the Inadequacy of the Uniform Distribution

To investigate the behaviour of random test patterns, a detailed analysis of the evolution
of the fault exposure power as a function of the number of test inputs was conducted.
Whatever the test set and the program, the evolution of the growth of the number of
faults revealed was quite similar: the test patterns rapidly uncover the faults during a
first phase; then the incremental gain exhibits a sharp slowing down, that is, the slope of
the growth becomes almost null. For FCT1 and FCT2, all the faults are revealed within
the first 25 executions; for FCT3 and FCT4, the final scores are obtained in the first half
of the test sets. For the component, the five faults are revealed within the first 633
executions; the remaining 4667 executions being garbage. Indeed, the residual faults
induce a very low failure probability under the uniform profile.

As a result, little improvement is expected if the tests are further pursued, unless a very
large number of extra input data is generated. This suggest that the inadequacy of the
uniform distributions may not be compensated by a reasonable increase of the test
sizes: it is unlikely that uniform test patterns will exhibit a good efficiency, since
generally they properly exercise neither the functionalities of a program, nor its
structure. Revealing input data being unlikely to be uniformly distributed over the input
domain, a uniform profile is not relevant to increase the program failure probability
during testing.

3. Deterministic Testing

As mentioned at the beginning of the paper, the weakness of deterministic testing is
likely to be due to the tricky link between the test criteria and the faults they aim to

10/6 An Experimentation with Statistical Testing © EuroSTAR 1994

track down. As regards structural criteria, this limitation was confirmed by the
experimental results on unit testing.

3.1. Experimental Results on Deterministic Structural Testing

Figure 2 displays the proportion of seeded faults revealed by the deterministic structural
testing of FCT3 and FCT4 (the entire set of results is detailed in [Thévenod 91]); for the
purpose of comparison, the results of random testing are also recalled.

A column identifies a class of test experiments: the horizontal lines stacked in the
column give the scores of the various test sets that have been designed according to the
same criterion. For FCT3, Classes 1 to 3 correspond respectively to the structural
criteria All-Paths, All-Uses and All-Defs; for FCT4, All-Paths testing being not
feasible, Classes 2 to 6 correspond to All-Uses, All-C-Uses, All-Defs, All-P-Uses and
Branches.

0.5

0.6

0.7

0.8

0.9

1

Class 3Class 1 Class 2 random

0.80

0.84

0.88

0.92

0.96

1

Cl. 2 Cl. 3 Cl. 4 Cl. 5 Cl. 6 random

(a) FCT3, 1416 seeded faults (b) FCT4, 587 seeded faults

Fig.2 Proportion of seeded faults revealed by the
deterministic structural test sets.

As it can be seen in the figure, given a function and a criterion, the test sets exhibit
scores that may be quite unrelated: for FCT3, the scores of the Class 2 sets range from
0.52 to 0.833. Even when the range is narrower, it does not mean that the test sets
reveal the same faults: both Class 1 sets provide similar scores (0.79 versus 0.84), but
101 faults found by the least efficient set are not found by the most efficient one.
Worse, the FCT4 results show that the most stringent criteria do not necessarily supply
the highest scores: Class 2 (All-Uses) subsumes all other criterion classes, but the best
results are supplied by the Class 5 experiments (All-P-Uses). Finally, there is no
empirical evidence that deterministic structural inputs are more effective than pure
random ones.

Deterministic structural testing, and in fact deterministic testing as a whole, suffers
from the fact that it involves the selective choice of a small number of test data, which
may or may not turn out to be adequate. No guarantee is provided in regard to fault
exposure, even if a stringent criterion is adopted.

3.2. Explanation for the Limitation of Deterministic Testing

The previous results may be analysed from a more general perspective, in relation to
theoretical work on partition testing [Hamlet 90, Weyuker 91, Waeselynck 93].

© EuroSTAR 1994 An Experimentation with Statistical Testing 10/7

Partition testing refers to any test data selection method which divides the input domain
into subsets, and forces at least one test case to come from each subdomain. Most
deterministic testing schemes belong to this family of strategies, including structural
schemes: their subdomains group together inputs that exercise a same structural
element.

To minimise the test size, a single input case is generally drawn from each subdomain,
and all the authors agree that it is a poor strategy unless the subdomains are nearly
homogeneous (or revealing), that is, they contain only failure-causing inputs or none. It
is worth noting that a practical effect of the weakness of current criteria is that the
subdomains they define are usually not revealing.

Although a structural fault model (mutations) was used for our unit testing experiments,
many seeded faults were loosely connected to structural criteria, as were the three
following ones:

(1) The fault f1 (FCT3) disturbs a branch predicate. Yet, it was not revealed by the All-
Paths test sets: owing to error masking in the function, executing the wrong branch
does not always produce an incorrect output.

(2) The fault f2 (FCT3) modifies the handling of a global variable, thereby turning the
combinational behaviour of FCT3 into a sequential one. Revealing test sets must
contain two consecutive patterns in a specific order: the order was not adequate in
the Class 1 input sets, but some Class 2 and Class 3 sets happened to reveal the
fault.

(3) The fault f3 (FCT4) corrupts a pointer so that read/write operations are performed
in an improper memory area. As was stated by repeating the experiments twice, the
environmental context alters the faulty behaviour, making it unforeseeable: the
outcome of a same test set (f3 revealed or not) could vary from one run to the next.

Example (1) could be seen as a case for partition refinement: the paths with the faulty
branch define subdomains that are too large relative to the set of failure-causing inputs.
But without the knowledge of where the faults are, there is no way to insure that a
refined partition performs significantly better than the original one; and current fine
partitions (like All-Paths) have often proven to be unsuccessful.

Examples (2) and (3) invalidate the common assertion that exhaustive testing (the finest
possible partition with single element subdomains) yields a correctness proof of the
program. It would be true only if the program could be proven to exhibit a
combinational behaviour, which is not granted even for simple functions: just as in
some well-known cases of physical faults in hardware components, design faults in
software components may originate either a sequential behaviour or intermittent
failures, or both. Having analysed a large number of seeded faults, we claim that such
cases are likely to occur.

Instead of improving current partition schemes, an alternative direction may be to cope
with imperfect criteria and compensate their weakness through subdomain sampling.
Statistical testing is a practical way to implement this strategy.

10/8 An Experimentation with Statistical Testing © EuroSTAR 1994

4. Statistical testing

4.1. Principle and Method

Any criterion specifies a set of elements (e.g. subdomains) to be exercised (sampled)
during testing: given a criterion C, let SC be the corresponding set of elements. When
using a probabilistic method for generating test data, the number of times an element k
of SC is exercised is a random variable depending on two factors: the input profile,
which determines the probability of exercising k; and the test size N. The notion of test
quality with respect to a criterion [Thévenod 89] provides us with a theoretical
framework to ensure that on average each k is exercised several times, whatever the
particular test set generated according to the test profile and within a moderate test
duration:

DEFINITION. A criterion C is covered with a probability QN if each element of SC has a
probability of at least QN of being exercised during N executions with random inputs.
QN is the test quality with respect to (wrt) C.

The quality QN is a measure of the test coverage wrt C. Let PC be the occurrence
probability per execution of the least likely element under the chosen profile. Then the
test quality and the test size N are linked by the relation: (1-PC)N = 1-QN, or
equivalently:
 N = ln (1-QN) / ln (1-PC) (1)

There is a link between QN and the expected number of times, denoted n, the least
likely element is exercised: n ≅ - ln(1-QN). For example, n ≅ 7 for QN = 0.999, and
n ≅ 9 for QN = 0.9999.

Based on this, the principle of the method for designing a statistical test set
according to a given criterion C involves two steps:

(i) search for an input profile which accommodates the highest possible PC value;

(ii) assessment of the test size N required to reach a target test quality QN wrt C, given
the value of PC inferred from the first step; relation (1) yielding the test size.

Two different ways of deriving a proper profile are possible: either analytical, or
empirical. The first way supposes that the activation conditions of the elements can be
expressed as a function of the input parameters: then their probabilities of occurrence
are function of the input probabilities, facilitating the derivation of a profile that
maximises the frequency of the least likely element. The second way consists in
instrumenting the software in order to collect statistics on the number of activations of
the elements: starting from a large number of input data drawn from an initial
distribution (e.g. the uniform one), the test profile is progressively refined until the
frequency of each element is deemed sufficiently high.

Going back to the imperfect connection of the criteria with the actual faults, it is worth
noting that the criterion does not influence data generation in the same way as in the
deterministic approach: it serves as a guide for defining an input profile and a test size,
but does not allow for the a priori selection of a (small) subset of input data items. The

© EuroSTAR 1994 An Experimentation with Statistical Testing 10/9

efficiency of the probabilistic approach relies on a single assumption: the information
supplied by the criterion retained is relevant to derive a test profile that enhances the
program failure probability.

4.2. Experimentation with Statistical Structural Testing

A total of 22 statistical test sets have been designed according to the structural analysis
of the four functions FCTi (i=1, ..., 4).

First, the most stringent achievable criteria have been adopted: All-Paths for the
first three functions, All-Uses for FCT4; and the proper profiles have been defined
analytically. For a target QN = 0.9999, the test sizes N for each FCTi are respectively,
from relation (1): 170, 80, 405, 850. Twelve test sets have been generated: one for
FCT1 and for FCT2; five different sets for FCT3 and for FCT4. For these two
functions, which are more complex than the others on both a structural and a functional
viewpoint, we have also derived input profiles from weak criteria, respectively All-
Defs (Class 3 of FCT3) and Branches (Class 6 of FCT4). Five sets of 152 (resp. 42) test
patterns have been generated according to each profile, taking again QN = 0.9999. It is
worth noting that the Class 3 profile of FCT3 let two paths have a null probability of
being executed.

Figure 3 displays the scores supplied by the statistical sets versus the scores of
(1) deterministic sets derived from the same criteria, and (2) random sets. For all
functions, the most efficient test data are the statistical ones. High scores are
repeatedly observed, whatever the particular set generated according to a same
structural profile: the statistical testing approach allowed to increase significantly the
failure probability, even as regards subtle faults loosely connected with the criteria (see
3.2).

 structural testing
 stringent criteria weak criteria random testing

FCT1, 265
seeded faults

statist. set 100%
determin. sets 99.6–100%

— 100%

FCT2, 548
seeded faults

statist. set 100%
determin. sets 99.3–100%

— 100%

FCT3, 1416
seeded faults

statist. sets 100%
determin. sets 79.2–84%

statist. sets 97.6–98.8%
determin. sets 50–78.8%

55.8–83.8%

FCT4, 587
seeded faults

statist. sets 99–99.1%
determin. sets 82.1–85.5%

statist. sets 97.4–99%
determin. sets 80.7–88.9%

89.6–91.7%

Fig.3 Scores of the statistical structural test sets –
comparison with deterministic and random testing.

FCT4 is the only case for which no statistical set supplies a score of 100%: 6 faults lead
to failure only for some extremal input values. Under both structural profiles, to reach a
probability 0.9 of generating such values would require more than 600,000 test data.
This result confirms the efficacy of a mixed test strategy [Thévenod 89] combining:
(1) a global probe by statistical testing and (2) deterministic testing of extremal values.

10/10 An Experimentation with Statistical Testing © EuroSTAR 1994

17 faults seeded in FCT3 are never revealed by any Class 3 statistical set: they affect
the paths that have a null probability under this profile. As regards the 1399 other faults,
the results are quite satisfactory (98.8–100% revealed). The Class 6 sets of FCT4 are
also efficient: they reveal 98.5-100% of the faults not related to extremal values. The
most cost-effective approach seems to retain weak criteria facilitating the search for a
test profile, and to require a high test quality (0.9999) with respect to them. But one
must be careful the designed profile does not exclude items of the input domain (as for
FCT3).

4.3. Experimentation with Statistical Functional Testing

Statistical testing may also be based on behaviour models deduced from the
specification of the whole component. Using a top-down modelling process, a hierarchy
of models is issued; then retaining weak criteria and deriving several input profiles –
each being focused on a subset of models – is the general approach that allows us to
manage complexity.

Our experimentation was first based on a multi-level description combining finite state
machines and decision tables [Thévenod 92]; then, we applied the approach to
behaviour models produced in the STATEMATE™ environment [Thévenod 93].

4.3.1. Design of Statistical Test Sets from Finite State Machines and Decision Tables

Finite state machines (FSMs) and decision tables (DTs) – see e.g. [Davis 88,
Beizer 90] – possess complementary features: FSMs are well-suited to describe
sequential behaviours, while DTs focus on the combinational parts. The description of
the component functionality involved three levels of model:

(1) the FSM M0 (12 states, 88 transitions) identifies the current operating mode from
full to minimal service. Each mode determines a number of measures to be
processed.

(2) the FSM M1 (12 states, 54 transitions) models the checks and filtering performed
on one measure. Each transition induces the acceptance or rejection of the measure.

(3) the DT M2 (8 rules) describes the rod position to deliver for each accepted
measure.

The coverage of DT rules and of FSM states in steady-state conditions, i.e., after a
number of initial executions large enough to ensure that the transients die down, are the
criteria that we retained. Since M1 and M2 both relate to the processing of one measure,
it was decided to cover them with the same input profile. Hence, two distinct profiles
have been designed: the first one for the low level models (M1, M2); the second one for
M0. This was carried out by analysing the equations governing the state activation
(transition matrix of the FSMs) and the DT rule selection [Waeselynck 93].

™ STATEMATE is a registered trademark of i-Logix, Inc.

© EuroSTAR 1994 An Experimentation with Statistical Testing 10/11

To reach the steady-state conditions with a precision of 10-6 and get QN = 0.9999,
85 inputs are required under the first profile, and 356 inputs under the second one. Five
different statistical test sets of size N = 85 + 356 = 441 have been generated.

4.3.2. Design of Statistical Test Sets from a STATEMATE Specification

STATEMATE [Harel 90] is a tool for the specification of complex reactive systems. It
supports a hierarchical modelling approach, each level of hierarchy consisting of both a
functional and a behavioural view. The behaviour views are Statecharts [Harel 87], a
graphical language that improves state diagrams by adding encapsulation, concurrency
and broadcast communication. Simulation and instrumentation facilities are provided.

The specification developed with the aid of the tool involves two levels of hierarchy,
the top level function and 6 subfunctions, one for each of the five interface cards
(checks and filtering of the data acquired), and one for the conversion of the data into
rod positions:

• the Statechart of the top-level view has 33 basic states (states without offspring);

• the six Statecharts of the low level involve a total amount of 299 basic states.

It was decided to design two input profiles, one for each level of hierarchy, and to
ensure the coverage of the basic states. Also, an improvement on the test sets
previously defined (4.3.1) was to stress the interactions between high and low level
functions. Since a major function of the top level is to modify the status of the card
processing activities, it was focused on the transient period that follow the reset of low
level functions (states covered during the first acquisition of data).

In the present state of the art, it is not possible to determine the equations governing the
state activation of Statecharts. We thus had to proceed empirically to search for proper
profiles, the models being instrumented so as to collect state coverage measures. Five
test sets have been generated under the new profiles. Their size has been kept the same
as previously (85 + 356 items): each basic state is exercised at least 11 times by any set,
hence providing the target test quality of 0.9999.

4.3.3. Experimental Results on two Versions of the Component

Figure 4 shows the results supplied by the various test sets: Functional 1 and
Functional 2 denotes respectively the statistical sets described in 4.3.1 and 4.3.2;
Random denotes the large random set of 5300 data already commented on in Section 2.
Thirteen faults have been identified in which 12, denoted A, B, ..., L, were found in the
student program; the last one, Z, is a minor fault residing in the real version: in the real
system, it would never lead to failure due to systematic hardware compensation. Faults
A, G and J are structural faults directly linked to the coding activity. Faults B to F, and I,
result from the lack of understanding of the filtering check requirements by the student,
this function being at the heart of the component. The others are initialisation faults:
either an improper initial value is assigned (K, L) or the initialisation is missing (H, Z).

 A B C D E F G H I J K L Z

Random ✔ — — ✔ — ✔ ✔ ✔ — — — — —

10/12 An Experimentation with Statistical Testing © EuroSTAR 1994

Functional 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 4

Functional 2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Fig.4 Real faults found by the functional test sets
 ✔ always revealed
 i revealed by i sets out of 5
 — not revealed

The use of behaviour models as guides for designing statistical testing is relevant to
fault exposure. Since the experiments involved real (unknown) faults, it is not possible
to measure the exhaustiveness of the sets with respect to them; but it can be seen that
both types of statistical sets perform repeatedly much better than the random set,
although they are one order of magnitude shorter. The two profiles defined in each case
provide complementary results: the subsets of 85 and 356 data do not reveal the same
faults. Moreover, each entire statistical set exercises 100% instructions of the two
programs.

The fault Z was not revealed by one Functional 1 set: this motivated our choice to stress
the reset interactions in the Functional 2 sets. Then a new fault, L, was uncovered in the
student program. This fault is rather subtle, because its exposure depends on specific
conditions involving five successive acquisitions of data after a reset. During the design
of the Functional 2 profiles, only the first acquisition was taken into account for the
coverage of the initial states; in spite of this, it allowed us to raise significantly the
failure probability of the program. This result confirms once again the efficiency of
statistical testing with respect to faults that are loosely connected with the criteria
retained.

Finally, it is worth noting that the high fault exposure power of the Functional 2 sets,
that were derived empirically, bodes well with regard to the feasibility of statistical
functional testing for complex behaviour models.

Conclusion

Because the probabilistic approach is generally related to uniform test data, it is often
deemed a poor methodology: our experimental studies remove this preconceived idea.

Applied to the verification of a non trivial software component from the nuclear field,
statistical testing designed from structural or functional models supplied repeatedly a
high fault exposure power within a realistic test duration. At the unit level, the
efficiency of the method was assessed referring to 2816 faults of mutation type. The
experiments at the whole component level involved a small sample of real faults that
were a priori unknown. Note that complementary results reported elsewhere [Thévenod
94a] show that the statistical test sets designed at the component level are also efficient
in revealing a large sample of seeded faults (6175 mutations).

A limitation of the statistical sets experimented on is their lack of adequacy with respect
to faults related to extremal/special cases. Such faults induce, in essence, a very low
probability of failure under the profiles defined to ensure a global probe of the target
programs: they require test data specifically aimed at them. Hence, we support the
adoption of a mixed testing strategy involving both statistical and deterministic test

© EuroSTAR 1994 An Experimentation with Statistical Testing 10/13

sets; such a mixed strategy having already been successfully experimented with at the
unit level [Thévenod 94b].

The results related to unit testing confirmed the insufficiency of deterministic test data
derived from current – imperfect – criteria. For larger scale programs, this limitation is
expected to get worse. However, the medium size of the component experimented on
does not yet allow us to come to a conclusion about the feasibility of statistical testing
for complex software. Two problems arise:

• The oracle problem, namely that of how to determine the correct output results a
(complex) program should return in response to given input data. This problem
arises with any dynamic verification technique; but it becomes crucial when
numerous responses to probabilistic inputs are concerned.

• The complexity of the probabilistic analysis required by statistical testing.

Fortunately, an answer to these problems is likely to reside in the recent emergence of
CASE tools that assist software development by supporting formal models for the
specification of behaviour, and offering facilities to computerised simulation. Such
tools provide us with an oracle; the possibility of instrumenting the models facilitates
the empirical derivation of test profiles proper to ensure a rapid coverage of the
software functionalities.

In Section 4, the benefit of using CASE tools for the design of statistical testing has
been exemplified on the STATEMATE environment. The promising results obtained
for the medium-scale component may constitute a first step along the road.

Acknowledgements

This work was supported in part by the CEC under ESPRIT Basic Research Actions
no. 3092 & 6362: "Predictably Dependable Computing Systems" (PDCS & PDCS2).
We wish to thank our colleague, Yves CROUZET, for his useful contribution to the
experiments in unit testing.

References

[Beizer 90] B. Beizer, Software testing techniques, Van Nostrand Reinhold, New York,
Second Edition, 1990.

[Davis 88] A. M. Davis. "A comparison of techniques for the specification of external
system behaviour," Communications of the ACM, vol. 31, no. 9, pp. 1098-
1115, 1988.

[DeMillo 78] R. A. DeMillo, R. J. Lipton and F. G. Sayward, "Hints on test data selection:
help for the practicing programmer," IEEE Computer Magazine, vol. 11, no.
4, pp. 34-41, 1978.

[Duran 84] J. W. Duran and S. C. Ntafos, "An evaluation of random testing," IEEE
Trans. on Software Engineering, vol. SE-10, no. 4, pp. 438-444, July 1984.

10/14 An Experimentation with Statistical Testing © EuroSTAR 1994

[Hamlet 89] R. Hamlet, "Theoretical comparison of testing methods," in Proc. 3rd IEEE
Symposium on Software Testing, Analysis and Verification (TAV-3), Key
West, USA, pp. 28-37, December 1989.

[Hamlet 90] D. Hamlet and R. Taylor, "Partition testing does not inspire confidence,"
IEEE Trans. on Software Engineering, vol. 16, no. 12, pp. 1402-1411,
December 1990.

[Harel 87] D. Harel, "Statecharts : a visual formalism for complex systems," Science of
Computer Programming, vol. 8, no. 3, pp. 231-274, 1987.

[Harel 90] D. Harel et al, "STATEMATE: a working environment for the development
of complex reactive systems," IEEE Trans. on Software Engineering,
vol. SE-16, no. 4, pp. 403-414, April 1990.

[Howden 87] W. E. Howden, Functional program testing and analysis, Computer Science
Series, McGraw-Hill Book Company, 1987.

[Myers 79] G. J. Myers, The art of software testing, Wiley, New York, 1979.

[Ntafos 81] S. C. Ntafos, "On testing with required elements," in Proc. COMPSAC'81,
pp. 132-139, November 1981.

[Rapps 85] S. Rapps and E. J. Weyuker, "Selecting software test data using data flow
information," IEEE Trans. on Software Engineering, vol. SE-11, no. 4,
pp. 367-375, 1985.

[Thévenod 89] P. Thévenod-Fosse, "Software validation by means of statistical testing:
retrospect and future direction," Preprints 1st IEEE Working Conference on
Dependable Computing for Critical Applications (DCCA-1), Santa Barbara,
USA, pp. 15-22, August 1989. Published in Dependable Computing and
Fault-Tolerant Systems, vol. 4 (Eds. A. Avizienis, J-C. Laprie), Springer-
Verlag, pp. 23-50, 1991.

[Thévenod 91] P. Thévenod-Fosse, H. Waeselynck, and Y. Crouzet, "An experimental
study on software structural testing: deterministic versus random input
generation," in Proc. 21st IEEE Symposium on Fault-Tolerant Computing
(FTCS-21), Montréal, Canada, June 1991, pp. 410-417.

[Thévenod 92] P. Thévenod-Fosse, H. Waeselynck, "On functional statistical testing
designed from software behaviour models," Preprints 3rd IEEE Working
Conference on Dependable Computing for Critical Applications (DCCA-3),
Palerme, Italy, pp. 3-12, September 1992.

[Thévenod 93] P. Thévenod-Fosse, H. Waeselynck, "STATEMATE applied to statistical
software testing", Proc. International Symposium on Software Testing and
Analysis (ISSTA 93), Cambridge, Massachussets, June 1993.

[Thévenod 94a] P. Thévenod-Fosse, Y. Crouzet, "On the Adequacy of Functional Test
Criteria based on Software Behaviour Models", LAAS report no. 94.192; To
appear in PDCS2 (Predictably Dependable Computing Systems, Esprit Basic
Research Action no. 6362) 2nd Year Report, September 1994.

© EuroSTAR 1994 An Experimentation with Statistical Testing 10/15

[Thévenod 94b] P. Thévenod-Fosse, C. Mazuet and Y. Crouzet, "On statistical structural
testing of synchronous data flow programs," LAAS report no. 93.282; To
appear in Proc. 1st European Dependable Computing Conference (EDCC-
1), Berlin, Germany, October 1994.

[Waeselynck 93] H. Waeselynck, "Vérification de logiciels critiques par le test statistique",
Doctoral Thesis, Institut National Polytechnique de Toulouse, LAAS report
no. 93.006, January 1993.

[Weyuker 91] E. J. Weyuker and B. Jeng, "Analyzing partition testing strategies," IEEE
Trans. on Software Engineering, vol. 17, no. 7, pp. 703-711, July 1991.

