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Abstract 

Statistical testing is based on a probabilistic generation of test data: classical structural 
or functional criteria serve as guides for defining an input profile and a test size. The 
method is intended to compensate for the imperfect connection of current criteria with 
software faults, and should not be confused with random testing, a "blind" approach 
that uses a uniform profile over the input domain. 

This paper reports on experimental results obtained on a software component from the 
nuclear field: 

• unit testing of four functions – statistical input sets were designed according to 
structural criteria; their efficiency was compared to the one of 1) deterministic sets 
derived from the same criteria and 2) uniform random sets; the comparison 
involved 2816 faults of mutation type seeded one by one in the source codes. 

• whole component testing – statistical functional testing was designed from 
behaviour models of the component: finite state machines, decision tables, 
Statecharts; its efficiency was compared to the one of random testing, using two 
versions of the component: the real one, in which a minor fault was found, and a 
student version with 12 revealed faults. 

The results showed the high fault revealing power of statistical testing, and its best 
efficiency in comparison to deterministic and random testing. 

 

Prerequisite Key Words: None 

Topic Descriptors: Structural and functional criteria, random and deterministic 
test patterns. 
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Introduction 

Testing involves exercising the software by supplying it with input values. In practice, 
testing is partial as it is not feasible to exercise a piece of software with each possible 
data item from the input domain. When the focus of testing is fault removal, that is, 
bug-finding and not reliability assessment, the tester is faced with the problem of 
selecting a subset of the input domain that is well-suited for revealing the real, but 
unknown, faults; this issue being further compounded by the increasing complexity of 
real software systems. Then, the methods for generating test inputs proceed according 
to one of two principles: either deterministic or probabilistic.  

The deterministic methods for generating test inputs usually take advantage of 
information on the target software in order to provide guides for selecting test cases, the 
information being depicted by means of test criteria. A lot of test criteria have been 
defined (see e.g. [Myers 79], [Howden 87], [Beizer 90]): each of them defines a 
specific set of elements to be exercised during testing; these elements being parts of 
either a model of the program structure or a model of its functionality. For example, the 
program control flow graph is a well-known structural model, and finite state machines 
are behaviour models that may be used to describe some software functions. State 
coverage (i.e. instruction testing in the case of a program flow graph) and transition 
coverage (i.e. branch testing in the case of a program flow graph) are two classical 
examples of test criteria associated with these models. Given a criterion, the 
deterministic principle consists in selecting a priori a set of test inputs such that each 
element defined by the criterion is exercised (at least) once; and this set is most often 
built so that each element is exercised only once, in order to minimise the test size. 
Unfortunately, an acute question still arises from the definition of test criteria: a strong 
limitation is due to the imperfect connection of the criteria with the real faults and, 
because of the (current) lack of an accurate model for software design faults, this 
problem is not likely to be solved soon. Hence, exercising only once, or very few times, 
each element defined by such imperfect criteria is likely to be far from being enough to 
ensure that the corresponding test set possesses a high fault exposure power. And this is 
the main reason why the efficiency of deterministic testing depends more on the 
particular test input values chosen than on the criterion retained [Hamlet 89].  

On the contrary, the conventional probabilistic method for generating test inputs, called 
random testing, consists in generating random test data based on a uniform distribution 
over the input domain [Duran 84]: this is an extreme case of black box testing 
approach, no information related to the target piece of software being considered, 
except for the range of its input domain. The argument in favour of random testing is its 
low cost: large test sets can be generated cheaply, that is, without requiring any 
preliminary analysis of the software. Indeed, the fault revealing power of such a "blind" 
testing approach is questionable, even if large test sets are used, and previous work has 
shown that its effectiveness can be surprisingly high as well as surprisingly low, 
depending on both the target software and the particular input values randomly drawn 
[Ntafos 81, Duran 84]. 

Statistical testing is based on an unusual definition of random testing, with the purpose 
of removing the blind feature of the conventional probabilistic generation 
[Thévenod 89]. It aims at providing a "balanced" coverage of a model of the target 
software, no part of the model being seldom or never exercised during testing. And for 
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this, the method for generating statistical test inputs combines the information provided 
by a model of the target software, that is, by a test criterion, with a practical way of 
producing large test sets, that is, a random generation. Indeed, statistical testing aims to 
cope with current (imperfect but not irrelevant) criteria and compensate their weakness 
by requiring that each element be exercised several times. The statistical test sets are 
then defined by two parameters, which have to be determined according to the test 
criterion retained: (i) the test profile, or input distribution, from which the inputs are 
randomly drawn and, (ii) the test size, or equivalently the number of inputs (i.e. of 
program executions) that are generated. As in the case of deterministic testing, test 
criteria may be related to a model of either the program structure, which defines 
statistical structural testing, or of its functionality, which defines statistical functional 
testing.  

The experimental investigation summarised in the paper aims to assess and compare the 
efficiency of the three methods for generating test data: deterministic, random and 
statistical. The experiments were conducted with programs taken from a real, industrial 
nuclear reactor safety shutdown system. Although the results got from a single 
application are not sufficient to draw general conclusions on the adequacy of the test 
methods, they have allowed us to confirm serious limitations of both the random and 
the deterministic approaches; the statistical method being likely to be a practical way of 
compensating for most of these limitations.  

This paper proceeds as follows. Section 1 outlines our experimental framework. Then, 
in the light of the results got from our real case study, Sections 2, 3 and 4 concentrate 
on the analysis of the strengths and weaknesses of respectively random testing, 
deterministic testing and statistical testing. 

1. Case Study for Safety Critical Software 

1.1. Target Programs 

The experiments involved a software component extracted from a nuclear reactor 
safety shutdown system, and belonging to the part of the system that periodically 
scans the position of the reactor's control rods. At each operating cycle, 19 rod positions 
are processed. The information is read through five 32-bit interface cards. After 
acquisition, the data are checked and filtered. Then, the measurements of the rod 
positions (in Gray code) are converted into a number of mechanical steps. Degenerated 
operating modes are obtained when one or more interface card is declared inoperational 
in the current cycle, so that the information it supplies is not taken into account. In the 
worst situation all cards are inoperational and a minimal service is delivered: no 
measure is provided, only routine checks are carried out. Reset operations can bring 
back the system from partial to full service. 

The implementation of the component approximates a thousand lines of C language 
(without comments). It consists of a big controller and four small unit functions FCTi 
(i = 1, …, 4): FCT1 and FCT2 perform data acquisition, FCT3 is the filtering unit and 
FCT4 the conversion unit. Experimentation was carried out at various levels of 
integration: first at the unit level (functions FCTi); then at the level of the whole 
component. The latter experiments also involved a second version of the component 
developed by a student from the same requirements summarised above. 
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1.2. Overview of the Experiments 

The experiments have been designed according to two main investigation goals:  

(1) Comparison of the three methods for generating test data: deterministic, random 
and statistical; 

(2) Study of input profiles for statistical testing; here, the aim was twofold: first, to 
analyse the impact of the test profile (uniform or designed) on the effectiveness of 
the probabilistic approach; and second, to show the feasibility of designing proper 
profiles from a model of the target software. 

Goal (1) was addressed by the unit testing experiments. Classical structural criteria 
[Rapps 85] were used to design both statistical and deterministic test sets; random sets 
were also generated. The comparison of three types of sets involved 2816 faults of 
mutation type [DeMillo 78] seeded one by one in the source codes. 

Goal (2) was addressed at both levels: structural profiles were first investigated (see 
above); then functional profiles were designed from behaviour models of the 
component: finite state machines, decision tables, Statecharts. At the component level, 
the comparison with the uniform profile involved 13 real faults, one minor fault related 
to the real version and 12 faults residing in the student version. 

The next sections comment on the results supplied by each of the testing approaches – 
random, deterministic, statistical (see also [Thévenod 91-93], [Waeselynck 93]). 

2. Random Testing 

In [Ntafos 81], conventional random testing was experimented on five small programs. 
The author noticed that uniform testing was surprisingly effective for some programs 
but very ineffective for others, and related the effectiveness to the degree of code 
coverage achieved by the random data. Our results corroborate his observations and 
clearly show that this testing method is likely to be a poor methodology, in most cases. 

2.1. Experimental Results on Both Unit and Component Testing 

As regards unit testing, the uniform distributions have been investigated for each FCTi 
through 1 to 5 test sets, depending on the function complexity; each set was the same 
size N as the larger statistical structural test set related to the same function (see 4.2). 
Figure 1 tabulates the test sets and displays the numbers of faults they do not reveal. 

 
 # N faults not revealed 

 FCT1, 265 seeded faults 1 170 0 

 FCT2, 548 seeded faults 1 80 0 

 FCT3, 1416 seeded faults 5 405 229–626 

 FCT4, 587 seeded faults 5 850 49–61 

Fig.1 Numbers of seeded faults not revealed by the random sets in unit testing. 
# denotes the number of test sets with N inputs per set. 
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For FCT1 and FCT2, the uniform distributions provide a 100% paths coverage of the 
programs: all the faults are revealed, which can be deemed very cost-effective if one 
considers that the test data generation requires little effort. Such efficiency is likely to 
be due to the comparative simplicity of both programs. Indeed, the performance of 
uniform testing falls off heavily as soon as the program's structure no longer lends itself 
to a uniform stimulation. This appears strikingly in the case of FCT3, for which 
hundreds of faults are not uncovered by the random sets. Besides, the results vary from 
one set to the other: from 229 up to 626 faults are not revealed depending on the set; 
and real disparities are observed between the subsets of faults uncovered: 66 faults 
revealed by the least efficient set are not revealed by the most efficient one.  

The results supplied at the component level were even worse with respect to the 13 real 
faults uncovered during the whole set of our experiments. A single uniform test set was 
generated: it contains 5300 inputs, the test size being arbitrarily chosen without 
preliminary analysis of the component: this is in conformity with the foundation of 
uniform testing, that is, large test sets generated cheaply. Indeed, this set is an order of 
magnitude larger than the other (statistical) test sets experimented with (see 4.3). 
Nevertheless, it does not reveal 8 of the 13 faults. This is not a surprising result, since it 
was verified that the set poorly probes both component versions from both a structural 
and a functional viewpoint (with respect to the structural coverage, four blocks of 
instructions of the student version and one block of the real version are never 
exercised). 

2.2. Explanation for the Inadequacy of the Uniform Distribution 

To investigate the behaviour of random test patterns, a detailed analysis of the evolution 
of the fault exposure power as a function of the number of test inputs was conducted. 
Whatever the test set and the program, the evolution of the growth of the number of 
faults revealed was quite similar: the test patterns rapidly uncover the faults during a 
first phase; then the incremental gain exhibits a sharp slowing down, that is, the slope of 
the growth becomes almost null. For FCT1 and FCT2, all the faults are revealed within 
the first 25 executions; for FCT3 and FCT4, the final scores are obtained in the first half 
of the test sets. For the component, the five faults are revealed within the first 633 
executions; the remaining 4667 executions being garbage. Indeed, the residual faults 
induce a very low failure probability under the uniform profile.  

As a result, little improvement is expected if the tests are further pursued, unless a very 
large number of extra input data is generated. This suggest that the inadequacy of the 
uniform distributions may not be compensated by a reasonable increase of the test 
sizes: it is unlikely that uniform test patterns will exhibit a good efficiency, since 
generally they properly exercise neither the functionalities of a program, nor its 
structure. Revealing input data being unlikely to be uniformly distributed over the input 
domain, a uniform profile is not relevant to increase the program failure probability 
during testing.  

3. Deterministic Testing 

As mentioned at the beginning of the paper, the weakness of deterministic testing is 
likely to be due to the tricky link between the test criteria and the faults they aim to 
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track down. As regards structural criteria, this limitation was confirmed by the 
experimental results on unit testing. 

3.1. Experimental Results on Deterministic Structural Testing 

Figure 2 displays the proportion of seeded faults revealed by the deterministic structural 
testing of FCT3 and FCT4 (the entire set of results is detailed in [Thévenod 91]); for the 
purpose of comparison, the results of random testing are also recalled. 

A column identifies a class of test experiments: the horizontal lines stacked in the 
column give the scores of the various test sets that have been designed according to the 
same criterion. For FCT3, Classes 1 to 3 correspond respectively to the structural 
criteria All-Paths, All-Uses and All-Defs; for FCT4, All-Paths testing being not 
feasible, Classes 2 to 6 correspond to All-Uses, All-C-Uses, All-Defs, All-P-Uses and 
Branches. 
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(a) FCT3, 1416 seeded faults (b) FCT4, 587 seeded faults 

Fig.2 Proportion of seeded faults revealed by the 
deterministic structural test sets. 

As it can be seen in the figure, given a function and a criterion, the test sets exhibit 
scores that may be quite unrelated: for FCT3, the scores of the Class 2 sets range from 
0.52 to 0.833. Even when the range is narrower, it does not mean that the test sets 
reveal the same faults: both Class 1 sets provide similar scores (0.79 versus 0.84), but 
101 faults found by the least efficient set are not found by the most efficient one. 
Worse, the FCT4 results show that the most stringent criteria do not necessarily supply 
the highest scores: Class 2 (All-Uses) subsumes all other criterion classes, but the best 
results are supplied by the Class 5 experiments (All-P-Uses). Finally, there is no 
empirical evidence that deterministic structural inputs are more effective than pure 
random ones. 

Deterministic structural testing, and in fact deterministic testing as a whole, suffers 
from the fact that it involves the selective choice of a small number of test data, which 
may or may not turn out to be adequate. No guarantee is provided in regard to fault 
exposure, even if a stringent criterion is adopted. 

3.2. Explanation for the Limitation of Deterministic Testing 

The previous results may be analysed from a more general perspective, in relation to 
theoretical work on partition testing [Hamlet 90, Weyuker 91, Waeselynck 93]. 
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Partition testing refers to any test data selection method which divides the input domain 
into subsets, and forces at least one test case to come from each subdomain. Most 
deterministic testing schemes belong to this family of strategies, including structural 
schemes: their subdomains group together inputs that exercise a same structural 
element. 

To minimise the test size, a single input case is generally drawn from each subdomain, 
and all the authors agree that it is a poor strategy unless the subdomains are nearly 
homogeneous (or revealing), that is, they contain only failure-causing inputs or none. It 
is worth noting that a practical effect of the weakness of current criteria is that the 
subdomains they define are usually not revealing. 

Although a structural fault model (mutations) was used for our unit testing experiments, 
many seeded faults were loosely connected to structural criteria, as were the three 
following ones: 

(1) The fault f1 (FCT3) disturbs a branch predicate. Yet, it was not revealed by the All-
Paths test sets: owing to error masking in the function, executing the wrong branch 
does not always produce an incorrect output. 

(2) The fault f2 (FCT3) modifies the handling of a global variable, thereby turning the 
combinational behaviour of FCT3 into a sequential one. Revealing test sets must 
contain two consecutive patterns in a specific order: the order was not adequate in 
the Class 1 input sets, but some Class 2 and Class 3 sets happened to reveal the 
fault. 

(3) The fault f3 (FCT4) corrupts a pointer so that read/write operations are performed 
in an improper memory area. As was stated by repeating the experiments twice, the 
environmental context alters the faulty behaviour, making it unforeseeable: the 
outcome of a same test set (f3 revealed or not) could vary from one run to the next. 

Example (1) could be seen as a case for partition refinement: the paths with the faulty 
branch define subdomains that are too large relative to the set of failure-causing inputs. 
But without the knowledge of where the faults are, there is no way to insure that a 
refined partition performs significantly better than the original one; and current fine 
partitions (like All-Paths) have often proven to be unsuccessful. 

Examples (2) and (3) invalidate the common assertion that exhaustive testing (the finest 
possible partition with single element subdomains) yields a correctness proof of the 
program. It would be true only if the program could be proven to exhibit a 
combinational behaviour, which is not granted even for simple functions: just as in 
some well-known cases of physical faults in hardware components, design faults in 
software components may originate either a sequential behaviour or intermittent 
failures, or both. Having analysed a large number of seeded faults, we claim that such 
cases are likely to occur. 

Instead of improving current partition schemes, an alternative direction may be to cope 
with imperfect criteria and compensate their weakness through subdomain sampling. 
Statistical testing is a practical way to implement this strategy. 
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4. Statistical testing 

4.1. Principle and Method 

Any criterion specifies a set of elements (e.g. subdomains) to be exercised (sampled) 
during testing: given a criterion C, let SC be the corresponding set of elements. When 
using a probabilistic method for generating test data, the number of times an element k 
of SC is exercised is a random variable depending on two factors: the input profile, 
which determines the probability of exercising k; and the test size N. The notion of test 
quality with respect to a criterion [Thévenod 89] provides us with a theoretical 
framework to ensure that on average each k is exercised several times, whatever the 
particular test set generated according to the test profile and within a moderate test 
duration: 

DEFINITION. A criterion C is covered with a probability QN if each element of SC has a 
probability of at least QN of being exercised during N executions with random inputs. 
QN is the test quality with respect to (wrt) C. 

The quality QN is a measure of the test coverage wrt C. Let PC be the occurrence 
probability per execution of the least likely element under the chosen profile. Then the 
test quality and the test size N are linked by the relation: (1-PC)N = 1-QN, or 
equivalently: 
 N = ln (1-QN) / ln (1-PC) (1) 

There is a link between QN and the expected number of times, denoted n, the least 
likely element is exercised: n ≅ - ln(1-QN). For example, n ≅ 7 for QN = 0.999, and 
n ≅ 9 for QN = 0.9999. 

Based on this, the principle of the method for designing a statistical test set 
according to a given criterion C involves two steps: 

(i) search for an input profile which accommodates the highest possible PC value; 

(ii) assessment of the test size N required to reach a target test quality QN wrt C, given 
the value of PC inferred from the first step; relation (1) yielding the test size. 

Two different ways of deriving a proper profile are possible: either analytical, or 
empirical. The first way supposes that the activation conditions of the elements can be 
expressed as a function of the input parameters: then their probabilities of occurrence 
are function of the input probabilities, facilitating the derivation of a profile that 
maximises the frequency of the least likely element. The second way consists in 
instrumenting the software in order to collect statistics on the number of activations of 
the elements: starting from a large number of input data drawn from an initial 
distribution (e.g. the uniform one), the test profile is progressively refined until the 
frequency of each element is deemed sufficiently high. 

Going back to the imperfect connection of the criteria with the actual faults, it is worth 
noting that the criterion does not influence data generation in the same way as in the 
deterministic approach: it serves as a guide for defining an input profile and a test size, 
but does not allow for the a priori selection of a (small) subset of input data items. The 
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efficiency of the probabilistic approach relies on a single assumption: the information 
supplied by the criterion retained is relevant to derive a test profile that enhances the 
program failure probability. 

4.2. Experimentation with Statistical Structural Testing 

A total of 22 statistical test sets have been designed according to the structural analysis 
of the four functions FCTi (i=1, ..., 4). 

First, the most stringent achievable criteria have been adopted: All-Paths for the 
first three functions, All-Uses for FCT4; and the proper profiles have been defined 
analytically. For a target QN = 0.9999, the test sizes N for each FCTi are respectively, 
from relation (1): 170, 80, 405, 850. Twelve test sets have been generated: one for 
FCT1 and for FCT2; five different sets for FCT3 and for FCT4. For these two 
functions, which are more complex than the others on both a structural and a functional 
viewpoint, we have also derived input profiles from weak criteria, respectively All-
Defs (Class 3 of FCT3) and Branches (Class 6 of FCT4). Five sets of 152 (resp. 42) test 
patterns have been generated according to each profile, taking again QN = 0.9999. It is 
worth noting that the Class 3 profile of FCT3 let two paths have a null probability of 
being executed. 

Figure 3 displays the scores supplied by the statistical sets versus the scores of 
(1) deterministic sets derived from the same criteria, and (2) random sets. For all 
functions, the most efficient test data are the statistical ones. High scores are 
repeatedly observed, whatever the particular set generated according to a same 
structural profile: the statistical testing approach allowed to increase significantly the 
failure probability, even as regards subtle faults loosely connected with the criteria (see 
3.2). 

 structural testing  
 stringent criteria weak criteria random testing 

FCT1, 265 
seeded faults 

statist. set 100% 
determin. sets 99.6–100% 

— 100% 

FCT2, 548 
seeded faults 

statist. set 100% 
determin. sets 99.3–100% 

— 100% 

FCT3, 1416 
seeded faults 

statist. sets 100% 
determin. sets 79.2–84% 

statist. sets 97.6–98.8% 
determin. sets 50–78.8% 

55.8–83.8% 

FCT4, 587 
seeded faults 

statist. sets 99–99.1% 
determin. sets 82.1–85.5% 

statist. sets 97.4–99% 
determin. sets 80.7–88.9% 

89.6–91.7% 

Fig.3 Scores of the statistical structural test sets – 
comparison with deterministic and random testing. 

FCT4 is the only case for which no statistical set supplies a score of 100%: 6 faults lead 
to failure only for some extremal input values. Under both structural profiles, to reach a 
probability 0.9 of generating such values would require more than 600,000 test data. 
This result confirms the efficacy of a mixed test strategy [Thévenod 89] combining: 
(1) a global probe by statistical testing and (2) deterministic testing of extremal values. 
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17 faults seeded in FCT3 are never revealed by any Class 3 statistical set: they affect 
the paths that have a null probability under this profile. As regards the 1399 other faults, 
the results are quite satisfactory (98.8–100% revealed). The Class 6 sets of FCT4 are 
also efficient: they reveal 98.5-100% of the faults not related to extremal values. The 
most cost-effective approach seems to retain weak criteria facilitating the search for a 
test profile, and to require a high test quality (0.9999) with respect to them. But one 
must be careful the designed profile does not exclude items of the input domain (as for 
FCT3). 

4.3. Experimentation with Statistical Functional Testing 

Statistical testing may also be based on behaviour models deduced from the 
specification of the whole component. Using a top-down modelling process, a hierarchy 
of models is issued; then retaining weak criteria and deriving several input profiles – 
each being focused on a subset of models – is the general approach that allows us to 
manage complexity. 

Our experimentation was first based on a multi-level description combining finite state 
machines and decision tables [Thévenod 92]; then, we applied the approach to 
behaviour models produced in the STATEMATE™ environment [Thévenod 93]. 

4.3.1. Design of Statistical Test Sets from Finite State Machines and Decision Tables 

Finite state machines (FSMs) and decision tables (DTs) – see e.g. [Davis 88, 
Beizer 90] – possess complementary features: FSMs are well-suited to describe 
sequential behaviours, while DTs focus on the combinational parts. The description of 
the component functionality involved three levels of model: 

(1) the FSM M0 (12 states, 88 transitions) identifies the current operating mode from 
full to minimal service. Each mode determines a number of measures to be 
processed. 

(2) the FSM M1 (12 states, 54 transitions) models the checks and filtering performed 
on one measure. Each transition induces the acceptance or rejection of the measure. 

(3) the DT M2 (8 rules) describes the rod position to deliver for each accepted 
measure. 

The coverage of DT rules and of FSM states in steady-state conditions, i.e., after a 
number of initial executions large enough to ensure that the transients die down, are the 
criteria that we retained. Since M1 and M2 both relate to the processing of one measure, 
it was decided to cover them with the same input profile. Hence, two distinct profiles 
have been designed: the first one for the low level models (M1, M2); the second one for 
M0. This was carried out by analysing the equations governing the state activation 
(transition matrix of the FSMs) and the DT rule selection [Waeselynck 93]. 

                                                
™ STATEMATE is a registered trademark of i-Logix, Inc. 
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To reach the steady-state conditions with a precision of 10-6 and get QN = 0.9999, 
85 inputs are required under the first profile, and 356 inputs under the second one. Five 
different statistical test sets of size N = 85 + 356 = 441 have been generated. 

4.3.2. Design of Statistical Test Sets from a STATEMATE Specification 

STATEMATE [Harel 90] is a tool for the specification of complex reactive systems. It 
supports a hierarchical modelling approach, each level of hierarchy consisting of both a 
functional and a behavioural view. The behaviour views are Statecharts [Harel 87], a 
graphical language that improves state diagrams by adding encapsulation, concurrency 
and broadcast communication. Simulation and instrumentation facilities are provided. 

The specification developed with the aid of the tool involves two levels of hierarchy, 
the top level function and 6 subfunctions, one for each of the five interface cards 
(checks and filtering of the data acquired), and one for the conversion of the data into 
rod positions: 

• the Statechart of the top-level view has 33 basic states (states without offspring); 

• the six Statecharts of the low level involve a total amount of 299 basic states. 

It was decided to design two input profiles, one for each level of hierarchy, and to 
ensure the coverage of the basic states. Also, an improvement on the test sets 
previously defined (4.3.1) was to stress the interactions between high and low level 
functions. Since a major function of the top level is to modify the status of the card 
processing activities, it was focused on the transient period that follow the reset of low 
level functions (states covered during the first acquisition of data). 

In the present state of the art, it is not possible to determine the equations governing the 
state activation of Statecharts. We thus had to proceed empirically to search for proper 
profiles, the models being instrumented so as to collect state coverage measures. Five 
test sets have been generated under the new profiles. Their size has been kept the same 
as previously (85 + 356 items): each basic state is exercised at least 11 times by any set, 
hence providing the target test quality of 0.9999. 

4.3.3. Experimental Results on two Versions of the Component 

Figure 4 shows the results supplied by the various test sets: Functional 1 and 
Functional 2 denotes respectively the statistical sets described in 4.3.1 and 4.3.2; 
Random  denotes the large random set of 5300 data already commented on in Section 2. 
Thirteen faults have been identified in which 12, denoted A, B, ..., L, were found in the 
student program; the last one, Z, is a minor fault residing in the real version: in the real 
system, it would never lead to failure due to systematic hardware compensation. Faults 
A, G and J are structural faults directly linked to the coding activity. Faults B to F, and I, 
result from the lack of understanding of the filtering check requirements by the student, 
this function being at the heart of the component. The others are initialisation faults: 
either an improper initial value is assigned (K, L) or the initialisation is missing (H, Z). 

              
 A B C D E F G H I J K L Z 

Random ✔ — — ✔ — ✔ ✔ ✔ — — — — — 
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Functional 1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ — 4 

Functional 2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 

Fig.4 Real faults found by the functional test sets 
 ✔ always revealed 
 i revealed by i sets out of 5 
 — not revealed 

The use of behaviour models as guides for designing statistical testing is relevant to 
fault exposure. Since the experiments involved real (unknown) faults, it is not possible 
to measure the exhaustiveness of the sets with respect to them; but it can be seen that 
both types of statistical sets perform repeatedly much better than the random set, 
although they are one order of magnitude shorter. The two profiles defined in each case 
provide complementary results: the subsets of 85 and 356 data do not reveal the same 
faults. Moreover, each entire statistical set exercises 100% instructions of the two 
programs. 

The fault Z was not revealed by one Functional 1 set: this motivated our choice to stress 
the reset interactions in the Functional 2 sets. Then a new fault, L, was uncovered in the 
student program. This fault is rather subtle, because its exposure depends on specific 
conditions involving five successive acquisitions of data after a reset. During the design 
of the Functional 2 profiles, only the first acquisition was taken into account for the 
coverage of the initial states; in spite of this, it allowed us to raise significantly the 
failure probability of the program. This result confirms once again the efficiency of 
statistical testing with respect to faults that are loosely connected with the criteria 
retained. 

Finally, it is worth noting that the high fault exposure power of the Functional 2 sets, 
that were derived empirically, bodes well with regard to the feasibility of statistical 
functional testing for complex behaviour models. 

Conclusion 

Because the probabilistic approach is generally related to uniform test data, it is often 
deemed a poor methodology: our experimental studies remove this preconceived idea. 

Applied to the verification of a non trivial software component from the nuclear field, 
statistical testing designed from structural or functional models supplied repeatedly a 
high fault exposure power within a realistic test duration. At the unit level, the 
efficiency of the method was assessed referring to 2816 faults of mutation type. The 
experiments at the whole component level involved a small sample of real faults that 
were a priori unknown. Note that complementary results reported elsewhere [Thévenod 
94a] show that the statistical test sets designed at the component level are also efficient 
in revealing a large sample of seeded faults (6175 mutations). 

A limitation of the statistical sets experimented on is their lack of adequacy with respect 
to faults related to extremal/special cases. Such faults induce, in essence, a very low 
probability of failure under the profiles defined to ensure a global probe of the target 
programs: they require test data specifically aimed at them. Hence, we support the 
adoption of a mixed testing strategy involving both statistical and deterministic test 
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sets; such a mixed strategy having already been successfully experimented with at the 
unit level [Thévenod 94b]. 

The results related to unit testing confirmed the insufficiency of deterministic test data 
derived from current – imperfect – criteria. For larger scale programs, this limitation is 
expected to get worse. However, the medium size of the component experimented on 
does not yet allow us to come to a conclusion about the feasibility of statistical testing 
for complex software. Two problems arise: 

• The oracle problem, namely that of how to determine the correct output results a 
(complex) program should return in response to given input data. This problem 
arises with any dynamic verification technique; but it becomes crucial when 
numerous responses to probabilistic inputs are concerned. 

• The complexity of the probabilistic analysis required by statistical testing. 

Fortunately, an answer to these problems is likely to reside in the recent emergence of 
CASE tools that assist software development by supporting formal models for the 
specification of behaviour, and offering facilities to computerised simulation. Such 
tools provide us with an oracle; the possibility of instrumenting the models facilitates 
the empirical derivation of test profiles proper to ensure a rapid coverage of the 
software functionalities. 

In Section 4, the benefit of using CASE tools for the design of statistical testing has 
been exemplified on the STATEMATE environment. The promising results obtained 
for the medium-scale component may constitute a first step along the road. 
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