
Proof-Guided Testing: an Experimental Study

Guillaume Lussier, H´elène Waeselynck, Karim Guennoun
LAAS-CNRS

7 Avenue du Colonel Roche
31077 Toulouse Cedex 4 - France

Email: fglussier,waeselyn,kguennoug@laas.fr

Abstract

Proof-guided testing is intended to enhance the test de-
sign with information extracted from the argument for cor-
rectness. The target application field is the verification
of fault-tolerance algorithms where a paper proof is pub-
lished. Ideally, testing should be focused on the weak parts
of the demonstration. The identification of weak parts pro-
ceeds by restructuring the informal discourse as a proof tree
and analyzing it step by step. The approach is experimen-
tally assessed using the example of a flawed group member-
ship protocol (GMP). Results are quite promising: (1) com-
pared to crude random testing, the proof-guided method al-
lowed us to significantly improve the fault revealing power
of test data; (2) the overall method also provided useful
feedback on the proof and its potential flaw(s).

1 Introduction

Suppose you find in the literature an algorithm that could
address your needs (under some assumptions, some proper-
ties are ensured). But the algorithm is published with an
informal paper proof, and you would like to get stronger
evidence for correctness. Before embarking formal devel-
opment, you may consider a lighter approach: make a rapid
prototype of the algorithm, test it, and gain confidence that
the algorithm has a chance to be correct.

Since testing is a partial verification technique, a key
issue is the selection of relevant test inputs. Ideally, you
would like to take advantage of the fact that a paper proof
exists. For example, a proof by cases might suggest test
cases that are potentially significant to the correctness of
the algorithm. Identification of the most complex and less
convincing parts of the proof might suggest that some input
subspaces be sampled more stringently than others. Intu-
itively, you would expect revealing inputs to be somehow
related to weaknesses in the proof.

This paper investigates how the idea ofproof-guided test-
ing can be put into practice, and whether it is effective
for revealing flaws. This calls for providing an analysis
scheme to extract information from realistic proof exam-
ples, and for studying the relevance of extracted informa-
tion. The target algorithms we consider are fundamental
Fault-Tolerance (FT) algorithms, used to build dependable
architectures. Their correctness is a critical concern, and
most of them are published with an informal paper proof.

Preliminary work in that direction was initiated in [3].
We used an FT task scheduling algorithm as an example of a
flawed algorithm “proved” by informal demonstration. The
results were deceiving. Analysis of the proof quickly re-
vealed flaws of reasoning. But the flaws were too high-level
to supply useful information for testing. Our conclusion
was that the viability of proof-guided testing would have to
be studied on more convincing proof examples.

The group membership protocol (GMP) in [1] provides
such an example. Its informal proof is much better crafted
than the previous one. The authors used model-checking
of an instance of the protocol to consolidate their paper
demonstration for the general case. Still, the protocol was
found flawed after publication, which makes it a challeng-
ing example for our purpose.

Section 2 provides an overview of our approach. It re-
tains a principle introduced in [3]: the analysis of paper
proofs is supported by a structured representation of the in-
formal discourse which gives a clear view of the reasoning
steps. Section 3 introduces the GMP example. Sections 4
and 5 illustrate the process of extracting information from
its proof so as to define the test input domain, selection cri-
teria to generate inputs from this domain, and the oracle
checks determining correctness of the test outputs. Test re-
sults are shown in Section 6. In Section 7, the results ob-
tained from both proof analysis and testing provide feed-
back on the original demonstration.



2 Overview of the approach

Figure 2 provides an overview of the approach investi-
gated in the paper. It is based on four steps.

Feedback to the proof

Proof−guided testing

Input domain
Oracle

Preliminary Analysis

Proof Restructuring

Figure 1. Proposed Approach

� A Preliminary Analysis aims at gaining an understand-
ing of the FT algorithm and its requirements: under
certain assumptions, some key properties are to be ful-
filled. The assumptions include a model of the faults
to be tolerated, as well as other environmental assump-
tions. From their identification, a definition of the al-
gorithm’s test input domain is derived. The key prop-
erties yield a specification of the test oracle checking
acceptance or rejection of the test results. The under-
standing of the algorithm must be sufficient to initiate
development of the prototype to be tested.

� Proof Restructuring is the corner stone of the ap-
proach. It consists of rewriting the informal discourse
as a proof tree. The aim is to obtain a clear view
of the proof structure, by interpreting reasoning steps
in terms of inference rules of a basic calculus, e.g.
sequent calculus. The tree reformulation is a useful
guide to question the soundness of the proof in a sys-
tematic manner, step by step, and to assign a subjec-
tive assessment to the various proof branches. Note
that the analysis approach is much lighter than formal
reworking, and would not allow us to establish the cor-
rectness of the algorithm. Still, the approach should be
sufficient to make a quick assessment of the proof, and
to point out its less convincing parts. The identified
weaknesses are used to define test criteria guiding the
selection of input sequences. They may also be used to
specify additional oracle checks, so as to observe the
validity of intermediate lemmas.

� Accordingly, Proof-Guided Testing experiments are
conducted. We use statistical testing, as defined by [7],

to automate the generation of input sequences. Statis-
tical testing is a probabilistic approach for generating
test data based on selection criteria. Generally speak-
ing, it aims to compensate for the imperfect connection
of common test criteria with the flaws to be revealed:
the cases identified by a criterion have to be exercised
several times with different random test data. As re-
gards proof-guided testing, it seems reasonable not to
expect a perfect match between doubtful proof steps
and revealing inputs (the easy flaws would not have
escaped the informal proof). Using a statistical testing
approach, we make a weaker assumption: the informa-
tion extracted from the proof is sufficiently relevant to
increase the program failure probability.

� In addition to providing experimental evidence on
the algorithm’s behavior, the approach provides some
Feedback to the proof. The results of proof restructura-
tion and testing may provide hints on how to rework
the original demonstration.

3 A Group Membership Protocol

In a distributed system, a group membership service al-
lows non-faulty processors to agree on their membership
and to exclude faulty ones. The studied algorithm is a
variant of the membership service offered by the Time-
Triggered Protocol (TTP) [2]. This variant, proposed in
[1], was intended to minimize overhead for bandwidth-
constrained networks: it requires only one acknowledgment
bit per broadcast.

This GMP involves n processors attached to a broadcast
bus. Execution is synchronous, with a global time t in-
creased by one at each step. At time t, processor t mod n
is the only one that can broadcast messages. This defines
broadcast slots owned by this processor. The goal of the
GMP is to maintain a consistent record of non-faulty pro-
cessors. Only two types of faults are considered.

� Send fault: a processor fails to broadcast when its slot
is reached.

� Receive fault: a processor fails to receive a broadcast.

Faults can be intermittent: a faulty processor may operate
correctly in some steps and manifest its fault in others. Only
one non-faulty processor can become faulty in any n+1 con-
secutive steps, and there are always at least two non-faulty
processors in the system.

Each processor maintains a local view of the member-
ship set, that may be updated at each step. The update
rules are intended to ensure three key properties, yielding
the three theorems of the paper proof.



� Theorem 1: The local membership sets of all non-
faulty processors are always identical and contain all
nonfaulty processors.

� Theorem 2: A faulty processor is removed from the
membership sets of non-faulty processors in the step
following its first broadcast while faulty.

� Theorem 3: A newly faulty processor will remove it-
self from its local membership set (and thereby diag-
nose itself) when the slots of at most two non-faulty
processors have been passed.

Actually, it is possible for Theorem 3 to be violated. The
flaw manifests itself only when there are three processors in
the membership1.

The subsequent sections describe the application of the
proposed testing approach to the GMP example. A more
detailed account of this work can be found in a research
report [5].

4 Preliminary Analysis

The detailed description of the local update rules in [1]
makes it straightforward to implement a GMP prototype.
The test oracle is specified to perform three checks, corre-
sponding to the on-line verification of the three properties.
These checks require that all local membership sets are ob-
served at each step. The definition of the test input domain
is parametrized by the number n of processors, with n > 2.
Valid test sequences consist of any sequence of faults satis-
fying the assumptions presented in Section 3 (e.g., at most
n�2 processors can become faulty). At this stage of prelim-
inary analysis, we were able to implement a crude random
profile generating valid test sequences for systems from 3
to 20 processors, a range targeted by the Time-Triggered
architecture hosting the GMP.

5 Restructuration of the Paper Proof

In [1], Theorem 1 is proved by induction on time. In
order to establish the induction step, model checking of
a 4-processors instance was used to conduct a repeated
strengthening of the invariant until an inductive one was
reached. The final invariant contains 8 conjuncts. The first
step of the proof is to show that the invariant holds in the ini-
tial state (time t = 0). Then the authors assume the validity
of the 8 conjuncts until time t and prove each conjunct for
time t+ 1. Theorem 1 follows trivially from the invariance
of the first two conjuncts. The proofs of Theorem 2 and
Theorem 3 are based on the assumption that the 8 conjuncts
are invariant. Hence, the construction of this invariant was
the foundation of the whole proof.

1See the corrected version of [1] downloadable at
http://www.csl.sri.com/papers/wdag97

Quoting from [6]: “ The informal proof of inductiveness
of the conjoined invariants is long and arduous ” . For such
intricate paper proofs, careful reading is likely to be insuf-
ficient to identify the weak parts: this is the rationale for
proof restructuration.

5.1 Principle

We used sequent calculus to restructure this informal
proof in the form of proof trees, and analyze them step by
step. A sequent is written in the form � ` P , where � is a
list of hypotheses, and P is a conjecture to be proved under
these hypotheses. An intuitive interpretation is that the con-
junction of the hypotheses should imply P. As an example,
sequent :

algo; fault model; Inv(Th1) ` Theorem 3

captures the fact that the authors are trying to prove Theo-
rem 3 under three classes of hypotheses: the update rules
of the local views (noted algo), the faultmodel, and the
invariance of the 8 conjuncts established by the inductive
proof of Theorem 1 (Inv(Th1)). The sequent is not formal,
since notations Theorem 3, algo, etc., are not formally de-
fined.

A proof is then represented as a tree of sequents: the
main goal is placed at the root (bottom) of the tree, and the
proof tree is constructed upwards from the root by applying
legal inference rules like:

� ` B �; B ` A

� ` A
cut

�; A ` C �; B ` C

�; A _ B ` C
_ `

The cut rule is used to introduce new lemmas, i.e. the
proof of A is split into two branches, the proof of B and the
proof A assuming B. Rule _ ` is used for case splitting: the
proof of C is split into two branches, depending on whether
A, or B, is assumed.

Back to the example of Theorem 3, we have the follow-
ing informal discourse:

“ If a processor p becomes send-faulty,
. . . Similarly, if p just became receive-faulty
in the expected broadcast before its slot,
. . . [argument to address both of these cases]
If a processor p becomes receive-faulty . . . but p
is not the next expected broadcaster . . . [argument
to address this latter case]. ”

This is clearly the pattern of a proof by cases, which can
be represented by the successive application of cut (to intro-
duce the appropriate disjunction of cases in the hypotheses)
and _ ` (to perform the splitting according to those cases),
as shown in Figure 2.

A proof tree is complete when all its proof branches end
with axiom rules. For example, there is an axiom stating



(Branch 1)

�;Rfault-not b ` Theorem 3

(Branch 2)

�; Sfault _ Rfault-b ` Theorem 3

�; (Sfault _ Rfault-b) _ Rfault-not b ` Theorem 3
_ `

true : fault model

� ` (Sfault _ Rfault-b) _ Rfault-not b

� ` Theorem 3
cut

Proof notations :
faults Sfault : p suffers a send fault in tf ,

Rfault b : p suffers a receive fault in tf and is the next expected broadcaster,
Rfault-not b: p suffers a receive fault in tf and is not the next expected broadcaster

hypotheses � � algo; fault model; Inv(Th1)

Figure 2. Root of the Proof Tree for Theorem 3

that a formula is true when the goal to be proved is one of
the hypotheses. In most cases, the informal discourse is not
low-level enough to explicitly refer to axioms. Hence we
use labels to denote our subjective assessment of the validity
of the terminal steps of the branches. For parts of the proof
that we consider conclusive, we use label true. This label
may be complemented by an indication of the hypotheses
from which we think the pending goal can be easily derived:
for instance, in Figure 2, the completeness of the decompo-
sition into cases (rightmost branch) is obvious from the fault
model. Pending proof branches that we consider missing, or
too complex to be easily discharged, are labeled ?. Label
false is used in case we are able to establish that the current
goal does not hold under the considered hypotheses.

Complete restructuration of the GMP proof did not ex-
ceed one week of work. This is due to the fact that the ap-
proach is much lighter than formal reworking. The goal is
not to establish the correctness of the algorithm. Rather, it
is to make a quick identification of the less convincing parts
of the proof. A clear view of the proof structure is extracted
from the informal discourse, by adopting a concise notation
in sequent style and by making the inference steps explicit.

5.2 Problems Identified

The proof trees were a convenient support to analyze the
inductive proofs of the 8 conjuncts, as well as the proofs of
Theorems 2 and 3. We identified several problems.

A general problem, affecting all the proofs, is that the
authors did not properly account for all possible fault pat-
terns: in the argumentation, the occurrence of permanent
or intermittent faults is ignored. For example, after a first
receive fault, the faulty processor is assumed to be able to
receive (or broadcast) subsequent messages if it decides to
do so (except in the proof of one conjunct, where the possi-
bility of not receiving two consecutive expected broadcasts
is mentioned).

Besides this, we found additional problems affecting re-
spectively Theorem 3 and Conjunct (5). Both of them illus-
trate the intricacy of the reasoning on time.

Conjunct (5) corresponds to the following property:

“ If a processor p became faulty less than n steps
ago and q is a nonfaulty processor, either p is the
present broadcaster or the present broadcaster is
in p’s local membership set iff it is in q’s. ”

This formulation is clearly not easy to handle in order to
establish the induction step from t to t + 1. In the demon-
stration, text fragments such as “n steps ago” , “ since then
and up until the next step” have to be interpreted. They
define time windows whose bounds depend on whether the
reference step is t or t+1. We found problems related to the
treatment of the boundary cases, and three proof branches
were labeled false. This does not mean that Conjunct (5)
itself is false, but its proof relies on a false lemma (used in
three branches).

As regards the proof of Theorem 3, informal discourse is
dense, making the logical structure difficult to extract. Part
of the difficulty comes from the fact that different time steps
intervene in the argumentation (four different time identi-
fiers are distinguished in the proof tree). Also, Branch 2 ag-
gregates two fault configurations, Sfault and Rfault-b (see
Figure 2), for which the distinguished time steps may in-
volve different properties. At the end of the assessment,
Branch 1 of the proof tree is considered satisfactory, while
the development of Branch 2 contains two ? labels. The
first label corresponds to a terminal sequent whose goal
trivially holds for an Sfault configuration, but not for an
Rfault-b one. The second label corresponds to a sketchy
part of the proof, too complex to be easily discharged for
both Sfault and Rfault-b.

5.3 Feedback for Testing

The results obtained from proof restructuration now have
to be analyzed from the perspective of testing. Three prob-
lems have been identified. Two of them may potentially af-
fect the whole GMP proof, while the third one is localized
in the proof of Theorem 3.

The first problem implies that the GMP behavior has to
be tested in the case of intermittent or permanent faults.

The second problem concerns the false lemma used in
the proof of Conjunct (5). The lemma appears at several



places, and it is not possible to identify safe subsets of the
GMP input domain. Since the invariance of Conjunct (5) is
assumed in the proofs of Theorems 1, 2 and 3, no part of
the GMP proof structure can be safely considered as con-
clusive. All the functional cases that can be extracted from
the proof trees are candidate cases to be covered during test-
ing, as they are potentially significant to the correctness of
the GMP. These cases are:

� the activation conditions of the different update rules
of the algorithm (algo labels appearing in the various
proof trees),

� cases Sfault / Rfault-b / Rfault-not b (proof tree of The-
orem 3),

� transient faults not followed by any subsequent fault of
the affected processor (all the proof trees),

� two consecutive receive faults (proof tree of one con-
junct).

These problems mean that it is necessary to perform a
global test, verifying the behavior of the GMP on a sample
drawn from the whole input domain. The sampling profile
has to account for the combination of transient, intermit-
tent and permanent fault patterns with the other cases ex-
tracted from the proof analysis. To design such a profile,
we built an abstract automaton capturing our understanding
of the GMP behavior, and making the identified cases ex-
plicit. We ended with a decomposition of the input domain
into 20 classes of fault scenarios, corresponding to classes
of paths in the automaton. The classes were made equally
likely under the test profile.

We also decided to strengthen the test oracle so as to
check the validity of Conjunct (5). Adding this check does
not require increasing observability: as for the other checks,
it is sufficient that the local membership sets of the proces-
sors are observed at each step.

Concerning Theorem 3, the identified problem suggests
two input subdomains to be tested more thoroughly than
others: transient Sfault and Rfault-b with no subsequent
fault of the affected processor. Hence, the global test will be
supplemented by specific tests directed towards these sub-
domains.

6 Test Experiments

The test experiments were performed on a C prototype
of the GMP algorithm. An overview of results is given in
Table 1, for samples of 104 sequences. The crude random
profile (derived from preliminary analysis, see Section 4) is
used to study whether the proof-guided approach did allow
us to enhance the revealing power of testing.

Whatever the test profile, the oracle checks for Theo-
rem 1, Theorem 2 and Conjunct (5) never failed. All ob-

Table 1. Test Results
Failure Rate

for Theorem 3
crude random 6.15%

global 7.65%
specific Sfault 0%

specific Rfault-b 19%

served failures affect Theorem 3. They are due to the flaw
already mentioned.

The global profile, ensuring balanced coverage of the 20
classes of paths, is not much more stressing than the crude
one for revealing the flaw. But it was intended to reveal
flaws related to potentially invalid assumptions that Con-
junct (5) holds, or to missing proof cases for intermittent or
permanent faults. Its strongest result is that no such problem
was found. In particular, the fact that Conjunct (5) never
failed suggests that it could be valid, despite the identified
weak parts of its proof.

The tests guided by the proof of Theorem 3 involves two
specific profiles: one for transient send faults, and one for
transient receive faults on the next expected broadcaster.
The first one did not detect any failure: this tends to in-
dicate that Theorem 3 should be valid for send faults. The
second one reached an average detection rate of 19% for
Theorem 3. This is three times the detection rate of the
crude random testing and clearly indicates that Theorem 3
is flawed for the Rfault-b fault configuration. By closely an-
alyzing the test results, we also noted that every failure was
triggered by a fault injected in a 3 processor membership.
These observations will be confirmed by Theorem 3 proof
reworking.

7 The Proof Revisited

We will now use the test results to gain deeper under-
standing of the proof.

Since Conjunct (5) never failed during testing, we should
be able to redo the proof and discharge the pending weak
parts. In the proof, the authors use properties over time
windows whose bounds depend on whether the reference
step is t or t + 1. The weaknesses we found are related to
the treatment of the boundary cases (see Section 5.2). By
treating separately those boundary cases, we managed to
hand-prove the relevant properties and so finish the proof of
Conjunct (5).

Our tests specifically directed towards Theorem 3 proof
never reported a failure with the Sfault configuration. We
therefore decided to split the proof of Branch 2 of Theo-
rem 3 into two sub-proofs, one for the Sfault configuration
and one for the Rfault-b configuration.
For an Sfault configuration, we were able to discharge the



two ? labels (see section 5.2), and finish the proof.
For the Rfault-b configuration, we were able to hand-prove
the first ? part of Branch 2. However, it was much more
arduous to work on the second? part. In the corresponding
proof tree development, we had to use Conjunct (5), and so
had to prove that its precondition was verified: “ p became
faulty less than n steps ago ” . This precondition is false
when only 3 nonfaulty processors remain in the group.

Using the test results, we were able to precisely locate
the flaw in the proof of Theorem 3.

8 Summary and Conclusion

Functional testing approaches usually rely on coverage
measures, test purposes, or selection hypotheses associated
with models of behavior. Such criteria are used to select
finite test sets from the models. They always involve as-
sumptions. For example, transition coverage assumes that
flaws manifest themselves as simple output or transfer er-
rors. Test purposes represent pieces of behavior that are
deemed important to be tested. Uniformity hypotheses are
used to group inputs that should be equivalent in their capa-
bility of stimulating the system under test. In this paper, we
investigated whether an informal argument for correctness
can be a useful basis for deriving such assumptions.

Proof-guided testing was effective in the GMP example.
Its proof was more convincing than the one we studied in
previous work [3]. During restructuration, we were not
stopped by imprecise definitions and high-level flaws. As
a result, we were able to point at several weaknesses in the
proof, one of them being linked to the flaw in the algorithm.
This encouraging result suggests that an informal proof may
carry relevant information for testing, provided it passes the
restructuration step.

Note that, in the GMP example, the extracted informa-
tion was not sufficient to a priori identify the precise 3-
processors configuration. We claim that its identification
would take very deep insight into the proof. The proposed
light analysis approach, coupled to a statistical testing ap-
proach, seems more cost-effective. It allowed us to identify
an input subspace to be sampled more thoroughly than oth-
ers, and to obtain a failure rate that was three times the rate
under the crude profile. Once the revealing configuration is
found by testing, it becomes easier to revisit the proof so as
to diagnose the flaw.

Indeed, an interesting result of proof-guided testing is
that it supplies feedback not only on the algorithm, but also
on its proof. This is useful from the perspective of a sys-
tem integrator who would like to re-use the proof in the
dependability case. If the algorithm is found flawed and
a fix is contemplated, then the proof will have to be re-
worked as well. We believe that the diagnosis of the rea-
soning flaws, based on the proof tree and the knowledge

of revealing scenarios, should facilitate this. The proof can
also be improved when no algorithm’s flaw is revealed, for
consolidation purposes. In the GMP example, we observed
no failure for Conjunct (5), and this was an encouragement
to rework its pending branches. At the end of the method,
if the algorithm never failed during testing, and the proof
has been successfully reworked, our confidence in the algo-
rithm’s correctness has been significantly increased.

An extension of this work is now to investigate testing
from formal, but partial, proofs. As previously, testing
would be a means to get confidence that the algorithm is
correct, or to help diagnose flaws preventing proof branches
to be discharged. First experimental results along these
lines have already been obtained in [4].

References

[1] S. Katz, P. Lincoln, and J. Rushby. Low-overhead time-
triggered group membership. In M. Mavronicolas and P. Tsi-
gas, editors, 11th Int. Workshop on Distributed Algorithms
(WDAG’97), pages 155–169, Saarbrücken Germany, Sept.
1997. Springer-Verlag. LNCS 1320.

[2] H. Kopetz and G. Grünsteidl. TTP – a time-triggered pro-
tocol for fault-tolerant real-time systems. IEEE Computer,
27(1):14–23, Jan. 1994.

[3] G. Lussier and H. Waeselynck. Informal Proof Analysis
Towards Testing Enhancement. In 13th Int. Symposium on
Software Reliability Engineering (ISSRE’02), pages 27–38,
Annapolis, MD, USA, Nov. 2002. LAAS research report nÆ

01580, IEEE Computer Society.
[4] G. Lussier and H. Waeselynck. Deriving test sets from partial

proofs. In 15th Int. Symposium on Software Reliability En-
gineering (ISSRE’04), Saint-Malo, France, Nov. 2004. LAAS
research report nÆ 04199. To appear.

[5] G. Lussier, H. Waeselynck, and K. Guennoun. Proof Guided
Testing: Towards Complementarity of Verification Tech-
niques. LAAS research report nÆ 03198, 2003.

[6] J. Rushby. Verification diagrams revisited: Disjunctive invari-
ants for easy verification. In E. A. Emerson and A. P. Sistla,
editors, Computer-Aided Verification (CAV’00), pages 508–
520, Chicago, IL, July 2000. Springer-Verlag. LNCS 1855.

[7] P. Thévenod-Fosse, H. Waeselynck, and Y. Crouzet. Software
staistical testing. In H. B. Randell, J-C. Laprie and B. Little-
wood, editors, Predictably Dependable Computing Systems,
pages 253–272. Springer Verlag, 1995.


