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Abstract — This paper investigates a measurement approach to support the implementation of Simulated
Annealing (SA) applied to test generation. SA, like other metaheuristics, is a generic technique that must be
tuned to the testing problem under consideration. Finding an adequate setting of SA parameters, that will offer
good performance for the target problem, is known to be difficult. Our measurement approach is intended to
guide the implementation choices to be made. It builds upon advanced research on how to characterize search
problems and the dynamics of metaheuristic techniques applied to them. Central to this research is the concept of
landscape. Existing measures of landscape have mainly been applied to combinatorial problems considered in
complexity theory. We show that some of these measures can be useful for testing problems as well. The
diameter and autocorrelation are retained to study the adequacy of alternative settings of SA parameters. A new
measure, the Generation Rate of Better Solutions (GRBS), is introduced to monitor convergence of the search
process and implement stopping criteria. The measurement approach is experimented on various case studies,

and allows us to successfully revisit a problem issued from our previous work on testing control systems.
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1 Introduction

Metaheuristic search techniques (Rayward-Smith et al., 1996) have proven useful to solve complex
optimization problems. Their generality makes them capable of very wide application. For instance,
they have gained attention in the field of software engineering (Clarke et al., 2003) and more

specifically of software testing (McMinn, 2004).

Genetic algorithms (Holland, 1975) and simulated annealing (Kirkpatrick et al., 1983) are two
examples of metaheuristic techniques used to automate the generation of test data. The underlying
testing problems are as diverse as: structural testing (Jones et al., 1996) (Tracey et al. 1998a) (Pargas
et al. 1999) (Michael et al., 2001) (Wegener et al., 2002), mutation testing (Adamopoulos et al., 2004),

pre- and post-condition testing (Tracey et al., 1998b), exception testing (Tracey et al., 2000a),
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determination of worst case execution time (Wegener et al. 1997) (Gross et al., 2000), testing high-
level requirements of control systems (Schultz et al., 1995) (Abdellatif-Kaddour et al., 2003b)
(Wegener and Buehler, 2004). Whatever the testing problem, it is first reformulated as an optimization
problem with respect to some objective function called fitness function (usually for maximization
problems) or cost function (for minimization problems). Then, a search run involves a series of test
executions. Each execution allows a candidate solution (i.e. a generated test case, or test sequence) to
be evaluated with respect to the objective function. Evaluation results are used to guide the generation

of new candidate solutions in the run.

Metaheuristic search techniques are not ready-to-use algorithms. Rather, they define generic strategies
that must be instantiated for the specific problem under consideration. A number of implementation
choices have to be done, and these choices affect performance. It is generally recommended to
experiment with alternative implementations of a strategy, or even with a variety of strategies. It is not
unfair to say that the tuning of the search requires a great deal of effort, can indeed be quite expensive,
and is not guaranteed to yield adequate choices. Section 2 of the paper provides a concrete example of
this bad situation, which we faced while applying simulated annealing (SA) search to a testing

problem. It reflects the difficulty of understanding the dynamics of metaheuristics.

Of course, the difficulty is not specific to the field of software testing. In the general literature of
metaheuristics, there is active research to investigate relations between search problem characteristics
and the performance of search techniques. The long-term aim is to gain both fundamental and practical
insights into the matter. Central to this research is the concept of landscape. If we consider the fitness
(or cost) as defining the “height” of a solution, the landscape metaphor gives rise to the visual image
of peaks, valleys, and plateaus. Intuitively, the “relief” of the landscape should have a strong impact
on the dynamics of exploration strategies. A number of measures have been proposed to characterize
landscapes, and predict — or explain — the behavior of search techniques applied to them. They will be
presented in Section 3. To date, the most advanced results have concerned combinatorial problems
considered in complexity theory, like the Traveling Salesman Problem (TSP) or the Boolean

satisfiability problem (SAT).

For testing problems, research is far less mature. Still, we are aware of recent work referring to
landscape as an explanatory concept. The survey of (McMinn, 2004) revisits previous testing work by
discussing the associated landscapes (e.g., it is shown that some fitness functions induce flat plateaus
along which the search is provided no guidance). In the same spirit, (Wegener and Buehler, 2004)
compare the relief of two candidate landscapes to choose the most adequate fitness function. Further

developments in landscape analysis are expected to emerge in the near future, as advanced topics in



metaheuristic search get transferred to the field of software testing (or more generally to the field of

software engineering: the manifesto by Harman and Jones, 2001, opens perspectives in that direction).

This paper is in the lineage of emerging work we have just mentioned. We investigate a measurement
approach to the characterization of testing landscapes for Simulated Annealing. The aim is to support
the implementation choices that have to be made to tune the search process. A failure story reported in
Section 2 illustrates the significance of this issue. Section 3 presents a number of measures defined in
the framework of combinatorial problems, and discusses their applicability to the testing problem
under consideration. Two measures of landscape, the diameter and autocorrelation, are retained. They
are experimented in Section 4, using both small examples and the case study of Section 2. The latter
provides a challenging case for SA parameterization, since it defeated our previous attempts to find an
adequate tuning. Besides landscape analysis, Section 5 considers the characterization of process runs,
that is, of the trajectories followed when exploring the landscape. Ideally, we would like to detect runs
that are unlikely to succeed before test resources are exhausted, e.g. detect runs trapped in flat regions.
In this way, useless runs are stopped and the remaining resources are spent on exploring other
trajectories. A new measure, the Generation Rate of Better Solutions (GRBS), is introduced to monitor

runs and implement stopping criteria. Section 6 concludes with future directions.

2  Problem Statement

This section explains the motivation of our work. It first introduces the testing problem that yielded us
to investigate the use of metaheuristic search. Then, we provide feedback from an experimentation of
Simulated Annealing (SA) on a case study. Our experience exemplifies the difficulty of finding an

adequate implementation of SA search.

2.1 The Testing Problem: Exploring Dangerous Scenarios at System Level

We have defined a strategy for testing high-level requirements of cyclic real-time control systems
(Abdellatif-Kaddour et al., 2003a). The aim is to validate a system with respect to a safety-critical
property, that is, to test the system and observe whether the property is violated or not. For the high-
level properties we are interested in, violation typically results from improper interactions between a
control program and its controlled environment, when physical faults affect the devices. Where formal
verification is intractable, testing may be a pragmatic alternative. The test platform has to include a
simulator of the environment that mimics the physical devices, the physical laws governing the
controlled process, as well as the possible occurrence of faults in the devices. The test selection
process should then try to favor those scenarios that will be the most “stressing” with respect to the

target property. To address this problem, the proposed test strategy consists of a stepwise construction



of test scenarios. Each step explores continuations of the “dangerous” scenarios found at the previous

step, using heuristic search techniques.

In order to illustrate the notion of stepwise construction, let us take the example of the boiler case
study experimented in (Abdellatif-Kaddour et al., 2003a). The steam boiler problem (Abrial et al.
1996) is a well-known case study for which high-level requirements, control program code, and a
software simulator of physical devices were made publicly available. The most critical requirement is
the avoidance of boiler explosion, which occurs whenever the water level falls outside a safety range
(i.e. it is either too low, or too high). The water level is controlled and monitored by means of four
pumps, four pump controllers sensing the state of the pumps (open, closed), a water level sensor, and a
steam sensor measuring the quantity of steam which comes out of the boiler. Any of these ten devices
may fail, and will remain faulty until repaired by a human operator. The control program has to detect
failures, and must either continue to operate in a degraded mode or shut the system down. An

overview of this case study, and of our test platform, is provided in Appendix A.

We used our test strategy to search for explosive scenarios due to improper account of device failures.
The tested system consisted of the control program connected to the simulator. A test sequence is then
a sequence of timed commands sent to the simulator, to tell it to mimic the failure of a given device.
As an example, command Steam_fault(3) triggers a steam sensor failure at cycle 3 of operation. Prior to
any test experiment, we determined what would constitute a dangerous scenario for this case study: a
dangerous scenario would put the system in a state such that the control program has an erroneous

perception of its environment. This includes situations such as:

*  The control program does not detect the failure of a device.
* The control program wrongly detects the failure of a device that is not faulty.
* The actual water level in the boiler is outside the estimation range calculated by the control

program.

Triggering a dangerous situation is adopted as an intermediate test objective at step 1. For example,
the test experiments revealed that the control program is unable to detect a steam sensor failure
occurring at cycle 3 (cycle 3 corresponds to the control program leaving its initialization mode). We
retained dangerous scenario Steam_fault(3) as a prefix for further exploration at step 2. We ended up

with explosive scenario: Steam_fault(3), Pump2_fault(4), WaterLevel_fault(8).

In (Abdellatif-Kaddour et al., 2003a), exploration at each step was performed using the simplest

heuristic technique, namely random sampling. The technique was surprisingly effective, since we



found four different classes of explosive scenarios'. However, blind random sampling is not expected
to be sufficient in most cases. This motivated our interest in more sophisticated search techniques, and

in particular simulated annealing.
The reasons why we chose SA rather than, say, genetic algorithms (GAs) were the following:

* GAs work with a population of solutions (i.e., a population of test sequences in our case), and
have to let the population evolve during several generations. In contrast, SA works with one
solution at a time. It was perceived that SA would be less demanding in terms of total number
of test experiments. This was an important criterion, as applying test sequences to the
complete system (including both the control program and the simulator), is quite costly in

execution time.

* GAs involve two evolution mechanisms, namely mutation and crossover. The effectiveness of
crossover depends on the ability to produce highly fit offspring from highly fit (and possibly
dissimilar) parents. How to define meaningful crossover operators was far from intuitive for
our testing problem. It was deemed easier to focus on mutation-like operators, exploring a set
of “neighbors” of a candidate solution. SA is a typical example of metaheuristic based on this

principle.

Several experiments with SA were performed, some of which are reported in (Abdellatif-Kaddour et
al., 2003b). The experiments investigated different implementation choices for the boiler problem. We

present these choices below, as well as the results we got.

2.2 Implementation of Simulated Annealing

Figure 1 presents the generic SA algorithm for a minimization problem with solution space S. It
searches for a solution s € S that minimizes a cost function f: § — R. The algorithm works by
randomly selecting a new solution s’ in the neighborhood of current solution s, using neighborhood
operator N: § — 2°. Solutions with lower cost (8 < 0) are always accepted. Moves to inferior solutions
(8 > 0) may be accepted: the probability of acceptance depends on the magnitude of § and on a control
parameter ¢ called temperature. Starting from ¢, the temperature is gradually reduced during the search

(according to cooling schedule C) so as to progressively decrease the acceptance rate of inferior

" These explosive scenarios are not due to bugs in the control program. They originate from the very definition of the
degraded modes in the requirements (specification flaw). To the best of our knowledge, only one of the scenario classes was
already identified in the literature.



solutions. The search is stopped when a pre-defined stopping condition becomes true (e.g., the

maximal number of iterations is reached).

Select an initial solution s
Select an initial temperature t = t;, > 0
Initialize the number of iterations i = 1
LOOP while (stopping condition = false)
Randomly select s’ € N(s)
0=f(s’)-f(s)
IF (6<0) THEN
s=s
ELSE
Generate random x uniformly in range [0,1]
IF (x < exp(-6/t)) THEN s = s’ ENDIF
ENDIF
i=i+l
t=C(t1i)
END LOOP

Figure 1 — Simulated Annealing Algorithm

A number of implementation choices must be made to tune the generic algorithm to a particular search
problem. For the boiler case study, the solution space S is a set of test sequences, where each sequence
is encoded as a list of timed fault commands. The precise definition of S (time window of the
sequences under consideration, required prefix...) depends on the step of the test strategy, and several
spaces are possibly explored at each step. In any case, the aim is to find explosive or dangerous

scenarios in the target S. The implementation of SA search then involves the following settings.

* Cost function f — For some testing problems, the cost function definition may be obvious. For
example, WCET problems are associated with measures of the execution time. In our case,
determining an adequate cost function is far from trivial. The cost function has to assign the
lowest cost to test sequences reaching the test objective, yielding the general form: IF (boiler
explosion OR dangerous situation observed) THEN return (0) ELSE ... Now, the difficulty lies in the
determination of the ELSE part. How should the cost of two candidate sequences yielding
neither an explosion nor a dangerous situation be compared? We experimented with several
cost functions. Appendix B gives two examples: Costl was used in unpublished experiments
while Cost2 is the one used in (Abdellatif-Kaddour et al., 2003b). Both functions involve

some constant parameters K;, whose value was determined empirically.



* Neighborhood N — Given a test sequence, it seems reasonable to consider neighbors that differ
in only one fault command. The neighborhood operator either removes one fault, or adds one,

or changes the date of occurrence (see Appendix B).

* Cooling Schedule C — Two commonly used schedules are (1) the geometric variation of
temperature: t,,; = o t; where o is chosen close to 1.0, and (2) the schedule proposed by
(Lundy and Mees, 1986): t,,, = t; / (1+ft;) where P is chosen close to zero. We experimented
with both. Note that calibration of parameters o (resp. ) and t, required preliminary

executions of SA on the boiler system.

* Stopping Condition — The search is stopped when either the test objective is fulfilled (f(s) = 0)
or the maximal number of iterations is reached (i = MAX_ITER). Since any execution of the
boiler system is costly in time, and since the test strategy involves exploration of several
search spaces, we cannot afford large values of MAX_ITER. We experimented with
MAX_ITER = 100 and 200. These are small values compared to common usage of SA, which

gives more time for the algorithm to converge toward an optimum.

Our experience is that the implementation of SA search requires substantial effort. The tuning
procedure is largely ad hoc. Many trials are necessary to investigate implementation choices and to

study alternative combinations of parameter settings.

2.3 Experimental results

In spite of the invested effort, SA performance turned out to be quite disappointing for the Boiler
example. It never outperformed random sampling. For some of the explored spaces, the high density
of zero cost solutions could explain this result: any sophisticated technique was bound to be less cost-

effective than random sampling. But poor results were also obtained in less trivial cases.

Let us take the example of one of the search spaces explored at step 2 of the strategy. Table 1 gives
comparative results of random sampling and SA. The experiments involved 35 runs of each technique.
A run is successful as soon as a zero cost sequence is found. It is stopped at the corresponding
iteration. Unsuccessful runs are stopped at MAX_ITER = 200. Table 1 provides both the number of
successful runs, and the total number of iterations for the 35 runs. Note that the two implementations

of SA only differ in the cost function: all the other parameters are set the same.



Random sampling SA Costl SA Cost2
Successful search 26 25 16
Iterations (35 runs) 4187 3778 4453

Table 1 — Experimental results for one search space of the Boiler example

The best SA implementation (the one with Costl) does not have a greater number of successful runs
than random sampling. By comparing the total number of iterations, it might be concluded that SA
speed is slightly higher (it takes 3778 iterations to find 25 zero cost sequences, versus 4187 iterations

and 26 sequences). But the “improvement” is too insignificant to be worth the effort.

In (Abdellatif-Kaddour et al., 2003b), such results led us to propose a variant of the SA algorithm (i.e.,
the core algorithm in Figure 1 was modified), which performed well on the Boiler example. But we
are aware that this specific variant might be inadequate for other examples. Each time a new control

system is studied, the tuning effort needs to be made again and again.

This motivates our interest in investigating improvements of the tuning procedure. Indeed, for the
testing problems we address, SA search cannot be a realistic option unless systematic approaches are
proposed to support implementation choices. For example, the experiments of Table 1 a posteriori
show that Cost2 is a worse choice than Costl. Intuition is a poor guide to predict this result. There is a
need for more reliable means to assess the quality of alternative settings, and this is all the more

crucial as the testing time has to be kept reasonable.

It turns out that fundamental work on search techniques has settled a framework to address this issue.
A number of measures have been proposed to characterize search problems and the behavior of
heuristics applied to them. In this paper, we investigate the predictive power of such measures for

tuning SA search in the case of testing problems.

3  Measures for Characterizing Search Problems and Metaheuristics

Fundamental research on metaheuristics aims to establish relations between measures of problems and
the dynamics of metaheuristic search. The studied problems are most often NP complete problems

considered in complexity theory, like graph problems or constraint satisfaction problems.

Existing measures can be classified into three broad categories, corresponding to the structure they

characterize (Belaidouni and Hao, 2000). The underlying structures are:

* the search space, defined by a couple (S, f) where S is a solution space and f a cost function

assigning a real number to each point in the space;



* the search landscape, defined by a triplet (S, f, N) where N is a neighborhood operator

connecting each point in S to a non-empty set of neighbors;

* the process landscape, defined by a quadruplet (S, f, N, ¢) where @ is a search process based

on the notion of neighborhood.

Examples of measures for each structure are provided in Sections 3.1 to 3.3. A more complete
description of measures and of related work can be found in (Belaidouni, 2001). Section 3.4 discusses

applicability to our testing problem.

3.1 Characterizing the Search Space

For the search space structure, typical examples of measures are the variation range [f,,,, fua] Of cost
values, or the number of optimal solutions in S. A finer measure concerns the density of states (dos),
giving the frequency of each cost value in the search space (Rosé et al., 1996). For some problems, dos
may be determined analytically. But most often it has to be approximated by using a sampling

procedure, which can be expensive to properly account for the least frequent values.

3.2 Characterizing the Search Landscape

The search landscape has been the most studied structure. The introduction of a neighborhood operator
N makes it possible to define the distance between points s and s’ in S. It corresponds to the minimal
number of times N must be applied to move from s to s’. The notion of distance is underlying all

measures for characterizing the search landscape.

3.2.1 Diameter

The diameter D of a search landscape is the maximal distance between two points in S. Intuitively,
small diameters should be more favorable than large ones, because any point can potentially be
reached quicker (in terms of successive applications of N). Suppose D is large. Then, it may take a
large number of iterations to get to an optimal solution, even in the ideal case where the search process

would select the shortest trajectory between the starting point and the target solution.

The diameter can usually be determined analytically (for landscapes of typical NP-complete problems,

see examples of analytical expressions in Angel and Zissimopoulos, 2000).

3.2.2 Autocorrelation

The autocorrelation measure has been introduced by (Weinberger, 1990) to characterize the

ruggedness of a landscape. Intuitively, a smooth landscape is one in which neighbors have nearly the
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same cost, while a rugged one is one in which the cost values are dissimilar. The latter situation

indicates that f and N are not mutually adequate to guide the search.

The autocorrelation p, measures the variation of cost for points that are at distance d. Most often,
measurement is focused on p;, which is deemed the most important value to know. Exact evaluation of
the autocorrelation is not possible unless the distribution of cost values is known. In practice, p, is
estimated by means of a random walk whose steps consist in moving to a new point chosen randomly
among the neighbors of the current point (see Figure 2). The underlying assumption is that the
statistics of the cost sequences generated by a random walk are the same, regardless of the starting
point chosen: the landscape has to be statistically isotropic (Weinberger, 1990). An estimate of p, is

then (Hordijk, 1996):

gvm%ﬂvmg—ﬂ
/31: =0 T-1

3 (reso-7)

i=0
where T is the size of the sample and f the arithmetic mean of the cost values in the sample. If p, is
close to one, the landscape is smooth. If p; is close to zero, neighboring cost values are unrelated and

neighborhood search techniques are not expected to be effective.

Autocorrelation (or derived measures) has been used to explain search performance on landscapes
associated with NP-complete problems (Stadler and Schnabl, 1992) (Angel and Zissimopoulos, 1998)
(Angel and Zissimopoulos, 2000) as well as on artificial landscapes whose ruggedness can be tuned by

control parameters (Hordijk, 1996).

Select a starting point s,

Sample[0] = fis,)

FOR i=1to T-1 DO
Randomly select s; € N(s,.;)
Sample[i] = f{s;)

END FOR

Figure 2 — Random Walk Algorithm

3.2.3 Other Measures

While autocorrelation characterizes the variation of costs at a fixed distance, other measures are
focused on the variation of distances at a fixed cost. For example, such measures are used by

(Belaidouni and Hao, 2000) to study landscapes of the MAX-CSP problem. A practical difficulty is
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that their experimental evaluation requires the production of a sample of solutions for each cost level.
In (Belaidouni and Hao, 2000), the authors have to apply metaheuristic search to produce the samples.
There are also measures characterizing the joint variation of distances and costs, like the Fitness
Distance Correlation (FDC) (Jones and Forrest, 1995), used in the framework of genetic algorithms
and genetic programming (Vanneschi et al., 2003). The FDC definition involves the notion of distance

to the nearest global optimum, which restricts its applicability to problems with known optima.

Finally, it is worth mentioning work studying the topology of landscapes in terms of local optima and
plateaus, which are regions the search can be trapped in (Frank et al., 1997). For small instances of
problems, the number and size of such regions can be exhaustively determined, as in (Yokoo, 1997).
Also, for some simple landscapes, the number of local optima can be approximated analytically (see
e.g. the TSP landscape analysis by Stadler and Schnabl, 1992). However, in the general case,

approximation has to be achieved via expensive experiments (Eremeev and Reeves, 2003).

3.3 Characterizing the Process Landscape

The process landscape should be the most informative structure, since it accounts for all parameters of
the search implementation. It is also the most difficult (and the most expensive) to characterize,

because analytical analysis is not possible and empirical analysis involves running the search process.

Most of the measures defined for the search space and search landscape can be transferred to the
process landscape. For example, the process cost density (pcd) (Belaidouni and Hao, 2002) is
analogous to the density of states (dos) defined for search spaces (cf. Section 3.1), using process ¢ as
the sampling procedure. It is worth noting that dos and pcd are not the same, because ¢ introduces a
bias in the exploration of solutions. Similarly, the number and size of basins of attractions for ¢ should

be related to the local optima of the search landscape, but the relation is not trivial.

When characterizing the process landscape, an acute problem is the variability of behavior from one
run of ¢ to the next: obtaining statistically meaningful measures can be practically impossible. The
problem already existed for the characterization of search landscapes using a random walk. However,
it is much more acute when the samples are produced by sophisticated metaheuristics. Indeed, for the
boiler example, we empirically observed variability of SA behavior, depending on the starting point of

the search.

3.4 Discussion

While a number of measures have been proposed in the literature, there is currently no consensus on

which ones to use in which case. Generally speaking, a single measure can only have a limited
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explanatory power. For example, autocorrelation is one of the most acknowledged measures but can

be insufficient to distinguish between two search landscapes of different difficulty.

In spite of these limitations, we will show that a measurement approach can still be useful to
implement SA search for our testing problem. The choice of measures has to be guided by our specific
needs. First, we cannot afford a large number of experiments to get an estimation of measures, because
execution of the complete system is computationally costly. Second, our aim is to tune SA search to
get zero-cost solutions, not just low cost solutions. This is so because non-zero solutions do not fulfill
the test objective: in the boiler example, they correspond to safe scenarios triggering neither a boiler

explosion nor a dangerous situation. Let us discuss the implication of these needs.

The constraint in the number of system executions leads us to exclude the most costly measures for
characterizing the search landscape (e.g., the measures mentioned in Section 3.2.3), as well as all
measures for characterizing the process landscape (see Section 3.3). As regards the latter measures, let

us recall that their estimation is anyway problematic due to the variability of SA behavior.

The fact that we are not interested in sub-optimal solutions limits the insight that can be gained from
some measures. Let us take the example of dos and pcd. A search space will be considered all the
easier as the cost distribution exhibits a low mean and high variance (i.e., it is not difficult to find low
cost solutions, and very low values departing from the mean are not too scarce). Similarly, a process
landscape will be considered better than another if pcd analysis shows that it tends to generate lower
cost solutions. Such results are relevant to problems for which low cost, but possibly sub-optimal,
solutions are quite acceptable. They are not relevant in our case because sub-optimal solutions are

useless with respect to the test objective, as previously explained.

We finally retain two measures for characterizing the search landscape: the diameter D and
autocorrelation p;. They will be used in Section 4 to guide the choice of “good” combinations of a cost

function f and neighborhood operator N, for SA search.

How to characterize the process landscape remains an open issue. In Section 5, we will adopt a less
ambitious approach. We will not attempt to refine tuning of the process landscape. Rather, we will
attempt to make the best possible use of a given process landscape. Since behavior depends on the
starting point of the search, we will try to detect runs that are unlikely to succeed in the allowed
number of iterations, so as to stop them and restart search from another point. This will lead us to

propose a new measure to monitor the behavior of a run and implement stopping criteria.
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4 Characterizing the Search Landscape

The diameter and autocorrelation measures are used to identify search landscapes that are potentially

well-suited to SA search. The tuning process shall retain settings of f and N such that:

* Diameter D is significantly lower than MAX_ITER, the allowed number of iterations per run.

* Autocorrelation p; is high.

The diameter criterion is intended to ensure that an optimal solution has a chance to be reached before
the end of the run, whatever the starting point of the search. The autocorrelation criterion identifies
landscapes for which the principle of neighborhood search is not irrelevant. Equipped with these
criteria, our challenge is to revisit the boiler example and to determine an adequate parameterization of

SA search for it.

Before addressing the boiler example, we study the relevance of the criteria for simpler problems. The
first one, QAP (Section 4.1), has been extensively studied in the literature of metaheuristic search. It is
considered here for comparison purposes. It provides a typical example of the combinatorial problems
to which diameter and autocorrelation measures are usually applied. It is also one of the problems for
which SA search is known to be efficient. The next two problems, Call and Cal 2 (Section 4.2), are
loosely inspired from a calendar testing problem. They are used to perform a large number of
controlled experiments on “good” and “bad” landscapes. We let f and N vary, and try to establish a
relation between the corresponding D and p; measures on the one hand, and SA efficiency on the other
hand. This makes it possible to study the discriminative power of the criteria. The boiler example is

then revisited in Section 4.3.

4.1 The QAP Landscape

The Quadratic Assignment Problem (QAP) is a typical representative of combinatorial problems
studied in the literature of metaheuristic search. It is a NP-hard problem generalizing the Traveling
Salesman Problem. A number of search techniques have been experimented on QAP instances
(Connolly, 1990) (Taillard, 1991) (Maniezzo et al., 1995) (Merz and Freisleben, 2000). SA search is
known to be very efficient for QAP, using some standard settings of f and N. Actually, cost function f
is already determined by the problem definition, and it is only N that needs to be adequately chosen.
The standard N for QAP is the so-called 2-exchange neighborhood (see e.g., Angel and
Zissimopoulos, 2000, for a definition of this neighborhood operator). Thus, the QAP example provides

us with the opportunity to investigate characterization of a landscape known to be “good”.
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The experiments involve the NUG15 instance of QAP proposed by (Nugent et al., 1968)°. It has four
solutions supplying an optimal cost, in a search space of 15! elements. In order to check our ability to
reproduce known results, we retain the same SA implementations as the ones described in (Connolly,
1990). The maximal number of iterations is taken as MAX_ITER = 5000 to keep the same order of
magnitude as in Connolly’s experiments (which involved 5250 iterations for this problem instance).

Before experimenting with SA search, we first characterize the underlying search landscape.

Diameter criterion — With the 2-exchange neighborhood, D = 14 which is obviously much lower than

the allowed number of iterations.

Autocorrelation criterion — The experimental evaluation of p; involved 100 random walk runs (see
Figure 2 for the random walk algorithm), with 1000 iterations per run. Note that this effort is
unusually high as a single run should be necessary to perform estimation: we wanted to confirm the
expected stability of estimates for this landscape. We obtained p; = 0.74 (standard deviation 0.01).

This gives an idea of what should be considered a sufficiently high autocorrelation measure.

For this “good” landscape, we confirm the expected efficiency of SA search. In Table 2, L&M1 and
L&M?2 correspond to the two SA implementations described in (Connolly, 1990): L&M1 is standard
SA with the Lundy and Mees cooling schedule, and L&M?2 is a variant that yielded better results for a
range of QAP instances. Whatever the SA implementation, any of the four optimal solutions is found
by at least 21% of successful runs. Whereas random sampling fails to produce any optimal solution,

SA search is efficiently guided by the structure of the underlying landscape.

Random sampling L&M1 L&M2

Percentage of successful runs

(1000 runs, MAX_ITER = 5000)

0% 8% 11.1%

Table 2 — SA efficiency for QAP (NUG1S5 instance)

4.2 Landscapes for two Calendar Problems

After having characterized a known landscape, we now focus on landscapes for two artificial
problems, loosely inspired from a calendar problem experimented by (Tracey, 2000b) in the field of
software testing. For these two artificial problems, noted Cal 1 and Cal 2, the solution space is the set

of dates from January 1, 1900 up to December 31, 3000. Each date is encoded by a triplet (day, month,

2 This problem instance, as well as many other ones, is archived on Eric Taillard’s page:
http://ina.eivd.ch/Collaborateurs/etd/problemes.dir/qap.dir/qap.html
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year). We make the simplifying assumption that there are exactly 365 days per year (there is no
account for leap years), hence the space contains 401,865 solutions. The search problem is then to find
a zero cost date in the space. Cal 1 has exactly one optimum to be found (arbitrarily taken as
December 31, 2000), while Cal 2 has two (December 31, 2000 and February 2, 2500). In each case,
we experimented with 24 different search landscapes, by making fand N vary. Cal 1 is used to
illustrate the results below. A complete report of all experiments can be found in (Abdellatif-Kaddour,

2003c).

The four cost functions and six neighborhood operators used for Cal 1 are described in Appendix C.
Basically, Costl is a random cost function that is expected to yield poor results whatever the
neighborhood definition. Cost2, as well as neighborhood operators N/ and N2, are inspired from
Tracey’s work, and should fit well together. Cost3 and Cost4 have been designed in the same spirit as
N3-N6, so that any combination of them is expected to supply a high correlation of neighboring costs.
The Cal 2 cost functions are similar to the Cal 1 ones, but are slightly adapted to account for the

additional optimum. The neighborhood operators are kept exactly the same.

Let us now characterize the landscapes resulting from all f x N combinations. The maximal number of

iterations per run is set to 2000.

Diameter criterion — Table 3 shows the diameter values for all neighborhood operators. Bold values
indicate that the criterion is passed, while italic values denote diameters that are judged too large
compared to the allowed number of iterations. As can be seen, N3 and N4 are rejected as bad choices

for MAX_ITER = 2000.

Autocorrelation criterion — Table 4 shows p; estimates for the 24 landscapes of Cal 1. In each case,
experimental evaluation involved 100 random walk runs, with 1000 iterations per run. A cell of the
table indicates the mean value of p,;, followed by the standard deviation put in brackets. Ten
landscapes (with p; in italic numbers) do not pass the autocorrelation criterion. Not surprisingly, all
landscapes involving Costl are rejected. Moreover, we learn that N3-N6 are not well-suited to Cos?2,
while N7-N2 fit well with Cost3-Cost4 although they have not been designed for that purpose. Cal 2

landscape analysis yields similar conclusions.

Putting together the diameter and autocorrelation criteria, 10 landscapes are retained for each of the
Cal 1, Cal 2 problems, and 14 landscapes are rejected. We then assess the relevance of these decisions
by measuring SA search efficiency for all landscapes. Table 5 gives the percentage of successful runs
for the Cal 1 problem, observed from a sample of 1000 SA runs per landscape. It can be seen that the

14 rejected landscapes (whose results are displayed in italic characters) exactly correspond to the 14
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worst scores. This result is encouraging, in spite of the fact that the diameter and autocorrelation
measures have a limited discriminating power: the 10 retained landscapes do supply the best scores
but these scores exhibit a large variation (ranging from 6.3% to 65.1%). Note, however, that the lowest
score (6.3%) is still significantly higher than that of random sampling, which was 0.4% in the Cal 1

case study. Similar results are obtained for Cal 2.

Hence, despite limitations, the proposed approach should be relevant to reject bad landscapes, and
retain only those that are reasonably well suited to SA search (while possibly not “best” suited). We

are now equipped to revisit the Boiler example.

N1 N2 N3 N4 N5 N6
Diameter 550 1100 6700 13400 250 500
Table 3 — Diameter of the calendar landscapes

N1 N2 N3 N4 N5 N6
Costl 0(0) 0(0) 0(0) 0(0) 0(0) 0(0)
Cost2 0.82 (0.08) 0.95 (0.04) 0.22 (0.09) 0.22 (0.09 0.36 (0.19) 0.33(0.17)
Cost3 0.99 (<10?) 0.99 (<10?) 0.89 (<10?) 0.89 (<10?) 0.98 (0.02) 0.98 (0.01)
Cost4 0.99 (<10?) 0.99 (<10?) 0.99 (<10?) 0.99 (<10?) 0.99 (<10?) 0.99 (<10?)

Table 4 — Autocorrelation of the Cal 1 landscapes: mean (stand. dev.)

N1 N2 N3 N4 N5 N6
Costl 0% 0% 0% 0% 0.2% 0.2%
Cost2 6.3% 16.1% 0% 0% 1.4% 1.4%
Cost3 47.6 % 65.1% 2.1% 2.1% 16.9% 16.8%
Cost4 60.8 % 9.5% 3.7% 3.7% 40.3 % 40.2 %

Table 5 — Percentage of successful SA runs on the Cal 1 landscapes

(1000 runs, MAX_ITER=2000)
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4.3 The Boiler Search Landscape

Compared to the previous case studies, the Boiler example is one for which random sampling is fairly
efficient. The most difficult search space is the one mentioned in Section 2.3, where random sampling
found 26 zero-cost solutions using a total number of 4187 iterations (see Table 1). We will focus on
the corresponding search problem. As regards SA efficiency, we observed that the choice of the cost
function had a strong impact, but the best function proposed so far did not significantly outperform
random sampling. We will try to improve the situation by tuning the cost function. The size of the

target search space is 10,077,695. The allowed number of iterations is MAX_ITER = 200.
Let us now characterize the two landscapes studied in Section 2.3.

Diameter criterion — The chosen neighborhood operator yields D = 9, hence the diameter criterion is

passed.

Autocorrelation criterion — For both landscapes, the experimental evaluation of p; involved 10
random walk runs, with 100 iterations per run. Table 6 shows the results. The autocorrelation measure
does not discriminate between Costl and Cost2. In both cases, neighboring costs are not unrelated but
p; values are smaller than the ones accepted for the QAP, Cal 1 and Cal 2 problems (the retained
landscapes always had p; = 0.74). Hence, the results do not reveal strong inadequacy of the

landscapes, but suggest that it may be preferable to design a cost function with higher autocorrelation.

Mean Stand. Dev.
Costl 0.52 0.17
Cost2 0.53 0.13

Table 6 — Autocorrelation of the Boiler landscapes

Rather than inventing an entirely new cost function, we go back to the generic definitions of Costl and
Cost2 in Appendix B, expressed in terms of symbolic parameters K;. Let us recall that the K,
calibration was based on trials and empirical judgment. We now try a more systematic approach, by

making the K; values vary, and retain the valuation supplying the best autocorrelation.

As regards Costl, we observed the best autocorrelation for K, = 100, K, =0, K; = 10000. Improvement
is not drastic, since p; = 0.62 (stand. dev. 0.14). Still, we retain the corresponding cost function, noted

Cost1y.
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As regards Cost2, we failed to obtain any significant improvement. This may suggest that the generic

definition is not well suited to the search problem and/or the chosen neighborhood operator.

We now study whether the new Cost 1,; function manages to improve SA efficiency. Table 7 provides
the results obtained by 35 runs (MAX_ITER = 200). The previous results of random sampling and
Simulated Annealing are recalled for comparison purposes. It is clear that the Costl; landscape is the
best for SA search. Moreover, observed performance is now significantly better than that of random
sampling. Considering our initial failure to properly tune SA search, these results confirm that the

proposed measurement criteria should be much sounder than ad hoc judgment.

Random sampling SA Costl SA Cost2 SA Costl,
Successful search 26 25 16 33
Iterations (35 runs) 4187 3778 4453 2573

Table 7 — SA search improvement for the Boiler example

5 Stopping Criteria for Process Runs

Contrary to what has just been done on the search landscape, we do not try to improve the process
landscape. For the reasons explained in Section 3.4, our objective is more modest: we attempt to make
the best possible use of a given process landscape. This is done by monitoring the process runs. Each
run corresponds to a trajectory in the landscape, which may or may not reach an optimal solution
depending on the starting point of the search and the allowed number of iterations. The monitoring
approach aims to decide whether the current run is likely to succeed before the allowed number of

iterations. If the decision is negative, the run is stopped and search is restarted from another point.

Stopping criteria have also been studied by others in the framework of search-based testing. In
(Lammermann and Wegener, 2005), the allowed search effort is tuned to structural coverage goals: the
stopping criteria are a priori determined from software measures. In (0’Sullivan et al., 1998), on-line
monitoring of search convergence is used to determine whether the current run should be stopped or
continued. As an a priori estimation is impossible for us, our approach is more in the spirit of the latter
work. However, its implementation is quite different since (0’Sullivan et al., 1998) use genetic
algorithms and analyze convergence for populations of solutions. Section 5.1 presents the principle of
our monitoring approach and the related stopping criteria. Section 5.2 uses the QAP and calendar
problems to calibrate the criteria. A trade-off must be found between too sensitive criteria (stopping
runs that would have been successful) and too restrictive ones (not stopping unsuccessful runs). The

calibrated criteria are then applied to the Boiler example in Section 5.3.
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5.1 Principle of the Approach

A new measure is introduced to characterize a process run, called the Generation Rate of Better

Solutions (GRBS):

GRBS = number of generated solutions decreasing the cost

total number of generated solutions

The GRBS value is not very interesting per se because it is unstable, evolves during a run, and varies
from one run to the next. Actually, it is precisely the evolution during a run that is the focus of our

monitoring approach.

Whatever the case study (QAP, calendar problems, Boiler), we observed that GRBS evolution for
successful runs can be schematized as in Figure 3. Three phases may be identified. Phase 1 typically
characterizes the beginning of the search at a point where cost is high and easy to improve: lower cost
solutions are produced at a high rate. At the end of Phase 1, low cost solutions are reached and
improvement becomes difficult: the steep decrease of GRBS (Phase 2) indicates that search is
approaching the optimal solution that will be found by this successful run. Phase 3 characterizes the
last iterations of the run, exploring a small subspace in the neighborhood of the optimal solution. Of
course, Figure 3 is only a schematic view. The actual duration of each phase depends on the run, and it
may be the case that a phase is not present. Concrete examples of runs with no Phase 1 or no Phase 3

are shown in Figure 4.a.

An interesting observation is that the duration of phases can — to a certain extent — be used to
distinguish successful and unsuccessful runs. We observed empirically that unsuccessful runs always
correspond to long durations of either Phase 1 or Phase 3, where “long” refers to the maximal number

of iterations allowed for the runs. Concrete examples are shown in Figure 4.b.

GRBS
A

N

» Number of
. .
iterations

+“—r<—>
Phase 1 Phase 2 Phase 3

Figure 3 — Generic GRBS evolution for successful runs
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(a) Examples of successful runs (b) Examples of unsuccessful runs

Figure 4 — Instances of GRBS evolution (Cal 1, Cost 4 x N6 landscape)

A long Phase 1 yields high GRBS values to be collected during the whole run. The starting point of
the search has a high, easy to improve cost. Still, it turns out that the process moves fail to reach a low
cost configuration: better solutions are continuously produced at a high rate, but each solution only
provides a slight improvement compared to the previous one. Hence, when the maximum number of

iterations is reached, the achieved cost value is still far away from the optimum.

For unsuccessful runs with a long Phase 3, it is observed that after transient phases 1 and 2, better
solutions are scarcely produced during a large number of iterations (until MAX_ITER is eventually
reached). The stagnation may indicate that the search process is stuck at a local optimum or trapped in

a flat region.

It would be desirable to stop such runs as soon as possible, to avoid useless iterations. Two
complementary stopping criteria are proposed, based on the on-line monitoring of the GRBS. The first
(resp. second) criterion determines whether Phase 1 (resp. Phase 3) is too long for the run to possibly
succeed within the allowed number of iterations. Both checks are performed in parallel, and the run is

stopped whenever one criterion becomes true.

* Phase 1 too long — GRBS = Threshold_High during max (acd MAX_ITER, D) iterations.
In the proposed formulation, Phase 1 of the search is identified by a GRBS value exceeding a
threshold high value. The judgment that Phase 1 is “too long” must then be relative to the
maximal number of iterations: this is tuned by means of parameter a with 0 < a < /. In
addition to this, it seems reasonable not to stop the run before the process has spent some
minimal amount of time to explore the landscape. In the proposed formulation, the exploration

time cannot be shorter than diameter D of the landscape.
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* Phase 3 too long — GRBS =< Threshold_Low during max (f MAX_ITER, IN)) iterations.
As above, the phase duration is tuned to the maximal number of iterations: this is done by
means of parameter 8 with 0 < < /. In addition to this, we impose that a Phase 3 search
cannot be stopped before it has spent some time to explore the neighborhood of the solution
reached at the end of Phase 2. This is why the triggering number of iterations cannot be
smaller than the size INI of the neighborhood operator, where INI is defined as the maximal

number of neighbors connected to any point.

In order to implement the checks, parameters o, B, Threshold_High and Threshold_Low must be
instantiated. We experimented with a number of values using the QAP, Cal 1 and Cal 2 case studies.
We also tried several monitoring schemes: on-line monitoring is started at the first iteration of the run,

or after an initial number of iterations has been performed.

5.2 Calibration using QAP, Cal 1 and Cal 2

The best monitoring schemes, that consistently supplied satisfactory results for all case studies, were

the following:

Scheme 1: Monitoring is started after MAX_ITER/I0 iterations.
Phase 1 too long: Threshold_High = 50%, a =0.1
Phase 3 too long: Threshold_Low = 10%, f=0.1

Scheme 2: Monitoring is started at the first iteration.
Phase 1 too long: Threshold_High = 50%, a = 0.25
Phase 3 too long: Threshold_Low = 10%, = 0.25

It is worth noting that according to Scheme 1 (resp. 2), the search can never be stopped before

MAX_ITER/S5 (resp. MAX_ITER/4) iterations.

The experiments involved the two process landscapes of QAP, and the 20 landscapes of Cal 1 and
Cal 2 that passed the diameter and autocorrelation criteria (Abdellatif-Kaddour, 2003c). Exemplary
results for the two retained schemes are shown in Table 8. They have been obtained for the QAP
landscapes, by re-playing the runs from Section 4.1 with the monitoring schemes. The replay allows
determination of the percentage of unsuccessful — but also successful — runs that are stopped by each
scheme. Global search performance is then measured by the ratio (number of successes) / (total
number of iterations). It accounts for the combined effect of false positives (successful runs are

stopped) and false negatives (unsuccessful runs are not stopped).
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L&M1 L&M2
Without Monitoring | Monitoring Without Monitoring | Monitoring
monitoring scheme 1 scheme 2 monitoring scheme 1 scheme 2

% unsucc. runs — 100% 100% — 100% 100%
stopped

% succ. runs — 76.25% 50% — 60.36% 18.92%
stopped

Success/iteration 1.7 107 1.9 10° 24107 24107 43107 5.510°

Table 8 — Monitoring schemes applied to the QAP landscapes

From Table 8, it can be seen that all unsuccessful runs are detected and stopped. Unfortunately, the
monitoring schemes may also stop a high percentage of successful runs. But we experimentally
observed that those runs are most often the ones that succeed lately, i.e. towards the end of the 5000

allowed iterations. This explains why global search performance is not degraded.

For the two QAP landscapes, Scheme 2 turns out to be the best one. The supplied improvement is the
same order of magnitude as the one supplied by using Connolly’s L&M2 — rather than L&M1 — search
process. However, considering the whole set of 22 landscapes, no scheme exhibits superiority over the

other. The conclusions drawn from the 22 landscapes are the following:

* Both schemes manage to stop a satisfactory percentage of unsuccessful runs (> 50% for 12

landscapes).

*  Successful runs are also stopped (< 20% for 13 landscapes), but these are generally runs that

would have consumed almost MAX_ITER iterations before an optimal solution is found.
* Global search performance is either improved or unchanged, never degraded.

Hence, it seems that the monitoring schemes can significantly improve performance in some cases (as
for the QAP example), and have a neutral effect in the worst case. It remains to be studied whether

similar results can be obtained for the Boiler problem.

5.3 Experimentation with the Boiler Example

The retained schemes have been experimented on three Boiler landscapes, namely the ones with
Costl, Cost2 and Costl;. The results shown in Table 9 correspond to the same runs as the ones in

Section 4.3, replayed with monitoring.
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Costl Cost2
Without Monitoring | Monitoring Without Monitoring | Monitoring

monitoring scheme 1 scheme 2 monitoring scheme 1 scheme 2

# unsucc. runs — 10 10 — 5 5
stopped (out of 10) (out of 10) (out of 19) (out of 19)

# succ. runs — 11 12 — 0 0
stopped (out of 25) (out of 25) (out of 16) (out of 16)

Success/iteration 6.6 107 7.210° 8.2 107 3.6 107 4.010° 4.010°

(b) Costl and Cost2 landscapes

Costl,;,

Without monitoring

Monitoring scheme 1

Monitoring scheme 2

# unsucc. runs stopped — 1 1
(out of 2) (out of 2)
# succ. runs stopped — 2 2
(out of 33) (out of 33)
Success/iterations 12.8 107 13.0 107 13.3 107

(a) Costl,; landscape

Table 9 — Monitoring schemes applied to the Boiler landscapes

For these landscapes, search performance is similar whether or not the monitoring schemes are used.
Note that, for the Costl,; landscape, no drastic improvement could be expected because SA search is
already quite efficient (indeed, there are only 2 unsuccessful runs). At least, our results confirm that
performance is not degraded, which is also the case for Costl and Cost2 landscapes. This outcome was
not granted, because the allowed number of iterations (200) is much lower than the one experimented
for QAP (5000) or the calendar problems (2000). For such comparatively short runs, we could not be
sure that the monitoring schemes would still be relevant. The fact that behavior remains consistent
with previous observations is a positive point in favor of the reusability of the retained schemes. As

previously, the stopped successful runs are the ones that succeed lately.

Our conclusions are then the following. Since the monitoring schemes do not degrade search
performance, and might improve it in some cases, their use can be recommended. Scheme 1 or
Scheme 2 can indifferently be chosen, as the supplied results seem quite similar. Note, however, that
the monitoring approach cannot act as a replacement for finding adequate settings of SA parameters
(like the cost function). At best, it may help not to waste test effort where search convergence is too

slow. But the intrinsic difficulty of the landscape for SA search remains unchanged.
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6 Conclusion

As argued by (Harman and Jones, 2001), the development of empirical studies is a crucial step to
establish a body of knowledge in search-based software engineering. This paper is intended to
contribute to this step. We adopted a measurement perspective, building upon fundamental work on
metaheuristic search and combinatorial problems. To the best of our knowledge, the related literature
has been little explored by the testing community. We are not aware of other studies investigating

measures to tune search-based test data generation.

Our empirical study involved a testing problem (issued from previous work on testing control
systems), as well as three simple problems chosen to experiment with a variety of landscapes. This
allowed us to consolidate our approach and investigate whether consistent results could be obtained
for several examples. Work was focused on simulated annealing search, and was driven by the two
constraints of our original testing problem: 1) we cannot afford a large number of system executions
and 2) sub-optimal solutions are useless with respect to the test objective. We believe these constraints
are shared by many other testing problems. One characteristic of search-based test data generation is
that the cost of a candidate solution has to be evaluated by supplying it to the system under test.
Except for unit testing of simple functions, this evaluation may become very computationally costly.
Moreover, as soon as the search process is intended to serve a test coverage objective (e.g., activate a
program branch, or trigger an exception), sub-optimal solutions are not of interest. Hence, it is hoped

that the retained approach could be relevant to a number of other testing problems.

We use the diameter and autocorrelation measures to study the adequacy of alternative settings of the
cost function and neighborhood operator. These measures can only have a limited explanatory power,
but are still useful to reject inadequate landscapes and retain those that are reasonably well suited to
SA search. In our study, the approach allowed the Boiler problem to be successfully revisited, yielding
a better cost function than the ones obtained by ad hoc trials. Our future work will consider additional
empirical studies to refine the criteria for accepting a landscape. In particular, the determination of

typical threshold values for the current measures requires more investigation.

The diameter and autocorrelation measures characterize the search landscape, which does not include
the search process. It would be more interesting to work on the process landscape, since ultimately we
are only interested in the search process efficiency. However, characterization of the process
landscape is much more difficult, and still remains an open issue for testing problems. Up to now, our

work on the process landscape has addressed less ambitious issues, using two alternative approaches.
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The first one, followed in (Abdellatif-Kaddour et al., 2003b), consisted in modifying the core SA
algorithm to tailor it for the problem under consideration. At the expense of ad hoc trials, we obtained
a specific SA variant that worked well on the Boiler example. However, this variant is not expected to
be reusable. Indeed, additional experiments in (Abdellatif-Kaddour, 2003c) showed that it poorly

performs on the QAP and calendar problems.

The second approach, explored in this paper, was intended to be less specific. It consists in monitoring
search convergence, so as to stop runs that are unlikely to succeed within the allowed number of
iterations, and restart the search from another point. The proposed monitoring schemes supplied
consistent results for the four case studies we experimented with. The schemes are not costly to
implement, and may improve search performance while having a neutral effect in the worst case. We
will conduct further experiments to confirm these results. In particular, the relevance of our schemes
relies on the assumption that the GRBS measure evolves as shown in Figure 3, with possibly different
phase durations. We will study whether GRBS evolution could exhibit different patterns for other

instances of testing problems (e.g., exhibit peaks, ...).

Finally, we hope that the first results presented in the paper will encourage more experimental studies
based on the measurement of testing landscapes. As a first step, the proposed approach could provide a

useful framework to revisit existing case studies.
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Appendix A — The Boiler Case Study

The steam boiler problem was proposed as a challenge for formal methods for safety-critical control
systems (Abrial et al. 1996). The target system consists of a plant, a control program and a message
transmission system connecting them. The plant has the following physical units: the steam-boiler, 4
pumps to provide water, 4 pump controllers indicating whether or not water is flooding from the
pump, a sensor to measure the level of water in the boiler, a sensor to measure the quantity of steam
which comes out, an operator desk. The program serves to control the level of water. Its functional
requirement is to maintain the level between two nominal values N,, N,. Its safety requirement is to
maintain the level between two safety limits M,;, M,, where M, < N, and M, > N,, otherwise the boiler

explodes. The program has a cyclic behavior, and executes the following actions every five seconds:

* Reception of messages from the plant. There are 33 possible messages, including sensor data
(e.g., LEVEL(v), where v measures the water level in the boiler) or messages from the

operator desk (e.g., STOP, when an emergency shutdown is requested by the operator).

* Analysis of the information received from the plant. The control program has to update its
view of the physical environment. As any device may become faulty at any time, the program
cannot trust the received data. Plausibility and consistency checks are performed. The checks
are based on the view elaborated at the previous cycle, as well as on expectations on the
system dynamics. Depending on the check results, the program decides which devices are

working correctly, and computes a new estimation range for the water level.

* Synthesis of messages and transmission to the plant. The program determines its operating
mode, and sends it to the plant. The emergency stop mode is sent if the program considers that
safety is endangered. The other modes are initialization, normal, degraded or rescue
depending on the (perceived) states of the devices. Failure detection messages may also be
sent to inform the operator of the faulty devices. Commands to open or close the pumps are

sent to control the level. Overall, 27 messages are possible.

A more detailed description of the case study can be found in (Abrial et al. 1996). Many contributions
were made, some of them proposing an implementation of the control program. A plant simulator was

provided by the FZI to allow contributors to run and test their implementation.

Our test experiments involved the implementation proposed by J-R. Abrial and Steria. It is a C
program of approximately 4800 lines of code (including comments) that can be interfaced with the

FZI simulator. The test environment is shown in Figure A.1.
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The tested system is composed of the control program and the plant simulator. Once started, the
system autonomously operates. The closed-loop control is then perturbed by simulating the occurrence
of faults in the devices, at chosen cycles of operation: our test inputs are timed fault commands for the
simulator. For a time window of n cycles, and a maximum of 10 faults (affecting the 4 pumps, the 4
pump controllers, the water sensor and the steam sensor), the number of possible input sequences is:

i (10) o

=\

When an input sequence is supplied to the system, an execution trace is recorded. It contains the data
needed to identify a boiler explosion or a dangerous situation. An explosion is easily identified
because the simulator notifies it. Dangerous situations require more analysis. Whether the control
program correctly diagnosed the faulty devices is determined from the failure detection messages sent

to the plant. Whether the program correctly estimated the water level is determined by comparing its

estimation range with the “actual” value in the simulator.

Tested system

Fault commands

=

steam measurement

Mz

2
water level
display
1l

mmsssm)p> Recorded data at each cycle:
* Messages
* Water level in the simulator
¢ Water level range calculated by
the control program
* Explosion event (if any)

M1

valve

Messages
from plant

Messages

to plant
Test oracle

Control program

Explosion or
Dangerous situation

Figure A.1 — Test environment used in our experiments
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Appendix B — Landscapes for the Boiler Problem

There are 2 landscapes, by combining 2 cost functions x 1 neighborhood operator.

B.1

Costl

Test sequences fulfilling the test objective (i.e. yielding a boiling explosion or a dangerous situation)

are assigned a zero cost. Other test sequences are assigned a positive cost, equals to the minimum of

penalties associated with the three dangerous situations mentioned in Section 2.1. Intuitively, cost f; is

intended to penalize test sequences that are not “stressful” with respect to dangerous situation i.

Cost f; is related to the control program not detecting the failure of a device. When none of the
devices is faulty, this situation cannot occur: hence f; is assigned a maximum penalty K.
Then, we let f; decrease as the number of faulty devices increases.

Cost f; is related to the control program wrongly detecting the failure of a device that is non-
faulty. The Boiler environment includes 10 devices (4 pumps, 4 pump controllers, 1 water
level sensor, 1 steam sensor). When the test sequence makes all these devices faulty, wrong
detection cannot occur: f; is assigned a maximum penalty K,. Then, we let f, decrease as the
number of non-faulty devices (10 — nbFaultyDevices) increases.

Cost f; is related to bad estimation of the water level. At each cycle, the control program
computes a lower bound gc; and upper bound gc, of the water level (gc; < gc, ). A dangerous
situation is reached when the actual water level (observed from the boiler simulator) is outside
the range [gc;, gc,]. Sequences not fulfilling this objective are considered all the more stressful
as the uncertainty about the actual level is high, i.e. f; is decreasing with (gc, — gc;). In this
way, the maximum penalty is when the estimation range is both correct (no dangerous

situation) and accurate at the highest possible precision.

IF (boiler explosion OR dangerous situation observed) THEN

Return (0)
ELSE

Return (Min (f,, 5, f3))

Where:

K
nbFaultyDevices + 1
_ K>
’ 10 — nbFaultyDevices + 1

_ K3
gc2—qci

E

ENDIF
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The experiments reported in Section 2.3 involved the following values for constant parameters K;:
K, =K, =250, K; = 4000. Calibration was performed empirically, with the aim of providing similar
variation ranges for all f;. This yielded [22, 250] for f; and f, [7, 160] for f;.

B.2 Cost2

The positive costs returned by Cost2 are primarily based on the consideration of water level
estimation. The first term corresponds to function f; defined for Costl. It rewards test sequences that
increase the control program’s uncertainty about the water level. The second term is intended to
discriminate between test sequences yielding the same uncertainty. It favors scenarios that make the
actual level g get close to the safety limits M; and M, (the boiler explodes when the water level gets

lower than M, or greater than M,).

IF (boiler explosion OR dangerous situation observed) THEN
Return (0)
ELSE

>

K
Return =t + Ks.Min(|q - M
gc2—qci

q—M2|)

ENDIF

The experiments reported in Section 2.3 involved the following values for constant parameters K;:
K4 =10,000 and K5 = 0.2. These values were intended to give higher weight to the first term than to

the second one. The variation ranges are respectively [20, 400] and [0, 70].

B.3  Neighborhood Operator

The neighbors of a test sequence T are obtained from T by either: (i) changing the date of one fault of
T; or (ii) adding one fault to T at an allowed date; or (iii) removing one fault from T. The allowed
dates depend on the space explored by the test strategy. The experiments reported in Section 2.3
correspond to the space of sequences with prefix Steam_fault(3) and additional faults occurring at
cycles [4, 8]. The neighborhood operator is applied only to these additional faults. For example,
starting from Steam_fault(3), Pump2_fault(5), WaterLevel_fault(8) it may generate:

*  Steam_fault(3), Pump2_fault(4), WaterLevel_fault(8) by changing the date of Pump2-Fault.

*  Steam_fault(3), Pump1_fault(5), Pump2_fault(5), WaterLevel_fault(8) by adding a Pump1-Fault.

*  Steam_fault(3), Pump2_fault(5) by removing the water level fault.

Overall, there are 8 + 35 + 2 = 45 neighbors of the original sequence.
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Appendix C — Landscapes for the Cal 1 problem

There are 24 landscapes, corresponding to the combinations of 4 cost functions x 6 neighborhood

operators.

C.1 Cost Functions

Definition

If (day, month, year) = (31, 12, 2000) then Costl =0
Else Costl is randomly chosen in [1, 1000]

Costl

Cost2 Cost2 = 131-dayl + 112-monthl + 12000-year| + K,

y

Cost3 Cost3 = 131-dayl + 31*112-monthl + 365*12000-year!

+ Kmonth + K,

year

Cost4 Exact number of days between date (day, month, year) and date (31, 12, 2000)

Costl assigns a random cost value to any solution, except triplet (31, 12, 2000) which is assigned a

Zero cost.

Cost2 is inspired from the cost function used by (Tracey, 200b). It considers each triplet parameter,
and measures its deviation from the target value in the optimal triplet. For example, 131-dayl measures
deviation of the day parameter value, while 12000-year| measures deviation of the year parameter
value. Furthermore, as soon as deviation of parameter i is not zero, a constant penalty K; is added,
where year deviation is more penalized than day or month one:

* Ifday=31 then K,;,, =0  else K;,, = 10

e Ifmonth=12 thenK,,,,=0 else K, .,=10

* Ifyear=2000 thenkK,,=0 else K, =100
The total cost is then the sum of individual costs for day, month and year. The variation range of Cost2

is [0, 1167].

Cost3 and Cost4 make the cost value depend on the number of days between the current date and the
optimal one. Cost3 corresponds to a crude approximation of this number of days, while Cost4 is exact.

The variation ranges are respectively [0, 365371] and [0, 364999].

Note that the cost functions designed for Cal 2 are similar to the ones for Cal 1. They have just been
adapted to account for the fact that Cal 2 has two optimal solutions. For example, Cost4 computes the

minimal number of days between the current date and any one of the two optimal dates.
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C.2  Neighborhood Operators

INI = maximal number of
Definition neighbors a date may be
connected to

N1 | Any date obtained by letting one, two or three triplet parameters (day, 26
month, year) vary + 1, modulo the maximal parameter value.

N2 | Same as N1, without modulo (e.g. a December date is no more 26
connected to a January one).

N3 | Any date no more than 15 days apart from the current date, modulo the 30
solution space boundaries, that is, (1, 1, 1900) and (31, 12, 3000) are
connected.
N4 | Same as N3, without modulo. 30
NS | Any date no more than 400 days apart from the current date, modulo 800

the solution space boundaries.

N6 | Same as N5, without modulo. 800

Intuitively, N/ and N2 should be well-suited to cost function Cost2, while N3-N6 are more in the spirit
of Cost3 and Cost4.

Note that the neighborhood operators designed for Cal 2 are exactly the same as the ones for Cal 1.
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