mam—ieZi])

3
€
i
4
eze G :i
4
|
g

8 THESE

de Toulouse En vue de I'obtention du

DOCTORAT DE L’'UNIVERSITE DE TOULOUSE

Délivré par:

Institut Supérieur de I’Aéronautique et de I'Espace (ISAE)

Présentée et soutenue par:
Alexandru-Robert-Ciprian GUDUVAN

le jeudi 18 avril 2013
Titre:

A Model-Driven Development of Tests for Avionics Embedded Systems
Une approche dirigée par les modéles pour le développement de tests pour
systémes avioniques embarqués

Ecole doctorale et discipline ou spécialité :
ED MITT : Sureté de logiciel et calcul de haute performance

Unité de recherche:
Laboratoire d'Analyse et d'Architecture des Systemes (LAAS-CNRS)

Directeur(s) de These :

Mme Hélene WAESELYNCK (Directrice de these)
Mme Virginie WIELS (Co-Directrice de thése)

Jury:

M. Fabrice BOUQUET (Rapporteur)
M. Benoit COMBEMALE (Examinateur)
M. Yann FUSERO (Examinateur)
M. Yves LE TRAON (Rapporteur)
Mme Hélene WAESELYNCK (Directrice de thése)
Mme Virginie WIELS (Co-Directrice de thése)

Reviewer: Fabrice BOUQUET

Reviewer: Yves LE TRAON

Day of the defence: the 18" of April, 2013

Abstract

The development of tests for avionics systems involves a multiplicity of in-
house test languages, with no standard emerging. Test solution providers
have to accommodate the habits of different clients, while the exchange of
tests between aircraft manufacturers and their equipment /system providers
is hindered. We propose a model-driven approach to tackle these prob-
lems: test models would be developed and maintained in place of code,
with model-to-code transformations towards target test languages. This
thesis presents three contributions in this direction. The first one consists
in the analysis of four proprietary test languages currently deployed. It al-
lowed us to identify the domain-specific concepts, best practices, as well as
pitfalls to avoid. The second contribution is the definition of a meta-model
in EMF Ecore that integrates all identified concepts and their relations. The
meta-model is the basis for building test model editors and code generation
templates. Our third contribution is a demonstrator of how these technolo-
gies are used for test development. It includes customizable graphical and
textual editors for test models, together with template-based transforma-
tions towards a test language executable on top of a real test platform.

v

I dedicate my dissertation work to my family, my friends and to
Calopsitta.

Dedic aceasta teza familiei mele, prietenilor si Calopsittei.

Acknowledgements

It is my pleasure to acknowledge here those people whose presence in my
life contributed to this dissertation : my academic and industrial advisors,
colleagues, friends and family.

I am truly indebted to Hélene Waeselynck, my academic advisor, for her
mentorship. You taught me not only the rigours and intricacies of scientific
research, but also how to be a better person. Your humane openness, sup-
port and encouragement during my times of doubt were invaluable. This
thesis would not have been possible without your wisdom and guidance.
Thank you!

I also owe sincere thankfulness to Virginie Wiels, my academic co-advisor.
Thank you for your implication in my doctorate, your important suggestions
and remarks, as well as for the confidence you have shown in me and for
your kindness.

I would like to express my gratitude to Yann Fusero, my industrial advisor,
for his sustained support, as well as for having taught me the rigours of the
industrial approach.

I would like to express my sincere appreciation to Michel Schieber, my
industrial co-advisor, for his interest and participation in my doctorate, as
well as for having introduced me to a wide range of fields and activities.

Special thanks go to Guy Durrieu for our valuable discussions and his caring
and concern regarding this project.

I would like to thank Yves le Traon and Fabrice Bouquet for having accepted
to review my thesis, as well as Benoit Combemale for having accepted to
be a member of my defence committee.

I would like to express my gratitude to the management of Cassidian Test
& Services: Philippe Lasman and Philippe Quichaud, as well as to the
management of the LAAS-CNRS (Laboratory for the Analysis and Archi-
tecture of Systems): Karama Kanoun, Mohamed Kaaniche, Raja Chatila,
Jean-Louis Sanchez and Jean Arlat, for having welcomed me.

It has been a pleasure to work with my colleagues at Cassidian Test & Services.
Special thanks go to Florent Paitrault for our rich discussions and techni-
cal support, as well as to Gilles Ballanger, Guilhem Bonnafous, Mathieu
Garcia and Etienne Allogo, for our rich interactions and especially for their
implication in the development of our prototype. I am thankful to Valérie
Aouba for her help, especially towards the end of my doctorate, as well
as for having taken the time to come to my thesis defence. I am highly
indebted to Caroline Plana-Robert for her kindness and support, as well as
for giving me the right advice at the right time.

I would also like to thank my colleagues at the LAAS-CNRS, particularly
Pierre André, Maxime Lastera and Fernand Lone-Sang.

I am also grateful to Emmanuelle Beatse and Frangoise Ducor at Cassidian
Test & Services, and Sonia de Sousa at the LAAS-CNRS, for all their help.

I would like to express my deep appreciation to the people I worked with
within the context of the VISTAS (Virtually Integrated System Tests be-
tween Airframers and Suppliers) project. I would like to express my grat-
itude to Gérard Montariol for his tutorship. Special thanks go to Olivier
Fourcade, Noélle Marchal and Francois Ruiz, Dominique Dubost and Jean-
Michel Lecuna, Mossad Khimoun and Christophe Ginestet, for our fruitful
collaboration.

Special thanks go to Albert Lahana for having accepted me as his student
and for having taught me so much about myself through music, as well as
to Céline Romero for having coached me with her kind and wise words.

I am highly indebted and thoroughly grateful to all my friends. My dis-
sertation would not have been possible without your constant motivation,
support and love. I would like to thank Roxana Albu, Ioana-Mihaela Geanté
and Miruna Stoicescu, whom while pursuing their own doctorate have been
extremely close to me, emotionally and professionally. I would also like
to thank Julien Eballard, Alexandra-Mihaela Niculae, Iuniana Oprescu,
Alexandra Pencea and Diana Stoica for our enduring friendship. You are
all like a second family to me! I would also like to express my gratitude
to Jérome Haquin. Special thanks go to Benoit Baccot, David Brown, Vi-
vian Madesclaire and Frangois-Henry Rouet, as well as to Mihaela-Elena
Baclea, Daniel Ionescu, George Ionescu and Silvia-Maria Mihalea, for their
friendship and for the quality time spent together.

I would like to thank Calopsitta for her companionship.

I am grateful to Paula Begoun for having given me great skin for the day
of the defence.

Last, but not the least, I would like to thank my family. Without the
love and support of my parents, Tanta and Qwo-Wadis Guduvan, and
of my grandparents, Tinca and Marin Maxim, and Elisabeta Kedves and
Alexandru Guduvan, I would not have come this far. I would also like to
thank Areta-Liliana Guduvan for her constant support. Special thanks go
to Emilia and Dumitru Gudovan for their kindness.

vi

Contents

List of Figures

fix]
List of Tables il
Glossary XV

il

1 Introduction

2 State of the Art - Testing
2.1 Test Selection 6]
2.1.1 Structural Testing oL [@

2.1.2 Functional Testing B

2.2 Test Oracle e [T
2.3 Test Development Methodologies T

2.4 Test Development Formalisms and Associated Tools [2]
2.5 Conclusion L 16l

3 Industrial Context 19
3.1 Avionics Embedded System oL 19
3.1.1 Life-Cycle and Testing Activities 10l

3.1.2 Interface Control Document (ICD) 211

3.1.3 Reactive Behaviour L oL

3.2 Test Platform 24]
3.3 Stakeholders and Evolving Needs 206
3.4 Conclusion 27]

4 Test Languages Analysis 29
4.1 Test Languages Sample oL 30
4.2 Generic Features Lo Lo 32]
4.3 Test Organization 341
4.3.1 Semantic Organization of Instructions 351

4.3.2 Thread of Control Organization 36]

vii

CONTENTS

4.4

4.5

4.6
4.7
4.8

Link with System under Test Interfaces

4.4.1

4.5.1

Targeted ICD Hierarchical Levels and Interface Abstraction . . .
4.4.2 SUT Interface Element Identifiers and Access
Test Language Instructions,

System under Test Interaction
4.5.2 Test Verdict Management
Time Management . .

Meta-Modelling Guiding Principles

Conclusion

5 Test Meta-Model

5.1 Eclipse Modeling Framework (EMF) Ecore
ProviderData and UserData
TestContext
High-Level Structural Concepts

5.2
5.3
5.4

5.5
5.6

9.7

5.4.1
5.4.2
5.4.3
5.4.4
5.4.5
5.4.6

SystemUnderTes
TestCase . . .
TestComponent

L T

Verdict Management

TestArchitecture

TestGroup and TestSuite
Low-Level Structural Concepts

Behavioural Concepts

5.6.1
5.6.2

ExecutionFlowStatement

BasicStatement

5.6.3 SpecificStatement
Test Model Development Environment
Graphical Editor oL

5.7.1
5.7.2

Textual Editor

5.8 Conclusion

6 Test Model Implementation
6.1 Acceleo Model-to-Text Tool
6.2 Target Python-Based Test Language (PLs)

6.2.1
6.2.2

6.2.3

Test Case . . .

Access to SUT Interfaces and Associated Test Actions

6.2.2.1 Simple

Test Actions

6.2.2.2 Time-Dependent Test Actions
6.2.2.3 Fault Injection Test Actions

Test Component

viii

CONTENTS

6.2.4 Verdict Management L.
6.2.5 Test Suiteo
6.3 Architecture of Acceleo Modules/Templates

6.3.1 ProviderData Implementation

6.3.2 SystemUnderTest Implementation

6.3.3 TestCase Implementation

6.3.4 TestComponent Implementation

6.3.5 TestArchitecture Implementation

6.4 Conclusion

7 Case Studies

7.1 FWS - Engine Fire Alarm Synthesis

7.2 ADIRS - Consolidated Aircraft Speed Value
7.3 Conclusion e

8 Conclusion and Perspectives

References

ix

1106
1109

LLLO)

L2
1120
1130

135l

CONTENTS

List of Figures

3.1 System under Test Life-Cycle and Testing Activities 20
3.2 Interface Control Document Sample
3.3 Test Platform Architecture Overview 251
4.1 Test Exchange Language BT
4.2 Tests Organization 351
4.3 Thread of Control Organization 3061
4.4 Link with the System under Test Interfaces 4Tl
4.5 Access to the System under Test Interfaces [42]
4.6 Test Language Instructions 46]
4.7 System under Test Interaction Instructions B4
4.8 TimeManagement 531
5.1 Test Meta-Model - High-Level Overview 60
5.2 Database Excerpt G2l
5.3 GenericPhysicalBus/PhysicalBusType Excerpt 63]
5.4 Test Model Level - ProviderData Example 63]
5.5 TestContext Excerpt G5l
5.6 System Under Test Excerpt 67]
5.7 Connection Point Instance Excerpt 68
5.8 Test Model Level - AFDX Virtual Link Example GS]
5.9 TestComponent Types Excerpt [7al
5.10 TestComponent Interfaces Excerpt 1l
5.11 TestComponent - ConnectionPointInstanceAlias Excerpts [73]
5.12 TestArchitecture Excerpt L. 4
5.13 TestGroup and TestSuite Excerpt [7Cl
5.14 TestCase - TestSection Excerpt [76]
5.15 TestMonitor - TestMonitorElement [76]
5.16 SequentialTestComponent - Sequential TestComponentElement rdrd|

xi

LIST OF FIGURES

5.17

5.18
5.19
5.20
5.21
5.22
5.23
5.24

6.1
6.2
6.3
6.4

7.1
7.2
7.3
7.4
7.5
7.6
7.7

CycleByCycleTestComponentTestComponent - CycleByCycleTestCom-
ponentElement
CycleByCycleTestComponent - Complex Behaviour Example
Behavior Excerpt o
TestCaseStatement Excerpt
Sequential TestComponentStatement Excerpt
Sequential TestComponent - Details Example
Default Graphical Editor Snapshot
Mixed (Graphical and Textual) Test Model Development Environment
Screenshot L

Acceleo Tool Achitecture. Lo
Meta-Model Level: PythonClass/ClassAttribute EClass Elements
Model Level: Person/Student Python Classes
Link between Example Meta-Model Classes and Modules/Templates . .

U-TEST MMI - STELAE Perspective - MyProviderData
U-TEST MMI - STELAE Perspective - FWS
ADIRS - SystemUnderTest
Degraded Component - Behaviour Description.
Degraded Component - Low-Level Structural Elements
U-TEST MMI - STELAE Perspective - ADIRS
U-TEST MMI - Runtime Perspective - ADIRS

xil

List of Tables

4.1 Test Languages Generic Features

4.2 Test Meta-Modelling Guiding Principles

xiii

LIST OF TABLES

xiv

Listings

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
5.1
5.2
2.3
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Test Components in TTCN-3 B
User-Codesin PLq 39
XML Topology Configuration for the PLy Runtime 40l
Access to SUT Application Parametersin PLy 43l
Access to SUT Application Parameters in PLo 43l
Access to SUT Application Parametersin PLg 44
Access to SUT Application Parametersin PLy A4
Access to Lower-Level ICD Hierarchical Levels PLy 44
Access to Lower-Level ICD Hierarchical Levels PLy 44
Application Parameter Interactions in PLy 43
Application Parameter Interactions in PLo Es
Application Parameter Interactions in TestML 49l
Waiting for an Event in PLy and PLy
Timed Control of Test Executionin PLy
Timed Control of Test Executionin PLg
Timed Control of Test Executionin PLy l5%1]
OCL Rule Example - ApplicationParameterAccessor Type Verification . [2]
OCL Rule Example - Behavioural Concepts 85
Xtext STCToolkitTestActionCallStatement Excerpt 89l
Python Modules and Code 90
main.mtl 97
PythonClass.mtl o O8]
ClassAttribute.mtl O8]
aTestCase.py o o o o a1l
Simple Test Actions in PLs 0Tl
Wrapper Example in PLs L.
Time-Dependant Test Actionsin PLs 102]
Fault-Injection Test Actionsin PLs 103}
Test Monitor in PLs 104
Verdict Management in PLs, 104

XV

LISTINGS

6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
7.1

7.2

Test Suitein PLs [105]
My _ProviderData.py Snippet 108
ProviderData.mtl Snippeto oL 109
My SUT.py Snippet o v i 11T
SystemUnderTest.mtl Snippet 112
My _TestCase.py Snippet 114
My _Sequential TestComponent.py Snippet 116
My _Sequential TestComponent.py - ApplicationParameterAccessor SnippetI17]
EngineerVariableAccessor.mtl Snippet 117
My_TestCase.py - TestArchitecture Snippet 118
ConnectionPoint AccessorConnection.mtl Snippet 118
Degraded Component - Initialization Cycle 130]
Degraded Component - Cycle 5 Cycle 1301

xVi

Glossary

ADIRS
AFDX

ARINC
ASN.1
ATL

ATLAS

ATML
BDD
BNF
CAN
CBCTC
DSL
EMF
ETSI

FSM
FWS
GMF
GSM

GUI

HiL

HSPL

1CD
IDE

Air Data Inertial Reference System

Avionics Full-Duplex Switched Eth-
ernet

Aeronautical Radio, Incorporated
Abstract Syntax Notation One

Automatic Test Language (internal
to Cassidian Test & Services)

Automatic Test Language for All
Systems

Automatic Test Mark-up Language
Binary Decision Diagram
Backus-Naur Form

Controller Area Network
CycleByCycleTest Component
Domain-Specific Language

Eclipse Modeling Framework

European Telecommunications Stan-
dards Institute

Finite State Machines
Flight Warning System
Graphical Modeling Framework

Global System for Mobile Communi-
cations

Graphical User Interface
Hardware-in-the-Loop

High-Level Scripting Programming
Language

Interface Control Document

Integrated Development Environ-

ment

xvii

IMA
1P
1Tu

LCS
LTS
M2M
M2T
MAC
MaTeLo
MATLAB
MC/DC

MCUM
MDE
MiL
MMI
MOF
MTC
MTL
NASA

OoCL
OMG
OOPL

OS1
PL
PLTL
PTC

Integrated Modular Avionics
Internet Protocol

International Telecommunication

Union

Launch Control System
Labelled Transition Systems
Model to Model

Model to Text

Media Access Control
Markov Test Logic

Matrix Laboratory

Modified Condition/Decision Cover-
age

Markov Chain Usage Model
Model-Driven Engineering
Model-in-the-Loop

Man Machine Interface
Meta Object Facility

Main Test Component
Model to Text Language

National Aeronautics and Space Ad-
ministration

Object Constraint Language
Object Management Group

Object-Oriented Programming Lan-
guage

Open Systems Interconnection
Proprietary Language
Propositional Linear Temporal Logic

PeriodicTestComponent

SCARLETT SCAlable & ReconfigurabLe Elec-

SDL

SiL
SMV
STC

tronics plaTforms and Tools

Specification and Description Lan-
guage

Software-in-the-Loop
Symbolic Model Verifier

Sequential TestComponent

GLOSSARY

STELAE Systems TEst LAnguage Environ-

ment

SUT System under Test

T™ TestMonitor

TTCN — 3 Testing and Test Control Notation
Version 3

uc User Code

UlIO Unique Input Output

UML Unified Modeling Language

UMTS

UTpP

Universal Mobile Telecommunica-

tions System

UML Testing Profile

VDM — SL Vienna Development Method Spec-

VL
WCET
XMI
XML

xviil

ification Language

Virtual Link

Worst-Case Execution Time
XML Metadata Interchange

Extensible Markup Language

1

Introduction

This doctoral thesis was a collaboration between three organisations:

e an industrial partner: Cassidian Test & Services (an EADS company) of Colomiers,
France,

e and two academic partners - research laboratories of Toulouse, France:

— the Laboratoire d’Analyse et d’Architecture de Systéemes (LAAS-CNRS),
— the Office National d’Etudes et de Recherches Aérospatiales (ONERA).

The industrial partner is a provider of test execution automation solutions for avion-
ics embedded components and systems, covering integration testing as well as hardware
testing at the production and maintenance life-cycle phases.

Testing is one of the main verification and validation means, aiming for the removal
of faults [I]. In the field of avionics, testing is a crucial step needed for the certification
of the systems that are installed inside an aircraft [2]. The automation of test execution
is a long-time subject that is as important today as ever because of the major benefits
it offers when compared to manual testing: the long-term effort associated with the
testing activity is decreased, the execution of test cases is reproducible and can be
performed with limited or no human supervision.

The industrial context of our work is the in-the-loop integration testing of avion-
ics embedded systems. We were motivated by the observation that existing solutions
for test execution automation in our industrial context no longer respond to stake-
holder needs. The world of test languages, in which test cases are developed, comprises
numerous proprietary test languages and is heterogeneous: each test language offers
different functionalities and common functionalities are offered in different manners.
In some cases, a test language offers a same functionality in more than one manner.
As no standard is emerging in this field and existing test languages are different, the
exchange of test artefacts (e.g., test cases and data) between stakeholders is hindered

1. INTRODUCTION

(e.g., between aircraft manufacturers and equipment /system providers). This situation
is also challenging for test solution providers who have to cater to the individual habits
of each client. Moreover, test engineers do not benefit from the latest methodologies
and technologies issued from software engineering to their full extent. This could prove
useful for increasing test engineer productivity and test case quality, while facilitating
the maintenance and customization of the test development environments.

In order to address all these needs, we propose the application of model-driven engi-
neering methodologies and technologies, issued from software engineering, in the field of
test implementation for avionics embedded systems. High-level, platform-independent
test models would replace current practice, where test code occupies the central po-
sition. For their execution, test models would be translated into existing executable
test languages. This proposal is motivated by the fact that test cases are pieces of
software and consequently can and should benefit from the latest software development
methodologies and technologies.

Chapter [2| proposes a state-of-the-art presentation of the field of testing. We discuss
existing work focusing on two major issues: test design (test selection and test oracle)
and test implementation (test development methodologies and formalisms). Although
most existing academic work addresses the design issues, test implementation ones are
also very important from an industrial viewpoint.

Chapter [3] discusses the specificities of our industrial context. We present the life-
cycle, behaviour and interfaces of avionics embedded systems, the associated test plat-
forms and the evolving needs expressed by stakeholders in this field, that motivated
our work.

Our first contribution (Chapter |4)) consists in the analysis of a sample of test lan-
guages currently used in the industry. To the best of our knowledge, this is the first time
such an analysis is performed. We targeted a sample of four proprietary test languages
currently used in real-life, together with two test languages used in the automotive
and respectively telecommunications and distributed systems domains. The latter two
were chosen for comparison purposes. This analysis allowed us to identify the set of
domain-specific features/concepts, best practices, as well as pitfalls to avoid. Secondly,
this study investigated the similarities and differences between the test languages that
were analysed. A too great heterogeneity could have impeached any homogenisation
attempt, while a lower heterogeneity could have helped us identify the “best”test lan-
guage is our sample and try to improve it. We found that test languages in this field
are sufficiently similar in terms of offered functionalities, but that none of them seems
an adequate candidate for future improvement. This motivated us to propose a new
model-driven solution to replace existing practice.

Our second contribution (Chapter [5)) consists in the definition of a test meta-model
that integrates the rich set of domain-specific concepts in a homogeneous manner, while

taking into account the best practices in the field. We used meta-modelling as an in-
strument in order to define our domain-specific concepts and their relations. Moreover,
it provided us access to a rich set of existing free and open-source tools: graphical and
textual model editors, checkers and automatic code generators. This enabled us to
define a mixed (graphical and textual) customizable test model development environ-
ment.

The third contribution (Chapter @ consists in the implementation of a first pro-
totype on top of a real integration test platform: the commercially available U-TEST
Real-Time System [3] developed at Cassidian Test & Services. We used a template-
based model-to-text transformation, targeting an executable proprietary test language.
The target test language did not exist at the time of our first analysis of the field and
consequently provided us the opportunity to challenge the genericity of our test meta-
model. We proposed a method for organising the automatic code generation templates
and the automatically generated code and files. In order to simplify the implementa-
tion task, we based this organisation on the test meta-model architecture. Moreover,
this prototype allowed us to evaluate the employed technology with regard to possi-
ble future industrialization. The model-to-text approach corresponded to our needs.
We did not require more complex model transformation functionalities. The definition
of automatic code generation templates was straightforward, with the automatic code
generation step for a given test model being quasi-instantaneous.

With the prototype, we succeeded in demonstrating a number of test engineer ac-
tivities on two realistic use-cases of simple and medium complexity (Chapter : test
model development, implementation and execution.

Chapter |8 comprising the conclusion and perspectives of our work, ends this dis-
sertation.

1. INTRODUCTION

2

State of the Art - Testing

This chapter presents the state of the art on the subject of testing, together with the
main issues that are encountered and for which solutions have been or are currently
being researched.

Testing is a dynamic verification method aiming at fault removal [I]. It consists in
the stimulation of the system under test (SUT) with valued inputs and the analysis
of its outputs with respect to the expected behaviour. Testing is one of the four
major classes of verification techniques. The remaining three are: static analysis [4]
D, 6], model verification/checking [7, 8] and theorem proving [9, 10]. Although there
is cross-fertilisation between these different techniques [I1], they are most often used
independently one from the other. The chosen technique depends on the life-cycle phase
where the verification is performed, as well as the type of verification problem.

The testing process uses test cases that are submitted to the system. A test case is
“a set of test inputs, execution conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a
specific requirement” (from [12]).

In the field of testing, two main challenges are usually addressed: test design and
test implementation. Test design concerns the definition of the logic of a test, while
test implementation deals with the development of test code for execution automation
purposes on top of given test platforms. These two issues can be addressed at different
integration levels of the tested artefact: unit, sub-system, system and so forth.

Let us now look in more detail at the two test design and implementation challenges.

Test design can be split into two issues: test selection (Section and test
oracle (Section [2.2). Test selection concerns the specification of test behaviour and
data that are pertinent with regard to the required verification objective. The test
oracle deals with the manner in which a verdict can be taken regarding the conformity
between the observed behaviour exhibited by the system under test and the expected
behaviour.

2. STATE OF THE ART - TESTING

Test implementation deals with the problems of test development methodolo-
gies (Section and test development formalisms (Section. Test development
methodologies cover guidelines that test engineers must follow when developing tests.
Test development formalisms cover technologies that allow the definition of tests that
are automatically executable.

Most existing academic work focuses on test design, with test selection being a topic
of research more commonly tackled than the test oracle. Although the number of pub-
lished research on test implementation is somewhat limited, it nevertheless represents
important challenges. The implementation of test cases, in order to automate their
execution, is a major issue in an industrial context. Regression testing benefits directly
from this. Test implementation decreases the effort associated with the testing activity.
The number of test cases that can be executed in a limited time is increased. Tests
can be executed when the test platforms and SUT are idle (such as during night-time),
without or with limited human supervision. Automated tests can have a reproducible
execution, which is not achievable when they are entered manually by a test engi-
neer /operator. All of these benefits justify the importance of test automation and the
motivation for our work, as will be also mentioned in the conclusion of this chapter.

2.1 Test Selection

With the exception of trivial cases, exhaustive testing of all the possible behaviours that
a system can exhibit - with all possible input data, is not achievable. Consequently, a
small set of test cases that cover a subset of the input data domain must be identified.
In order to select the relevant test cases, criteria that guide the selection are defined,
covering different aspects of the system under test. Some criteria are linked to a model
of the structure of the system or to a model of the functions that the system offers. In
software testing, these two approaches are called

e Structural Testing (Subsection [2.1.1),
e Functional Testing (Subsection [2.1.2)).

Unfortunately, the imperfection of the different test selection criteria to identify
specification and implementation faults constitutes a major limitation of these ap-
proaches. This observation has motivated work on:

e Probabilistic Generation [13], 1415, [16] of input data, based on test criteria, in
order to allow the multiple activation of system behaviours with different valued
inputs, for increased fault identification. This is different from probabilistic usage
profiles that help identify most-used behaviours of the system and concentrate
testing on them (discussed at the end of Subsection [2.1.2)),

2.1 Test Selection

e Mutation Analysis [17, [I8] [19]) for the evaluation of the fault-revealing power
of a set of test cases. A given system is applied mutation transformations and
existing tests are evaluated with regard to their capacity to detect the inserted
faults.

For a high-level overview of test selection, including information on its industriali-
sation, please refer to [20] 211, 22| 23].

2.1.1 Structural Testing

Structural testing “takes into account the internal mechanism of a system or compo-
nent” (from [12]). The set of criteria that govern the selection of test cases in structural
testing are defined following the structural analysis of the software programs. A white-
box view of the software is considered. The model of the software that is used by
structural testing approaches is the control graph [24], possibly enriched with informa-
tion on the data flow [25].

The control graph, constructed from the source code of the software program, offers
a compact view of the software structure. It contains one entry node and several
potential exit nodes. The nodes of this graph comprise instructions that are executed
sequentially. The arcs between nodes define possible transfers of control between the
nodes. An execution of the software can thus be considered as a complete path between
the entry node and one of the exit nodes, the path that was taken being determined
by input data produced by the test case.

A stringent selection criterion consists in the activation, at least once, of each exe-
cutable path between the entry node and the exit nodes (the “all paths”criterion). A
path is executable if input data that activates it exists.

In reality, this criterion is difficult to use. Firstly, the problem of non-executable
paths identification is undecidable in the general case. Secondly, whenever a soft-
ware contains a loop, the number of executable paths greatly increases and can even
be infinite. In such cases, one is forced to accept less stringent criteria, such as “all
instructions”or “all branches”. These two criteria demand that all the nodes and re-
spectively all the arcs are activated at least once during testing. A refinement of branch
testing is the Modified Condition/Decision Coverage (MC/DC) criterion [26] 27], used
to cover the logic of branch predicates.

The control graph can be enriched with information relative to the manipulation
of variables inside the software. Data flow criteria consequently propose the coverage
of sub-paths between the graph nodes containing the variable definitions (a value is
assigned) and the nodes or arcs using these values in the computation of mathematical
or logical expressions. Different types of specialized criteria exist, such as “all variable
definitions”or “all uses”.

2. STATE OF THE ART - TESTING

In general, structural testing is used for software components of reduced size, as the
control graph rapidly increases in complexity with the increase in size of the targeted

source code.

2.1.2 Functional Testing

Functional testing “ignores the internal mechanism of a system or component and fo-
cuses solely on the outputs generated in response to selected inputs and execution con-
ditions” (from [12]). It corresponds to a black-box view of the system under test. This
approach depends on a model that describes the expected software behaviour in terms
of inputs and outputs. In comparison with the structural testing approach, there is
no standard model (such as the control graph) that can be used. Consequently, func-
tional testing covers a wider range of methods and techniques, which are dependant on
the formalism used for modelling the behaviour of the system. We discuss here some

well-known approaches:

e Input Domain Characterisation,

State-Based Approach,

Algebraic Specification,

e Decision Table,

Probabilistic Usage Profile.

Input Domain Characterisation This technique deals with the modelling of the
input domain using a partitioning approach. The input domain is divided into a finite
number of sub-domains, or equivalence classes, separating valid and invalid value sets.
The equivalence classes are deduced from the analysis of the system specification and
its input data types. The classes group values that should activate similar software
program functionalities. The criterion consists in choosing an element from each equiv-
alence class. This approach can be enriched with the consideration for values at the
boundaries between sub-domains. Note that the domain characterization is most-often
multi-dimensional, as in Category-Partition Testing [28], where each category repre-
sents an input characteristic to be partitioned. Various strategies have been proposed

to combine the values for the orthogonal characteristics [29].

2.1 Test Selection

State-Based Approach This technique consists in the modelling of the states that a
software program can have, together with the operations or events that lead to changing
states. The modelling of the system is achieved either by using set theoretic or state-
transition formalisms.

Languages issued from set theory are used for functional testing, yielding approaches
for the Vienna Development Method Specification Language (VDM-LS) [30], Z [31]
and B [32] 33, 34]. The associated methods contain two steps. First, test cases are
selected for each operation that is analysed individually. Criteria for operation analysis
deal with the coverage of their before/after predicates. Next, operation call sequences
are constructed, where each operation in the sequence sets the software program in a
specific state in which the following operation can be activated.

Two basic versions of state-transition models used for testing are: Finite State
Machines (FSM) and Labelled Transition Systems (LTS). We discuss both of these
techniques next.

A FSM is a graph that has a number of nodes, with each node representing a
state of the system, while the arcs between the nodes represent transitions between
system states. A finite alphabet of input and output events allow the annotation of
each transition with the input that produces it and with the output it produces after
it has been triggered. The test selection criteria defined for a FSM are based on
the coverage of the graph [35], such as: the coverage of all states, the coverage of all
transitions [36}, 37], the coverage of all transition pairs [38]. More sophisticated versions
of transition testing have been defined. They target exhaustiveness with respect to a
simple fault model, inducing transfer (the transition leads to a state different from the
one that is specified) or output (the transition does not generate the expected output)
errors. The detection of transfer errors leads to the need to identify the arrival state.
As this state is not always directly observable, it must be identified by looking at one
or more sequences of events to which it responds in a manner different than any other
state. Several solutions exist for the generation of such sequences of events: the W
method [39], Distinction and Unique Input Output (UIO) sequences [40, [41]. These
methods have also been looked into in the case of indeterministic machines [42].

The LTS-based technique is usually employed for testing communicating systems
[43] 44]. This formalism is usually not directly used in practice, with the specification
being defined in a higher-level language with its semantics defined in LTS, such as
the Specification and Description Language (SDL). The generation of tests can be
performed by linking the LTS with the test objectives that specify the sequences of
events to be tested. The test objectives can be determined in an ad-hoc manner or
can be automatically generated from the specification (e.g., objectives related to the
coverage of the source SDL model transitions).

2. STATE OF THE ART - TESTING

Test methods have also been investigated for timed [45], 46l [47] and data [48] ex-

tensions of the state-transition formalisms.

Algebraic Specification An algebraic specification offers an axiom-based descrip-
tion of the functionalities of a software program. Testing an axiom consists in the
instantiation of its variables and the verification that the software program satisfies the
formula that is obtained. The manner in which an axiom is instantiated is based on
selection hypotheses [49, 50]: the uniformity hypotheses define input homogeneous sub-
domains (i.e., equivalence classes) based on their capacity to reveal faults, regularity
hypotheses limit the size of the formulas that can be constructed by axiom unfolding.
This approach has been extended to the analysis of LUSTRE descriptions [51] and pro-
cess algebras [52]. Recent work has proposed a way to encode the test selection problem
and hypotheses in a formal test generation environment based on the theorem-prover
Isabelle [53].

Decision Table A decision table allows the identification of the input combinations
that influence the behaviour of the system under test and can be considered a high-level
language for representing combinational functions (without memory). A decision table
contains two parts: a list of conditions or predicates on the inputs and a list of actions
to be performed (outputs). Each table column defines a rule that links the combination
of condition evaluation values to a list of expected actions. The criterion associated
with the table covers the activation of each rule at least once.

Probabilistic Usage Profile The basic principle behind statistical usage testing
is that the tests are based on the anticipated operational usage profile of the system
[54L 55]. This technique is consequently based on the modelling of the manner in which
a user can interact with the system. A usage profile is for example a Markov Chain
Usage Model (MCUM) [56] containing nodes and arcs. Each node is a state of the
system, with arcs being interactions from the user that change the system state. Each
arc is assigned a probability that corresponds to the chance that a user performs that
respective interaction. The MCUM is usually derived from a higher-level specification.
Standard Markov techniques can be used to analyse the usage profile. An example
of a generic tool using this technique is Markov Test Logic (MaTeLo) [57, 58], which
allows automatic test case synthesis and code generation towards the TTCN-3 [59)
test language. Others have applied usage profiles for the testing of military simulation
systems [60], mobile networks [61] and web applications [62]. In [63] a richer extended
operational usage profile is proposed, that actually consists of three profiles (the process,
structural and data profiles) taking into account different aspects of the system under
test.

10

2.2 Test Oracle

2.2 Test Oracle

The automatic analysis of the test results is desirable and becomes necessary when a
great number of input/output data of the system under test have been selected. This
is where the formalisation of a test oracle comes in handy.

Solutions that offer the best results are based on the existence of a formal specifi-
cation of the target software program. This specification is usable for determining the
expected results. In Subsection [2.1.2] we have presented some examples of approaches
based on formal specifications, which are used in functional testing.

Back-to-back testing represents another solution for the test oracle issue, which is
especially useful for systems that have software diversification for fault avoidance pur-
poses. This solution consists in the comparison of the output data produced by the
software variants. In case the variants produce divergent results, faults are revealed.
Back-to-back testing remains nevertheless an imperfect solution, because of the poten-
tial presence of correlated faults that lead the variants to produce the same incorrect
results.

Other partial test oracle solutions can be employed, on a case-by-case basis, by us-
ing verisimilitude checks on the test results: the verification of the coherence between
different data, the verification that data is bounded, and so forth. More sophisti-
cated checks use invariants that can also take temporal aspects into account [64, [65].
Executable assertions/contracts can also be included into the software program code
[66, 67, [68], allowing fine-grained verification to be performed. The assertions allow the
detection of erroneous internal system states, as well as the detection of the violation
of pre/post-conditions or operations.

2.3 Test Development Methodologies

Test development methodologies cover guidelines that test engineers use when they
develop tests, allowing them to define high quality test code (e.g., annotated with
comments, structured, understandable, documented, reusable). In the field of software
testing, the book [69] offers an extensive overview of existing practices, as well as real-
life case studies.

The book discusses scripting techniques that can guide test development from the
perspective of programming techniques. Five scripting techniques are presented, each
one with its strengths and weaknesses: linear, structured, shared, data-driven and
keyword-driven scripting. A linear script is a simple set of sequential instructions that
stimulate the system under test and verify its outputs. A structured script benefits from
execution flow control instructions, being similar to a structured program. Shared
scripts are scripts that can be reused across several test cases. Data-driven scripts
separate the behaviour of the test case (e.g., stimulate a text input) from the input

11

2. STATE OF THE ART - TESTING

data (e.g., a specific string) that is used. Finally, keyword-driven scripts are enhanced
versions of data-driven ones, where some part of the logic of the test case is transferred
to the input data.

The comparison of system under test output with expected output (i.e., the test
oracle issue) is discussed as well. Comparators are pieces of software that deal with
such issues. They can perform their task dynamically, during the execution of the test
case, or in post-processing. They can have different levels of sensitivity, looking for
identical of more logical correspondences between observed and expected outputs.

Finally, [69] looks into issues concerning test managers/directors, test organization,
test management, as well as metrics for measuring test quality.

These methodologies are most of the time informal, being found in text documents
that test engineers are supposed to read and apply. A manner in which the correct
application of these methodologies can be more strongly enforced is by introducing
them in the test development formalism that a test engineer uses. As such, the test
engineer is constrained to respect the methodology, in the same manner in which a
programmer must respect the grammar of a programming language when developing a

software program.

2.4 Test Development Formalisms and Associated Tools

Test development formalisms and tools are technologies that allow the production of
test cases that are automatically executable on a given test platform. Three major
types of solutions have been identified: capture & replay tools, test frameworks,
test languages and test modelling. We discuss each one of those next, with a couple
of examples illustrating each solution type.

Capture & Replay Tools A capture and replay tool is a test tool that records test
inputs as they are sent to the software under test during manual testing. The input
cases stored can then be used to reproduce the test at a later time. These types of tools
are most commonly applied to Graphical User Interface (GUI) testing. This approach
usually leads to fragile tests [69]. We present here some tools.

Borland SilkTest [70] is a tool for automated function and regression testing of
enterprise applications. SilkTest uses an object-oriented representation of the software
program, by identifying all windows and controls of the application under test as objects
and defines all of the properties and attributes of each window. It can also identify
mouse movement along with keystrokes. SilkTest can use both record and playback or
descriptive programming methods to capture the dialogue boxes. SilkTest test scripts
are stored in a proprietary test language called 4Test. It is an object-oriented language
similar to C++4, using the concepts of classes, objects, and inheritance. Pieces of code

12

2.4 Test Development Formalisms and Associated Tools

in Java, C++, Cff, as well as in Visual Basic .NET can be used for writing test scripts in
SilkTest. This is especially useful when testing applications written in these languages.
Other extensions supported by SilkTest cover testing for Internet Explorer (IE), Firefox
and the SAP Windows GUI. SilkTest uses the Silk Bitmap Tool for the capturing and
comparing of windows and application areas.

The Abbot Java GUI Test Framework [71] [72] is used for Java user interface (UI)
testing. The framework contains two components: Abbot that offers the capacity to
programmatically drive Ul components, and the Costello scripting language that offers
the capacity to launch, explore and control the application under test. In general,
testing with Abbot consists of getting references (or handlers) to GUI components and
either performing user actions on those components or making some assertions about
their state. These operations may be done from either a high-level script written in
Costello or directly from Java code (for example in a JUnit TestCase method). Costello
scripts are saved in the Extensible Markup Language (XML) [73]. Scripts are primarily
composed of actions, assertions, and component references. Actions are things that a
user usually performs in order to operate a GUI component (e.g., clicking on a button,
selecting a menu item or entering text). Component references represent actual GUI
component instances within the application under test. Each has a unique identifier
that may be used to indicate to other script steps the actual component on which one
wishes to act. Finally, assertions allow the verification of the GUI state, for example
by evaluating a predicate on the value of a GUI component property.

Selenium [74], [75], [76] is a portable software testing framework used in a different
domain, that of web applications. Selenium provides a record/playback tool for test
development. A test domain-specific language called Selenese is also provided. The tests
can then be run against most modern web browsers, with Selenium being deployable
on Windows, Linux, as well as Macintosh platforms. Recent work covers the mining of
web application specifications from tests defined using Selenium [77].

Test Frameworks Test frameworks are commonly used in software engineering for
unit testing. The xUnit generic term designates a framework for unit testing in a
specific programming language, where the first letter is replaced depending on the
programming language. All these variants are based on the approach proposed in
SUnit, that was created for the Smalltalk programming language. Tests are written in
the same programming language as the target application under test.

CUnit [78] is a lightweight system for writing, administering, and running unit
tests in the C programming language. It offers developers basic testing functionalities
with a flexible variety of user interfaces. CUnit is built as a static library linked with
the application under test. It uses a simple framework for building test structures,
and provides a rich set of assertions for testing common data types. Finally, several

13

2. STATE OF THE ART - TESTING

different interfaces are provided for running tests and reporting results. We mention
here some variants, such as CppUnit [79], JUnit [80] and PyUnit [81].

Test Languages A test language is a domain-specific language (DSL) specifically
created for the purpose of testing. We discuss some test language examples in or-
der of their maturity, beginning with those that have been deployed in a production
environment and ending with research prototypes.

Initially developed for the verification of distributed system and telecommunica-
tion protocol, the Testing and Test Control Notation Version 3 (TTCN-3) [82, 3] is a
mature international standard evolving towards other fields, such as the testing of real-
time [84, B5] and continuous [86] systems. TTCN-3 is a high-level test language that
abstracts away from implementation details. It requires dedicated compilers or inter-
preters for execution. Nonetheless, it benefits from a standardised architecture for its
implementation on top of test platforms [87]. Until its second version, the test language
was specified as a set of tables and was called Tree and Tabular Combined Notation.
Reading and editing this version of the test language required specific tabular editors.
Beginning with its third version, TTCN was renamed. It now more closely reassembles
a programming languages and can be edited with traditional textual editors. TTCN-
3 was developed and standardized at the European Telecommunications Standards
Institute (ETSI). This test language is widely used, mostly for the testing of telecom-
munication protocols, such as: Global System for Mobile Communications (GSM - 2G),
Universal Mobile Telecommunications System (UMTS - 3G), Bluetooth. An interesting
aspect of TTCN-3 is its use of the Abstract Syntax Notation One (ASN.1) [88] formal-
ism for the description of the message types that are send to and received from the
system under test. ASN.1 is an international standard of the I'TU Telecommunication
Standardization Sector (ITU-T).

Rational Test RealTime [89] is a tool developed and sold by IBM/Rational, target-
ing software component testing and the runtime analysis of embedded software. This
tool integrates the ATTOL test language. A preprocessing module transforms ATTOL
test scripts into a target programming language, which is usually the one in which the
tested software application is written (e.g., the C programming language). One inter-
esting aspect of this test language is that it allows foreign code (i.e., in a programming
language different than ATTOL) to be embedded into its test scripts. Moreover, it
offers short-cuts for the implementation of simple test strategies (e.g., interval values
coverage), as well as simple oracles based on the comparison of resulting data with
regard to expected data. The execution of the test scripts automatically generates a
detailed rapport that can serve for testing process documentation.

The Test Specification Language (TSL) [90] is used for the definition of formal tests
for software systems. TSL was developed by Siemens Corporate Research. This test

14

2.4 Test Development Formalisms and Associated Tools

language has been used to test commercial software in a production environment, such
as the commands of a software management system and software for a process control
system. TSL is based on the Category-Partition method [28] (see Subsection [2.1.2).
This represents a systematic way of analysing a system’s functional specification to
produce a well-defined partition of each function’s input domain and a description of
each function’s expected results. Executable test cases are automatically generated
from the more abstract formal test specifications defined in TSL by combining values
for the different partition elements.

A prototype language based on Python was developed at the National Aeronau-
tics and Space Administration (NASA) [91], specifically for their Constellation rockets
Launch Control System (LCS) project. It was used as a specialized monitor and con-
trol language for programming both tests and the control parts of some applications
(checkout and launch processing for flight and ground systems). The language has
been implemented as a library that extends the Python scripting language, and vali-
dated in a successful demonstration of capability required for the NASA Constellation
Launch Control System (LCS). The design of the Domain-Specific Language (DSL) was
inspired by the procedural programming paradigm, rather than by object-oriented pro-
gramming, in spite of the fact that Python is object-oriented. The DSL focuses more
on functionalities that on structures. In addition to the domain-specific constructs, all
of Python’s programming constructs are reused and made available to the programmer.
Valuable feedback is offered in [91] on issues to be tackled when specifying a new test
language (e.g., defining it from scratch or reusing an existing language), as well as feed-
back on the used technologies (e.g., Python, PyDev Python development environment
for Eclipse).

Test Modelling Test modelling is based on the assumption that test cases are pieces
of software, and as such can benefit from advanced software engineering methodologies
and technologies, such as model-driven engineering (MDE) [92]. The introduction of
MDE methodologies and technologies to the field of testing is an active field of research,
although existing publications are not numerous. We do not refer here to model-based
test selection techniques such as those already discussed in Subsection Rather,
we refer to test development.

Most existing work on test implementation solutions use the Unified Modeling Lan-
guage (UML) [93] for the test models. Many projects have addressed the integration of
the standardized UML Testing Profile (UTP) [94] and TTCN-3 [83]. The profile is used
in [95] to produce TTCN-3 code (or code skeletons). A meta-model for TTCN-3 can
be found in [96], later encapsulated within the TTworkbench platform [97]. A similar
project at Motorola [98] uses the TAU tool suite [99].

15

2. STATE OF THE ART - TESTING

Some authors proposed their own UML profiles. A UML profile and model trans-
formations for web applications testing is discussed in [100]. In avionics, UML-based
modelling of simulation software for model-in-the-loop testing is proposed in [I01]. Also
in avionics, [102] proposes test models conforming to a test meta-model (integrating
automata-based formalisms), for the second generation of Integrated Modular Avionics
(IMA) (SCAlable & ReconfigurabLe Electronics plaTforms and Tools (SCARLETT)
project [I03]). Previous work by the same authors includes automata-based test mod-
elling for their RT-Tester platform [104] 105].

Meta-models for ITU-T languages such as TTCN-3 or SDL are investigated in [106].
The aim is to abstract away from concrete Backus—Naur Form (BNF) grammars and
use a set of core concepts shared by a family of languages. Concepts identified by
language experts are used as a support for building language meta-models.

Other artefacts employed during testing, in addition to the test cases themselves,
can benefit from model-driven engineering. For example, SUT environment modelling
is discussed in [107].

Similarly to this work, we focused on the usage of model-driven engineering method-
ologies and technologies for the implementation of tests. The industrial partner for this
project, Cassidian Test & Services, is a provider of test execution automation tools and
test platforms for avionics embedded components and systems.

2.5 Conclusion

In this chapter we presented the state of the art on testing. We discussed the major
challenges in this field (test design and test implementation), together with the solutions
that have been or that are currently researched.

Test design can be split into two issues: test selection and test oracle. Test selec-
tion is largely discussed in literature, in contrast to the test oracle. Solutions to the
problem of relevant test selection include approaches such as: functional and structural
testing, probabilistic generation of test input data and mutation analysis. Functional
testing approaches are more numerous and diverse, as no single model is employed, in
contrast to structural testing. The underlying models include input domain characteri-
sation, state-based approaches, algebraic specification, decision tables and probabilistic
usage profiles. Concerning the test oracle problem, automated solutions range from
back-to-back techniques useful when redundancy is available, to techniques employing
verisimilitude checks, complex invariants as well as executable assertions/contracts.

Test implementation can be split into two issues as well: test development method-
ologies and formalisms/tools. Test development methodologies guide test engineers in
their coding activity, while test development formalisms and tools allow them to auto-
mate the coding (at least partly). In academia, these issues have received much less

16

2.5 Conclusion

interest than test selection issues. Nevertheless, they are important in industrial envi-
ronments, where test automation can provide numerous benefits that manual testing
techniques can never achieve. Test development methodologies cover aspects ranging
from the type of scripts that should be written to how the test oracle can be defined
by comparing system under test outputs with expected results, as well as including the
management of tests and the evaluation of their quality. The realm of test develop-
ment formalisms and associated tools contains varied solution types: capture & replay
tools mostly used for GUI testing, programming language-specific test frameworks used
generally for unit testing, test languages, and more recent test modelling approaches
that favour model-driven engineering methodologies and technologies instead of test
implementation languages. Existing literature for test modelling is however limited,
representing only a small fragment of the large body of work on model-driven engineer-
ing.

Our work is in the field of test development formalisms. We focused on the ap-
plication of modern model-driven engineering methodologies and technologies in the
field of avionics embedded systems testing. Chapter [3| presents the specificities of our
industrial context, that justify and motivate the research direction proposed by this
thesis.

17

2. STATE OF THE ART - TESTING

18

3

Industrial Context

This chapter briefly introduces our industrial context: the in-the-loop integration test-
ing of avionics embedded systems. The analysis of the characteristics of our industrial
context justifies the fact that a new model-driven approach would be useful, and con-
sequently supports the relevance of the subject we chose to address in this document.
We do not enter into too much detail, focusing only on information that is necessary
for the understanding of the discussion of test languages that follows in the next chap-
ter. Section presents the specificities of an avionics embedded system. Section
discusses the architecture of a simplified test platform connected to the system under
test. Section overviews the evolving needs of the different actors in our industrial
field. The fact that existing test development solutions no longer respond to these
needs motivated our work. Section concludes this chapter.

3.1 Avionics Embedded System

In this Section we discuss the specificities of avionics embedded systems: their life-
cycle (Subsection [3.1.1]), interfaces (Subsection [3.1.2)) and behaviour (Subsection[3.1.3).
We focus mostly on systems conforming to the Integrated Modular Avionics (IMA)
architecture [2].

3.1.1 Life-Cycle and Testing Activities

The verification and validation of an avionics embedded system involves a rigorous pro-
cess, with specific testing activities attached to the different life-cycle phases (for an
overview, see for example [108]). Figure provides a schematic view of the life-cycle
of an avionics embedded system. After the system specification and design phases, soft-
ware and hardware components are developed and individually tested, before software
and hardware integration testing proceeds. At the end of the development process,

19

3. INDUSTRIAL CONTEXT

the target system, together with additional avionic embedded systems and with hy-
draulic, mechanical and other systems, is embedded into an aircraft prototype (Iron
Bird). Later, a flight test program is performed. Once certification has been passed,
production and maintenance processes are entered. The application logic usually does
not need further functional validation, but hardware testing activities are still necessary

to reveal manufacturing and ageing problems.

One Aircraft
(Multi-System Level)
(System Level)
Hardware Hardware
Several Avionic Embedded Systems Testing Testing >
(Production (Maintenance 3
Phase) Phase) ﬁ
A Y
RE"c't-atlon of Production Maintenance =
equirements - 2
I~
& .0 £
G =
< 3
Model-in-the- Hfh’d‘”fre"“'
Loop Testing --oop
P Testing
& (SystemLevel) J
ég ,§9§ (Component & Layer]
59 <3 = Levels)

Components
Development

>
=
]
2
3]

[y
9 =
0%, Software-in- - 3
B the-Loop]
& % Testing Hardware =
% Testing 3
> (Validation %
sw []

HW

Development Development

Testing

Several Avionic Embedded Components -
Figure 3.1: System under Test Life-Cycle and Testing Activities -

Our work focuses on in-the-loop testing phases that occur during the development
process. We introduce their specificities below.

An avionics system is tightly coupled to its environment. Testing the functional
logic requires producing a large volume of data that, in the operational environment,
would come from other avionic systems and physical sensors.

20

3.1 Avionics Embedded System

In-the-loop testing addresses this problem by having a model of the environment
to produce the data. The model of the environment receives the outputs of the system
under test (e.g., commands to actuators) and computes the next inputs accordingly. In
the case of a control system, computation must typically account for the physical rules
governing the dynamics of the controlled aircraft elements.

As shown in Figure [3.1] in-the-loop testing comes in various forms:

e model-in-the-loop (MiL),
e software-in-the-loop (SiL),
e hardware-in-the-loop (HiL).

MiL testing is performed at the early phases of system development: neither the soft-
ware, nor the hardware components exist yet, and the tested artefact is a model of the
system. In SiL testing, the actual software is considered. Re-targeting occurs when the
software is compiled for a different hardware than the target one (e.g. using a desktop
compiler). Re-hosting is preferred for better representativeness: the binary code is the
same as the one in the actual system, and it runs on an emulator of the target hardware.
Finally, HiLi testing uses the actual software running on the target hardware.

For complex systems, the MiL/SiL/HiL classification might be too schematic. Hy-
brid forms of in-the-loop testing can be considered, where the tested artefact includes
system components having different levels of development. For example, one compo-
nent is included as a model (MiL), while another one is finalized (HiL). Integrating
components with such different levels may however raise difficult interconnection and

timing issues.

3.1.2 Interface Control Document (ICD)

The interfaces of an avionics embedded system are presented in an Interface Control
Document (ICD). This name is generic and does not define a standard. Each enterprise
is free to define its own ICD format, or even different formats for different aircraft
programs. Whatever the specific format, the document contains information on the
interfaces at several hierarchical levels (Figure .

At the lowest level, that of physical connections, the connectors of the system under
test are presented and given unique identifiers. The pins of each connector are presented
as well. Afterwards, the buses and lines that are attached to the physical connectors are
indicated. At a low logical level, the messages are mentioned. Finally, at the highest
logical level, the application parameters and signals are described. These represent the
data used and produced by the embedded software.

Several types of system network elements are used in the field of avionics for the
communication between components, such as the following communication buses:

21

3. INDUSTRIAL CONTEXT

Discrete,

Analog,

AFDX (Avionics Full-Duplex Switched Ethernet) [109],

ARINC 429 (Aeronautical Radio, Incorporated) [110],

MIL-STD-1553B [111],

and others.

Interface Control Document (ICD)
SYSTEM NAME: SUT 1
CONNECTOR NAME CONNECTOR PIN BUS NAME LINE TYPE
CONNECTOR CONNECTOR 1 PIN 1 ARINC 429 1 ARINC 429
BUS BUS CONNECTOR NAME
BUS NAME
DESCRIPTION CONFIGURATION / PIN NAME
ARINC 429 ARINC 426 1 CONNECTOR 1 /
QOUTPUT BUS - - PIN 1
LABEL APPLICATION
LABEL NAME BUS NAME
CONFIGURATION PARAMETER NAME
ARINC 429
OUTPUT LAEEL LABEL 1 ARINC 429 1 AC SPEED

Figure 3.2: Interface Control Document Sample -

For example, let us assume that an avionic embedded component possesses on its
interface a connector conforming to the ARINC 429 standard. In turn, the ARINC
429 bus communicates several ARINC 429 labels, where each label determines the set
of application parameters that constitute the payload of the message. One of these
parameters could be the speed of the aircraft. Figure shows what a corresponding
ICD would look like. In real life an ICD is complex and large, containing sometimes

tens of physical buses and thousands of application parameters.

22

3.1 Avionics Embedded System

As mentioned before, the information is organized in a hierarchical manner inside
the ICD. There is a tree structure with connectors at the top and application param-
eters at the bottom. Because such parameters are functionally meaningful to avionics
engineers, they are often called engineer variables.

The ICD can contain additional information to that presented in the example, like
the data type of the application parameter, its maximum and minimum values, the
encoding that was used, or its value refresh rate. As many in-house formats of ICD
exist, the supplied information at the various levels can be more or less detailed. In
this paper, we assume that the available information is sufficient for a target perimeter
of tests.

In a system, several instances of a same application parameter can be present. For
example, such is the case when a component produces an application parameter that
is consumed by several neighbouring components. Note that the lower-level interfaces
can be of different types: AFDX or ARINC 429. Also, the component producing the
parameter may be duplicated within the system for redundancy purposes.

Usually a tuple is used in order to uniquely identify a particular instance of an
application parameter. In the above example of speed variable, a tuple could represent
a path in the tree-like structure of the ICD:

“SUT_1/ARINC_429_1/LABEL_1/AC_SPEED".

Some information in the path is redundant because of methodological constraints
(e.g., the name of each application parameter on a bus is unique). Hence, the long
identifier seen above can be shortened. A triplet usually suffices:

“SUT_1/ARINC_429_1/AC_SPEED”.

Even short identifiers yield long names for application parameters. In test proce-
dures, it is often convenient to have aliasing mechanisms with symbolic names. The
manner in which ICD elements are accessed by a test platform is discussed in Section
.2l

3.1.3 Reactive Behaviour

Components of an avionics system typically exhibit a predominantly cyclic behaviour,
where an execution cycle reads the input data and computes the output ones. For
example, the value of the speed of the aircraft is periodically sent by the producing
component to the consuming ones, with a period in the range of several milliseconds.
The consuming components expect to receive this data within the time constraints
imposed by the cyclic communication. They enter a specific error state if the commu-
nication with their environment does not respect the time constraints, usually within
some tolerance. For example, the component would not enter the error state on the

23

3. INDUSTRIAL CONTEXT

first violation of the time constraint (i.e., a parameter arrives outside of its expected
reception time window, or does not arrive at all), but only if this violation is repeated
for a number of successive cycles.

Despite some tolerance, the system functionalities cannot be exercised unless all
input data from the environment are produced when expected from the components.
As already explained, this is the motivation for in-the-loop testing: the system under
test is coupled to a model of its environment.

It must be understood that the system under test and the model of its environment
together form a (cyclic) closed-loop system. The data that the system needs is already
produced internally, by the components of the system under test or by the model of the
environment. As such, a specificity of in-the-loop testing is that test actions include the
modification of already existing data. For example, data in transit over some system
network link is intercepted and afterwards removed or written in a modified form. The
data manipulation may expand several cycles. Asynchronous data can also be produced
by some components or inserted during the test execution phase for fault-injection
purposes. For this type of interactions with the system under test, information on the
sequencing of the transmission of the different data is important (i.e., the insertion of
an asynchronous message between two regular cyclic messages). Overall, in-the-loop
testing yields a completely different approach than the one used for testing open-loop
asynchronous distributed systems, where the asynchronous sending of a few messages
triggers the functional activity of an otherwise quiescent system.

3.2 Test Platform
A test platform for an avionics embedded system typically has the following components
(Figure [3.3)):

e a test controller,

e some test resources,

e a test network,

e a the test language,

The processing of the test logic is usually centralised, with the test controller being
responsible for the automated execution of a test written in some supported test lan-
guage. As execution proceeds, commands are sent to test resources that perform the
actual interactions with the system under test. The test network has two portions, one
linking the test controller to the test resources (the test control network) and another
linking the test resources to the system under test (the test interaction network). By
means of the test resources and test interaction network, some communication points of

24

3.2 Test Platform

the system under test are made accessible. Other resources may be needed for purposes
different from communication, such as ventilation units for controlling the temperature
of the system under test.

System under Test

Component Component Component
under Test under Test —{ underTest
°1 (ML / SIL) °2 (HiL) °3 (HiL)

Test
Interaction
Network

Test Test Test
Resource Resource Resource
1 2 °3

Test Engineer

Test Control
Network

Test Controller

%
|]
System under Test
Test (Test
Environment Language)
Model

Test Platform

Figure 3.3: Test Platform Architecture Overview -

The ICD defines all communication points that could be made accessible for HiL
testing. A given HiL platform thus provides access to a subset of ICD elements, with
some control or observation capabilities attached to them. It may correspond to a black-
box or a grey-box view of the system (e.g., a grey-box view where a bus connecting
two internal components is accessed). Test resources include hardware devices such as
network cards.

MiL and SiL testing can involve access points that are not in the ICD. For example,
MiL testing typically uses an additional interface to control the execution of the system
model (e.g., start, pause, resume, and so forth) or even its internal state (e.g., force an
error state).

Conversely, some actions on ICD elements may have no counterpart in MiL/SiL
test platforms. For example, if the tested model only knows about abstract application

25

3. INDUSTRIAL CONTEXT

parameters, bus message corruption actions are meaningless. In this case, test resources
are software resources; there is no need for a test network if everything runs on one
desktop computer.

As can be seen, there is a strong heterogeneity of the world of test platforms,
depending on the MiL/SiL/HiL testing activity in which they are used. Some test
actions are inherently not portable because they are too high-level or too low-level
for the tested artifact. Other test actions should be portable, like reading or writing
application parameters. Whether they are easily portable depends on the ability of the
test language to offer platform-independent abstractions, so as to hide the usage of test
resources.

3.3 Stakeholders and Evolving Needs

The in-the-loop integration testing of avionics systems involves the following types of
stakeholders:

e test solution providers,
e test solutions users:

— aircraft manufacturers,

— and avionic equipment providers.

We had the opportunity to discuss and collect the needs expressed by representatives
of all stakeholder types.

Historically, the aircraft manufacturer was in charge of all the integration activity
for avionics embedded systems. It received components from the aircraft equipment
provider. Then it integrated these into systems, until complete multi-system inte-
gration within the aircraft. Nowadays, there is a shift of activity from the aircraft
manufacturer towards the equipment providers, as the latter are asked to participate
in the first integration phase. Thus, the aircraft manufacturer would now directly re-
ceive an integrated avionic embedded system: the equipment providers are becoming
system providers. When looking at Figure this developing business model (which
is a consequence of the introduction of IMA architectures [2]) can be visualized as a
tendency of the horizontal line delimiting the intervention of the providers to move
upward. The aircraft manufacturer historically has the needed expertise for setting up
the in-the-loop testing activity. This activity, now becoming the responsibility of an
avionics system provider, opens an opportunity for collaboration between the two. A
new type of interaction emerges, comprising the exchange of tests. Naturally, each ac-
tor has its own test languages, internal tools (e.g., test development environments) and
test platforms that it uses for testing. Inherent incompatibilities between them severely

26

3.4 Conclusion

limit the exchanges that can be done. In practice, the portability of tests from one en-
vironment to the other cannot be easily achieved. Portability needs also arise from
the obsolescence management of test platforms: for example, existing tests should be
reusable when changing a test resource on the test platform. To address these needs, a
key feature of test languages is their ability to offer platform-independent abstractions,
so as to hide the usage of test resources. Because of the multiplicity of proprietary test
development tools, test solution providers have to accommodate the different habits of
their customers. Customization is consequently demanded in order to allow the test
solution provider to cater to these individual habits. Maintainability is useful for up-
grading the test solution in a controlled manner, when demanded by a test solution
user.

No standard test language exists or is emerging for the in-the-loop testing of avion-
ics embedded systems. This contrasts other fields that use international standards,
for example: the Abbreviated Test Language for All Systems (ATLAS) [112] and the
Automatic Test Mark-up Language (ATML) [I13] standards in hardware testing (pro-
duction and maintenance life-cycle phases) or the Testing and Test Control Notation
Version 3 (TTCN-3) [82] in the field of telecommunication protocols and distributed
systems. These standardized solutions are not designed to address the specificities of
our industrial context and as such are not directly reusable.

Other needs concern the capacity for the easy and rapid interpretation and writing of
tests by test engineers. Readability is demanded in order to allow different stakeholders
to understand one another’s tests. It is important that engineers or operators can
easily understand a test written in a language. Writability refers to the ease of defining
a test: the productivity of test engineers (i.e., number of lines of code by unit of
time) and the quality of the test (i.e., reduction of programming errors). Writability
is all the more important as test engineers are experts in avionics systems and not
in general-purpose programming languages. This should be in favour of high-level,
domain-specific, solutions.

All of these requirements motivated the investigation of test platform-independent,
high-level, descriptions of tests with automated code generation facilities. Our work
focuses on the introduction of model-driven engineering to the development of tests for
in-the-loop testing of avionic embedded systems.

3.4 Conclusion

In this chapter we presented the industrial context of the doctoral thesis: the specifici-
ties of avionics embedded systems (life-cycle, interfaces and behaviour), their associated
test platforms, together with the evolving needs expressed by stakeholders in this field:
aircraft manufacturers, equipment /system providers and test solution providers.

27

3. INDUSTRIAL CONTEXT

This industrial context is complex:

e the SUT is verified at different maturity levels (model/software/hardware-in-the-
loop),

e the SUT has a wide range of interface types at multiple hierarchical levels, orga-
nized in an ICD,

e a high number of stakeholders interact (aircraft manufacturers, equipment /system
providers, test solution providers), each with its own habits and tools.

Existing test languages no longer respond to the complexity of the industrial context
and to the needs expressed by the stakeholders. Moreover, test developers do not have
access to the latest advances in software engineering, such as model-driven engineering.
The transfer of these technologies from the software engineering domain to the field of
test development for avionics embedded systems was investigated during this doctoral
thesis.

Test models would thus become central to the test development activity, replacing
current approaches where the test code occupies this position. The shift is driven by
the perception that test software is indeed software, and that test development can
benefit from advanced software engineering methodologies and technologies [92], such
as meta-modelling techniques and model-to-code transformations. The foundation of
model-driven engineering is the meta-model, that constraints the definition of models
in the same manner that a programming language grammar constraints the definition
of code. In order to be able to define our own meta-model, specific to the in-the-loop
testing of avionics embedded systems, we analysed a sample of test languages. It allowed
us to identify the key domain-specific concepts and their relations, best practices, as
well as problems that should be avoided. We present this analysis next, in Chapter [4

28

4

Test Languages Analysis

We present and analyse here a sample of six test languages. We chose four proprietary
test languages used in our industrial context (in-the-loop testing of avionics embedded
systems), together with two additional test languages issued from other fields. The
latter two test languages were chosen for comparison purposes. This analysis allowed
us to identify the set of domain-specific features that were integrated inside the test
meta-model underlying our model-driven approach. Furthermore, this analysis also
allowed us to identify best practices, as well as pitfalls to avoid.

Section [4.1] introduces our sample of six test languages and outlines our approach
for their analysis.

Section [4.2] discusses generic features exhibited by the different test languages:
whether they are compiled/interpreted, based on existing general-purpose program-
ming languages or defined from scratch, and so forth.

Sections [4.3| to [4.6] discuss test-related features. We identified four broad categories:

e the organization of the tests (Section [4.3]),
e the abstraction and access to the interfaces of the SUT (Section ,

e the language instructions for performing test control and test interaction actions

(Section [4.5)),

e the management of time (Section [4.6)).

Section [£.7] presents a synthesis of the principles that guided our meta-modelling
work, based on the results of the test languages analysis.

Section [4.8] concludes this chapter.

29

4. TEST LANGUAGES ANALYSIS

4.1 Test Languages Sample

The sample of test languages includes:

e four proprietary languages from the avionics domain, which shall be named PLy,
PLQ, PL3 and PL4,

e TestML [I14] from the automotive domain,

e Testing and Test Control Notation Version 3 (TTCN-3) [82] [83] from the net-

working and telecommunication domain.

The four proprietary test languages, from PL; to PLy4, are languages currently em-
ployed in the avionics industry. They have been chosen because they are representative
of the practice among Cassidian Test & Services partners. The first one represents the
offer of Cassidian Test & Services on the U-TEST Real-Time System [3] integration
test platform. The identity of the three others cannot be disclosed. To the best of our
knowledge, no public test language exists that shows all the characteristics exhibited by
these four, and as such, their inclusion was deemed necessary. The fact that we cannot
disclose some information does not have a strong impact on this chapter, as our interest
is to discuss general concepts and features of test languages. In the discussion, we will
feel free to use examples of pseudo-code. They will not disclose the precise syntax of
proprietary languages but suffice to capture the essence of the identified features.

For comparison purposes, the sample also includes two languages outside the field
of avionics: TestML and TTCN-3. We did not include any of the test languages that
were mentioned in Section with the exception of TTCN-3, either because they are
not related to our industrial context (e.g., targeting software unit testing) or because
information concerning them is limited.

TestML is issued from a research project in the automotive domain. Its aim was to
investigate the design of an exchange language, in the sense shown by Figure The
multiplicity of proprietary languages yields the need for many language translators,
but if a common exchange language is used then the number of required translators
is reduced. TestML is the only language of our sample that is not operationally used
in the industry. It is a research product and its connection to proprietary languages
is not implemented. However, it represents an attempt to synthesize concerns arising
from the in-the-loop testing practice, so its consideration was deemed relevant to us.

As shown in Table the test languages from PL; to PL4 and TestML exemplify
the various forms of in-the-loop testing of embedded systems. TTCN-3 serves a different
purpose, being used in the testing of distributed systems and communication protocols.
It is included in our sample because avionics embedded systems are also distributed

systems, and their communication is based on interfaces conforming to a wide range

30

4.1 Test Languages Sample

Test Test Test Translator #1- #2 Test
Language Language Language Language
#1 #2 #1 #2

Test
Exchange
Language
Test Test Test Test
Language Language Language |« Language
#3 #4 #3 #4
a) b)

Figure 4.1: Test Exchange Language -

of communication protocols. It is thus interesting to look at best testing practice in
the field. The maturity of TTCN-3, which is an international standard and at its third
release, justified its consideration.

The following types of data were available for the different test languages:

e test language documentation and user manuals (PL;, PL3 and PLy), private
presentations (PLsg),

e published articles and books (TestML and TTCN-3),
e test procedures written in test languages (PL; and PLg),

e associated dedicated test development environments (PL; and PLy), as well as
test platform-specific configuration files (PLy).

We also had access to real test specifications written in natural language (English,
French).

Let us discuss the methodology that guided our test languages analysis. Our ap-
proach was to identify the features that the test languages in our sample offer, together
with the similarities and the differences of the manner in which they are offered. In
case a feature was not offered by some test language or offered in different manners, we
contacted test engineers for clarifications. These discussions with test engineers also
allowed us to identify the specific needs to which test features respond. In addition,
usage problems encountered by test engineers when accessing the features were also
discussed. Consequently, we were able to identify best practices and pitfalls to avoid.
Moreover, our interaction with test engineers made it possible to identify new desirable
features that a future test implementation solution should include.

The features we analysed are synthesised in diagrammatic views that appear at the
beginning of each following section. We conclude each section with a synthesis of our
main findings in the form of bullet-lists. First we discuss some generic features that the

31

4. TEST LANGUAGES ANALYSIS

test languages exhibit (Section [4.2)), continuing with the test-related features (Sections

3 10 [£5).

4.2 Generic Features

Table gives an overview of the generic features exhibited by the test languages in

our sample.
Test Industrial Domain Te?n.n.g Testing Activities Bas.ed. on . . Compiled /
N Activities Existing Specification
Language of Use Forms Interpreted
Types Language
Model / Software v
PL; / Hardware-in-the- (OOPL: Use of libraries Compiled
loop C++)
v Modification of
PL; Model-in-the-loop (00PL) the grammar/ Use
Avionics industry of libraries
PL; m_ttehsii-rllogop Ha.rd\wla:s;n-me) (H;’L} Use of libraries Interpreted
Software
PL, Hardware-in-the- - PL. grammar
loop
Model / Software,
TestML Automotive industry Hardware-in-the- - XML Schemas
loop
Distributed
. systems and
TTICN-3 telI: ::;ik::;i i';.l:ns communication - - TTCN-3 grammar Compiled
(standard) protocols
testing

Table 4.1: Test Languages Generic Features

From the six test languages in Table three are built upon existing general-
purpose programming languages (GPPL), while three have been defined from scratch.
PL;, PLy and PLj3 fall in the first category. They are based on object-oriented (OOPL)
or high-level scripting (HSPL) programming languages. For example, C++ and Java
are of the OOPL type, while Python is a HSPL. Given a general-purpose language, two
options exist to build the test language:

e the modification of the grammar,
e the definition of specialized libraries.

Both options appear in Table Test procedures in PLs require some pre-
processing before they are fed to the interpreter of the language on which they are
based, because the grammar is modified. Test procedures in PL; and PLj3 are pro-
cessed by a standard version of compiler/interpreter.

32

4.2 Generic Features

PLy, TestML and TTCN-3 have been specified from scratch. PL, and TTCN-3
are imperative languages with their specific grammar and compilation/interpretation
tools. A standard implementation is defined for TTCN-3 in [87]. This implementation
is typically done either in C++ or Java. TestML is a mark-up language based on
XML Schemas [115], and uses automata descriptions to capture the behavioural part
of the test. It is not an executable language, although a MATLAB Simulink (with
the extension Stateflow) [I16] implementation of the automata has been proposed to
demonstrate the semantics.

The reason for using GPPL-based test languages is that they offer access to a
wide number reusable elements: generic functionalities (e.g., declaration of variables,
logical and mathematical expressions) and tools (e.g., compilers, interpreters, integrated
development environments). Moreover, test engineers familiar with existing GPPL
languages can rapidly start using them. A drawback is that the test code is usually
not concise, the users having to express the test concepts in terms of generic language
elements.

In contrast, specific test languages offer an industrial context-specific vocabulary
and are more concise than GPPL-based test languages. In order to bridge this gap,
the latter category of test languages has to rely on automatic code generation or on
language pre-processing techniques. In PLj, code skeletons are generated, so that the
test engineer may focus on writing the logic of the test. In PLs, a pre-processing
step allows the use of a specialised syntax. However, in practice many PLo facilities
are offered in libraries rather than in new syntactic keywords. The source code still
exhibits the idiosyncrasies of the native language.

The comparison between TestML and the other languages raises the issue of the
choice of the language paradigm. A distinguishing feature of TestML is its model-
based paradigm with the choice of hybrid timed automata. We believe that the use
of the timed automata abstraction, although clear and rich in its semantics, would
not be a preferred choice among our partners, as all the proprietary test languages in
our sample propose an imperative programming paradigm. For better readability and
writability of the test code, it is definitely preferable to have a language at a higher level
of abstraction than say, a GPPL. However, for better acceptance by test engineers, the
proposed solution should accommodate the existing custom and practice. The TTCN-3
approach could be seen as a good compromise in its domain of application, combining
convenient high-level constructs and an imperative style familiar to engineers.

TTCN-3 is the only test language in our sample that has a standardized implemen-
tation, with a clear separation being offered between the generic execution kernel of
the test language and all platform-specific adapters [87]. We did not have access to
information concerning the implementation choices of test languages outside Cassidian
Test & Services. As such, we do not discuss this issue further here.

33

4. TEST LANGUAGES ANALYSIS

Key Ideas

» Specific test languages offer a customizable, concise, high-level, domain-specific

vocabulary.
» GPPL-based test languages enable the reuse of existing functionalities and tools.

» Interpreted test languages do not require a new compilation step each time the

code is modified.

» Current practice, among Cassidian Test & Services partners, favours an impera-

tive programming paradigm.

» A test platform-independent approach, with a clear separation between the test

language kernel and the test platform-specific adapters is desirable.

4.3 Test Organization

Figure gives an overview of the organization types that can exist for test artefacts.

Intra-test organization refers to the structured description of a test. Inter-test
organization refers to the organization of individual tests into higher-level containers
(i.e., sets of tests).

We focus here on intra-test organization, because inter-test organization is typically
managed by external tools. For example, a test manager (or test director) is in charge
of the organization of tests into structured test groups where all tests in a test group
share a specific quality (e.g., they concern the same system under test, the same func-
tionality, the same requirement). A test sequencer controls the organization of tests
into test suites, where the execution of tests is ordered in a specific manner (e.g., using
a test execution tree). Inter-test organization is thus not a major concern for the test
languages, although integrating it with existing intra-test organization features could
be useful in order to gain in homogeneity.

A simple form of intra-test organization is the capacity to factorize reusable code
fragments into functions (or procedures, or class methods). All languages possess this
feature, except for TestML that does not resemble a programming language. The
use of functions, allowing for code reuse by means of a concise manipulation, is only
a first facility. We discuss next more complex facilities: the semantic organization
of instructions (Subsection and the thread of control organization (Subsection
4.3.2).

34

4.3 Test Organization

The Organization of

Tests
Intra-Test Inter-Test
Organization Organization
Serlnan_tlc Thread of Control Test Characteristic- Test Execution
Code Reuse QOrganization of L o R
. COrganization Based Organization QOrganization
Instructions
: 1 ! f f f ,
1 I
H Functions Test Sections Parallel Test Test Groups Test Suites X
' Components H
1 1
1 I

Figure 4.2: Tests Organization -

4.3.1 Semantic Organization of Instructions

Another test organization form is to allow the regrouping of similar types of instructions
within test sections, in relation to the different steps that are performed during the
testing activity. Test sections appear as distinct parts of test specifications. Test
engineers use annotation-based methodologies in order to map this organization onto
their test procedures: comments inside the test code separate test sections.

Useful test sections include test identification information that appears as a test
header (e.g., the name of the test, the targeted SUT, the author of the test), pre-test
actions (e.g., powering up the SUT, reaching a desired SUT state before the execution
of the test), test behaviour (e.g., the stimulation of the SUT, the analysis of the SUT
behaviour) or post-test actions (e.g., powering down the SUT).

Being a mark-up language, TestML has this form of organization but is the only
language of the sample that includes it inside the language, not having to rely on
comment writing methodologies. TestML has markup elements in order to stimulate
the system under test, capture data and evaluate its behaviour.

As a test can be a quite complex artefact, convenient test section features are crucial
for both readability and writability of the code. The concept of test sections allows test
engineers to easily find the information they are looking for inside a test, by searching
for the test section that is supposed/or most likely to contain it. This organization
type also aids in the comprehension of a test, as all the instructions that produce a
specific part of the test behaviour are regrouped. Moreover, the separation of a test
into predefined test sections forces the test engineer to enter all the needed data and

to not forget important information (e.g., the initialization of a test).

35

4. TEST LANGUAGES ANALYSIS

Key Ideas

» Test sections are useful for the identification of a test - acting as a test header,
as well as for the organization of the behaviour of a test.

» Test sections can be defined following an annotation-based methodology or by
integrating them inside the test language.

4.3.2 Thread of Control Organization

The last form of intra-test organization we consider is very important for addressing
complex test architectures. It consists of the possibility of having several active parallel
test components, each possessing an independent execution flow. All languages of the
sample have this functionality, but there are discrepancies between what is concretely

offered (Figure :

Thread of Control
Organization

¥ ¥
Implicit Thread of Explicit Thread of
Control Control
l [
¥ ¥
Predefined Processes and Test Components
Stimulations Threads {PLy, PLy, TesthL,
{all, except TTCH-3) (PLs, PLy) TTCN-3)
]
l ¥ ¥ ¥
Periodic Execution Test Component InEs)tyaTtir;tlicon Symbolic Interface
(PLy) Types TTCN.3) (PLy. TestML, TTCN-3)
]
v v
Sequential Test Periodic Test
Component Component Test Monitor
(PLy. PLy. TesthL, (SL | {PLy. PL2)
TTCh-3) !

Figure 4.3: Thread of Control Organization -

Explicit thread of

control offers test engineers the capacity to define their own behaviour for parallel test

Two types of thread of control exist: explicit and implicit.

components and control their execution: start, stop and pause them. Implicit thread of
control offers test engineers access only to predefined behavioural patterns (e.g., ramp,
sine signals) by means of high-level instructions, which hide the multi-threading aspect
that is delegated to the test platform run-time. For example, an instruction for applying
a ramp stimulation on an application parameter launches a new background thread,
which computes and sets a new value at each execution cycle. We focus here on explicit
thread of control, with implicit thread of control (in the form of time-dependant SUT
stimulation instructions) being discussed in Subsection [4.5.1]

36

4.3 Test Organization

PLj3 has no specific notion of test component, but it offers the native multi-threading/multi-
processing facilities of the language on which it is based. PLg has a big main component
and a set of small concurrent test monitors with a behaviour of the form: condition
— action. The action can be a log or a simple input stimulation. PL, has commands
to load and launch concurrent test scripts from another test script, as well as peri-
odically execute a test script. Concurrent test scripts may be synchronized by events
(e.g., sendEvent (), waitEvent () instructions). PL;, TestML and TTCN-3 offer the
richest notion of test component with a symbolic connection interface. TestML has
concurrency at a high level of abstraction, in the embedded automata models. PL;
and TTCN-3 have concrete components concurrently executing their sequential code.
They both make it possible to have several instances of a generic test component, each
involving its connections with other test component instances or the system under test.
In addition, PL; test components can also execute their behaviour periodically, mim-
icking the cyclic behaviour of the system under test. This functionality is useful for the
development of environment models that must have the same reactive cyclic behaviour
as the SUT, as well as for the definition of complex SUT stimulations that need to be
recalculated at each execution cycle (Subsection .

Listings to illustrate the concept of test component, as offered by PL; and
TTCN-3.

In TTCN-3 (Listing [£.1)), a test case always has a main test component (MTC).
The MTC instance is implicitly created when the test case starts. Instances of auxiliary
parallel components can then be explicitly created by the test case. The topology of the
connections (test architecture) is dynamically determined by means of connect () and
map () operations, depending on whether the connection is with other test components
or the system under test. None of the proprietary test languages exhibits the dynamic
mapping facility of TTCN-3. The test architecture is always static, as is also the

architecture of the system under test.

The start() operation (Listing [4.1) launches the execution of some behaviour
by the target component. Note how the behaviour is passed as a function reference

parameter.

37

4. TEST LANGUAGES ANALYSIS

/* The declaration of a test component possessing two ports x/
type component myMTCType.1l {
3 myPortType_-1 myPort_1;
myPortType_2 myPort_2;
|}

N

/*x A test case with an auxiliary test component x/
testcase myTestCase_1()

9| runs on myMTCType_1 // type of the MIC as seen above
system mySUTType // SUT interfaces
] {

13| /* Creation of an auxiliary parallel test component x/
var component myComp-1 := myCompType_1.create () ;

/* Connection between the MIC and a parallel test component x/
17| connect (myComp_1. myPort_1, self.myPort_2);

1¢

/* Connection to the SUT x/
map(self.myPort_1, system.port_-1);
map (myComp_1.myPort_2, system.port_2);

V)

/% Starting the parallel test component x/
myComp_1. start (myBehavior ());

N

Listing 4.1: Test Components in TTCN-3

In PL;, generic test components are called user codes (Listing 4.2]). There are also
simpler (non-generic) monitors similar to the ones in PLg, except that their action can
also be the start of another component. PL; has no distinguished main component:
from the point of view of the runtime, all user code instances and monitors are “equal
citizens”, whose concurrent behaviour yields a test case. The PL; user codes commu-
nicate via shared data. A subset of them will be active at the beginning of the test; the
other ones will be started by the actions of the active subset. Libraries are provided
to control the execution of components (see userCodeToolkit in Listing [4.2]). The
language environment offers a graphical user-interface (GUI) to develop structural test
elements, such as test monitors and user codes, with code generation facilities (code
skeletons, in the case of user codes). The GUI also allows for the declaration of user
code instances. The overall topology of the connections is saved in an XML [73] config-
uration file (Listing . The topology description is thus not part of the source code
of components. Neither the connect nor the map commands are present in PL1, as the

runtime interprets the XML file to build the configuration.

38

4.3 Test Organization

/* A user code has an interface and a behaviour x*/

/* The interface code is automatically generated from its specification
via the GUI x/

i| class mylInterface: public userCodelnterfaceBase

{

6| /* Interface definition x/

public:

gl variableType_-1 inputVariable_1;

variableType_2 outputVariable_1;

10

/* Methods to initialize and handle the interface =/

]

}

/* A skeleton for the behavior is also generated x/

16| class myBehavior: public userCodeBehaviorBase

{

18| private :

smartPointer<MyInterface> mylInterfacePointer;

public:
22| executionResult step (){

24| /* The test behavior must be placed here x/

mylInterfacePointer—>outputVariable_.1 = 1;
26| userCodeToolkit.startInstance (”instanceName2”);

2] b
30| }

Listing 4.2: User-Codes in PL;

Test component constructs have the advantage of hiding low-level thread control
functionalities. We have extracted two important ideas from our analysis of the exist-
ing constructs. The first one deals with the need for formal interfaces, so that multiple
instances of a component can exist in the test architecture. The second one is the
possibility to accommodate both complex and simple component constructs. The com-
plex construct is the most general one, but test engineers find it convenient to also
have a predefined test monitor construct. It lets them easily express the test logic: the

observation of conditions and the reactions to trigger when these conditions occur.

We have also seen that some test languages benefit from rich test development
environments offering the user the possibility to define in a GUI some of the structural
elements related to a test. For example, PL; users can instantiate their user codes, link
their formal interfaces using such a GUI and afterwards complete the automatically

generated code skeletons with the associated behaviour.

39

4.

TEST LANGUAGES ANALYSIS

¥)

1

14

/* Declaration of an instance of myBehavior, which will be active from the

beginning of the test (auto_start = 7true”). x/
<userCodelnstanceDeclaration userCodelnstanceName = ”instanceNamel”
userCodeName = ”myBehavior” auto.start = ”true”/>

”

/* Declaration of ”instanceName2” would be similar but with auto_start =
false” x/

/* Test connections x/
<userCodeLinkVariables userCodelnstanceName = "instanceNamel”>

/* Connection to SUT is via ICD elements x/
<Link localName = 7inputVariable_1” globalName = "SUT_1/ARINC_429_1/
LABEL_1/ACSPEED” />

/* Connection to other user—code instances is via shared auxiliary
variables. x/

<Link localName = ”outputVariable_1” globalName = "auxVariable_.1” />

</userCodeLinkVariables>

Listing 4.3: XML Topology Configuration for the PL; Runtime

Key Ideas

» Two types of thread of control have been identified: explicit (test engineers define
the parallel behaviour and control its execution) and implicit (test engineers use
predefined timed instructions, such as a ramp stimulation).

» High-level constructs, like test components, hide the multi-threading implemen-
tation details.

» Inter-test-component communication may use events or shared data.

» Formal interfaces allow the reuse and the multiple instantiation of test compo-

nents.

» Different types of test components are used, such as: periodic test components
(for environment model development and complex SUT stimulations) and test
monitors (for enhanced test logic visibility).

» The behavioural and structural concepts can be separated, with automatic code

generation for the latter ones.

» The architecture of links between test components is static in our industrial con-
text.

40

4.4 Link with System under Test Interfaces

4.4 Link with System under Test Interfaces

An overview of the different features related to the link with the system under test can
be found in Figure 4.4

System under Test

Interfaces
[
v v v ¥
Interface
’ . Targeted Interface Access
Abst(rae‘a‘;:tlon Interface Identifiers Hierarchical Levels (see Figure 4.5)
I I
¥ ¥ ¥ ¥
Interface Control Mo?;l Ir:_t;erface §pp|ica:ion Lowir-lntlerface
entifier arameters evels
Document (ICD) L] () (L, PLa PLA)
I
¥ ¥
Long Identifier Short Identifier
(PLy. PLg) (PLs)

Figure 4.4: Link with the System under Test Interfaces -

4.4.1 Targeted ICD Hierarchical Levels and Interface Abstraction

All languages of the sample have a logical view of the system interface abstracting away
from the concrete access points. We saw the example of TTCN-3 in Listing The
SUT is viewed as a specific system component offering typed communication ports.
Test component ports can be dynamically mapped to the system logical ports, yielding
a dynamic test architecture. The TTCN-3 executable uses the services of a separate
test adapter layer to implement the concrete communication operations. It makes the
test procedures portable and independent of the test platform implementation. The
multi-layered architecture of a TTCN-3 test system is standardized, with well-defined
interfaces between layers [87].

The test languages for in-the-loop testing also hide the implementation details of
the platform, although not in a standardized way. They access the SUT interfaces by
means of ICD-derived identifiers. Their system logical interface consists of application
parameters (all languages) and possibly lower-level ICD elements (PL;, PLs and PLy).
Languages focusing on application parameters only are targeting MiL testing (PLy),
or intend to describe test procedures meaningful whatever the MiL/SiL/HiL form of
testing (TestML). The other languages seek to also address the specificities of HiL
testing, hence the visibility of ICD elements like buses or messages.

None of the languages exhibits the dynamic mapping facility of TTCN-3. The test
architecture is always static, as is also the architecture of the system under test. When

41

4. TEST LANGUAGES ANALYSIS

test components have a symbolic interface (PL1, TestML), the mapping with the logical
system interface is described once and for all in an XML-based format (see Listing .

Key Ideas
» The SUT interfaces are always abstracted via ICD-derived identifiers.

» The architecture that links test component interfaces and SUT interfaces is static
in our industrial context.

4.4.2 SUT Interface Element Identifiers and Access

On overview of the manner in which the SUT interfaces are accessed can be found in

Figure

Access
|
¥ v v
Alias Mechani Automatic Access
Access Types paslyechags to Contained
{PLa, PLs)
Lower-Level (~FL;)
v v
Global Direct Programmatic
Access Specific Access Handlers
{PLs) (Pl
[
v v v
Special Character Special Ac_cess Textual Toolkit
(FLy) Declaration Parameter
(PLy) {PLy, PLs, PLs)

Figure 4.5: Access to the System under Test Interfaces -

All languages for in-the-loop testing have a notion of dictionary of available appli-
cation parameters. In the avionic domain, the names in the dictionary are usually built
by parsing the tree-like structure of an ICD document. As mentioned previously, a
name may include the complete tuple (the long identifier) or a triplet (the short identi-
fier) that suffices to uniquely identify the application parameters. Aliasing mechanisms
may be provided in order to further shorten names.

How a source code uses a name to access an application parameter varies from
one language to the other. In PLj, the dictionary is an external service to which data
accessors are requested. This explicit request for accessors was required for performance
issues. At the opposite, PL3 has a global dictionary structure directly accessible in the
execution environment of the test. PLo and PL4 represent intermediate language design
choices. The source code does not explicitly handle accessors, but a specific symbol

42

4.4 Link with System under Test Interfaces

(PLg2) or an access declaration instruction (PL,4) indicates the special access. Listings

4] to [4.7 show examples for the various possibilities.

Listings [4.8] and [4.9] exemplify access to other ICD hierarchical levels. We focused
on PL; and PLy4, as PLj3 offers much less accessibility than the former two. In general,
buses and messages are accessed for fault injection at a low level. PL3 is more oriented
toward testing high-level functionalities of systems-of-systems, and its users preferably

have external tools for low-level tests (e.g., a bus analyser/exerciser).

/* An accessor to the linked application parameter is given at the
creation of the user—code interface object. Other application
parameters can also be accessed, but then the user—code behaviour
needs to ask for an accessor. x/

2| variableToolkit.initLink ("SUT_1/ARINC_429_1 /LABEL_1/ACSPEED”) ;

4| myAccessor = appParameterToolkit.getAccessor (?SUT_1/ARINC_429_1/LABEL_1/
ACSPEED”) ;

6| myAccessor.setValue (newValue) ; // Writes the application parameter
myAccessor.getValue(&x, ×tamp); // Reads it in x

x/ More complex test actions use either the name: x/
10| variableToolkit . testAction (?SUT_1/ARINC_429_1 /LABEL_1/ACSPEED”) ;

12| /* or the accessor as a parameter: x/
otherToolkit.otherTestAction (myAccessor);

Listing 4.4: Access to SUT Application Parameters in PL;

1|/« Access is granted to any application parameter, it is denoted by a
special character 7@’ for the test language pre—processor. x/

x = @modelSUT_1/ACSPEED;

@modelSUT_1/ACSPEED = 0;

5| /* More complex test actions use the application parameter identifier as a
parameter , not the accessor x/
aToolkit.testAction (”modelSUT_1/ACSPEED”);

-1

/% Access is also given to the status variables of the system models (MiL
testing activity) =/
9| isStatusRunning = @modelSUT_1/Running;

Listing 4.5: Access to SUT Application Parameters in PLo

43

4. TEST LANGUAGES ANALYSIS

/*x A dictionary data structure is provided as a global variable in the
execution environment. An alias set structure may be defined to allow
indexing by short names. x/

aliasSet = {[SUT_.1/ARINC_429_.1/AC_SPEED |= {alias = "myAlias”}}

x = dictionary .myAlias;
dictionary .myAlias = 0;
testAction (dictionary.myAlias);

w

Listing 4.6: Access to SUT Application Parameters in PLg

/* Access is gained by the declaration of the needed application
parameters. An alias may be introduced by the declaration instruction.
*/

access engineerVariable 'SUT_1/ARINC_429_1/LABEL_1/ACSPEED’ as myAlias;

¥)

x = myAlias;
myAlias = 0;
il aToolkit.testAction (myAlias);

Listing 4.7: Access to SUT Application Parameters in PLy

/% A bus accessor is used to get a message accessor x/
myBusAccessor = A429Toolkit.getAccessor (?SUT_.1/ARINC_429_.1");
myMsgAccessor = myBusAccessor. getAccessor (?LABEL.17);

¥)

/* Test actions are attached to the accessors x/
i| MyBusAccessor. testAction () ;
MyMsgAccessor. testAction () ;

Listing 4.8: Access to Lower-Level ICD Hierarchical Levels PL

/* Bus and message have two independent accessors x/
access bus 'SUT_1/ARINC_429_1’° as myBusAlias;
access message 'SUT_1/ARINC_429_1/LABEL_1’ as myMsgAlias;

w

/x Test actions are in independent toolkits x/
busToolkit.testActionBus (myBusAlias);
msgToolkit.testActionMsg (myMsgAlias) ;

~

Listing 4.9: Access to Lower-Level ICD Hierarchical Levels PLy

In PL; and PLy4, users have the possibility to control both the functional activity
and the faults. Bus and message names are built from the ICD document, similarly to
what we saw for engineer variables. It is interesting to note that the structure of the
ICD is only partially reflected by the languages. In PL;, gaining a bus accessor does not
automatically provide access to its messages, although the bus accessor is used to get
a message accessor. In PLy4, the bus and message levels are kept completely separated.
In both languages, the engineer variable level is separated from the other ones.

Having an abstract interface in terms of ICD elements allows the test description to
be independent from test platform implementation details. The runtime of the various

44

4.5 Test Language Instructions

test languages interprets the abstract test actions into concrete test actions involving
test resources. The runtime knows which test resource manages a given low-level ICD
element (e.g., which communication card manages the communication bus on which a
variable is sent). In the case of PL1, the configuration is described in an XML file. For
each category of test resource, the PL; runtime implementation uses a generic interface
that hides the vendor-specific interface. We do not comment on the management of
test resources in the case of the other test languages, as we did not have sufficiently
detailed information.

We observed a great deal of heterogeneity concerning the way access is offered,
sometimes for a same hierarchical level and sometimes between different levels. For
example, PL; and PLy offer two ways to access application parameters: sometimes by
means of accessors, sometimes by means of a name passed as a string parameter to the
action. The first approach is cumbersome unless syntactic facilities are provided to hide
the handling of accessors. The latter approach with strings has the drawback that static
type-checking is not done, which is error-prone (e.g., it is possible to perform an access
demand for a non-existent SUT interface). PLg3 offers an interesting solution devoid
of explicit accessors and string parameters: all application parameters are directly
accessible as global variables in the test execution environment. This facility is however
only for application parameters. When descending at lower levels of the ICD hierarchy,
we once again find the string parameter solution.

Key Ideas

» Heterogeneous SUT interfaces access mechanisms exist, between different ICD
hierarchical levels as well as for a same ICD hierarchical level.

» The structure of the ICD is only partially reflected by the test language constructs.

» Using the identifiers of ICD elements as string parameters does not allow static
type-checking.

» The global access to ICD elements feature is convenient.

4.5 Test Language Instructions

An overview of the different features exhibited by test-related instructions can be found

in Figure
The main test-related instructions categories are: test/simulation execution con-
trol, system under test interaction (Subsection [4.5.1) and test verdict management

(Subsection 4.5.2)) instructions.

45

4. TEST LANGUAGES ANALYSIS

Instructions

¥

General-Purpose
Instructions

12

Test-Related
Instructions

v ¥ v v
Test Execution Test Verdict System under Test SUT Model
Control Control Interaction Execution Control
(all) (~PLy, TTCN-3) (see Figure 4.7) {PLz)

Figure 4.6: Test Language Instructions -

We saw an example of test execution control with the start instruction in Listings
and All test languages have instructions to control the execution of a test. The
control may also involve timing aspects such as a periodic activation of the test code.
These aspects are relevant to stimulate cyclic embedded systems. Besides parallel test
components, execution control may also concern the system under test, but this is only
for the MiL. form of testing: PLs has specific instructions to control and synchronize
the execution of the system models. In the sequel, we focus on the test interactions
with the SUT and on the test verdict management.

4.5.1 System under Test Interaction

An overview of the different features related to the SUT interaction instructions can
be found in Figure [4.7]

There are interesting differences between TTCN-3 and the test languages targeting
embedded systems. While the latter test languages offer a large number of different
instructions, TTCN-3 abstracts all interactions into a small number of core instructions:
send and receive for message-based communication, call and reply for synchronous
communication with remote services.

Remote calls have no equivalent in the other languages of the sample, because the
target embedded systems do not implement this form of communication. They only
have message-based communication. Yet, most test interactions are not defined in
terms of sending and receiving messages. Rather, they are defined in terms of reading,
writing or modifying the value of engineer variables. The variables are an abstraction
for the data carried by messages. The underlying message-based interactions with the
system under test are implicit in the test description; they are delegated to the test
language runtime.

The most basic form of application parameter interaction is to read or write a
value. For this, simple assignment is offered as a syntactic facility. We saw examples

46

4.5 Test Language Instructions

(%10 #1d 1) e (6-NOLL pepusie ‘1) :z@wmj%:w&)
spyjjoo dyoadg SiM[00] dLsUSD Jajaudisu] gnuwio4 uEm,ﬂEEm_n_
0 |) 5 _ F
1d 1d b (sl
el T SisipueH (1d 1) (14 **1d 1) (1e) e) 9 e g 1)
S}I4|00] O} payde uonoalu| Jne Buliojiuopy sn uonosluj-yne SUOIJOBIBIU| pawl Juswubissy
Buing se passed ADHICOL 03 PRUdERY 0} payoeny nosined HoutoN =ng HosIneS ¥ 1l petiL aljoRWAS
£) F £ T 1))

uoneziuebio
uonanisu|

A

("1d **1d **1d)
SUoKINISU|
"HalU| PAST-IamoT

A

(=)
suolaNIsU|
J9jaweled “ddy

A

uonoRIU|
159 JSpuUn WasAs

ions -

Instruct

ion

System under Test Interact

Figure 4.7

47

4. TEST LANGUAGES ANALYSIS

in Listings to for PLy, PL3 and PL4. In PLq, for which application parameter
accessors are explicit, only a restricted form of assignment is provided. It involves a
local copy of the variable and an automatic synchronization with the global one at
fixed execution points. For example, in Listing [£.2] outputV ariable; is synchronized
with the global variable before and after each execution of the step() method. In
the general case where finer synchronization is needed, the PL; code uses the get and
set methods of the application parameter accessors, not the assignment. Whatever the
language, a write forces a value until another value is written or the writing is explicitly
disabled. The runtime of the various test languages interprets the abstract test actions
into concrete test actions involving test resources. At a concrete level, variables are
managed differently according to their sampling or queuing mode, which is specified
in the ICD document. In the sampling mode, the data is sent or received periodically
even if no explicit test action writes or reads it. In the queuing mode, the data is

asynchronous (i.e., an abstract write action triggers the sending of a specific message).

In addition to the simple read and write, all in-the-loop testing languages of the
sample offer a rich set of predefined application parameter interactions. They typically
include stimulation patterns over time, like ramp, oscillation, triangle or square pat-
terns. Listings to exemplify the ramp pattern where the successive values of
the ramp are calculated from a start value. Other patterns depend on the current value

of the variable, like the one injecting an offset (Listing |4.10)).

1| /* A ramp signal as a parametric function x/
stimulationToolkit .applyRamp (myAccessor, startValue, endValue, duration);

/* Injecting an offset on an application parameter =/
5| variableToolkit.injection (?aVariableName” , "offset”, offsetValue,
listOfParameters) ;

Listing 4.10: Application Parameter Interactions in PL;

1| /* A ramp signal with a formula interpreter x/
Formula formula = new Formula(”2xQt + 17);
;| Stimulation stimulus = new Stimulation () ;

5| stimulus . define ("modelSUT_1/ACSPEED” ; formula) ;
stimulus.start () ;

Listing 4.11: Application Parameter Interactions in PLo

48

4.5 Test Language Instructions

/* A ramp signal defined using mark—up elements x/
2|<signal ID = "ACSPEED” type = ”"double”>
<time> <unit> second </unit>
4 <double><value> 4 </value></double>
</time>
6 <ramp>
<start>
8 <double><value> 1 </value></double>
</start>
10 <end>
<double><value> 9 </value></double>
12 </end>
</signal>

Listing 4.12: Application Parameter Interactions in TestML

PL1, PL3 and PL4 have fault injection instructions not only for variables, but also
for other ICD elements like messages and buses. In PLj3, the instructions are kept basic
(e.g., stop any message emission on the bus) because external injection tools are used
in complex cases. PL; and PL, allow for richer fault injection from the language, like
modifying the content of a message or sending spurious messages. PL4 has made the
choice of offering generic injection libraries, while PL; has specialized ones according
to the type of bus. Let us consider the example of message corruption. PL; takes
advantage of the knowledge of the encoding format (e.g., it offers an instruction to
change a specific status bit in an ARINC 429 message). PLy4 sees messages as raw bit
vectors and provides a generic instruction to overwrite a vector.

As we have seen, languages for in-the-loop testing put emphasis on data manipula-
tion rather than on communication primitives. They offer many predefined instructions
to cover the recurring manipulation patterns. The consideration for fault injection at
different levels of the ICD further adds to the number of instructions. We noticed some
heterogeneity in the way the instructions are incorporated into the language. In one
case, there is an overloading of a usual language operator (i.e., the assignment). In the
other cases, the instructions are:

e attached to ICD elements programmatic handlers (for application parameters
as well as buses or messages), where the handler was created using the string
identifier:

aHandler = getHandler("id");
aHandler.testAction();

e grouped into specific toolkits that take the identifier or handler as a parameter:

aToolkit.testAction("id", paramList);
aToolkit.testAction(aHandler, paramlList);

49

4. TEST LANGUAGES ANALYSIS

e taken as a parameter by a generic toolkit (e.g., in order to have an extensible

Application Programming Interfaces (API) that could accept new test actions):

aToolkit.do("testAction", "id");

In contrast, TTCN-3 has a homogeneous view of its communication instructions:
they are all offered as methods of port objects, where a component port is strongly
typed according to the messages or service calls that it can transmit. It has been
proposed in [86] to add a stream port type, which would allow TTCN-3 to account for
continuous data flows.

The heterogeneous view of interactions inside a language negatively impacts the
readability and writability of the test code. This reflects the history of the proprietary
languages, which were enriched progressively when demanded by the users. There is
now a need for a coherent organization of instructions (with predefined extension points
for adding new ones), which also allows for type checking at compilation time. Such a
coherent organization is provided by TTCN-3, where interaction methods are attached
to typed port objects. The principle of attaching test actions to typed interface objects
can also be found in other industrial contexts, like GUI systems (classical applications
in [I00] and web applications in [I17]): an application window possesses several buttons,
each button has a number of test actions attached (e.g., click), etc. Similarly, we could
have methods attached to ICD elements, where each type of element would call for its

specific test actions.

Key Ideas

» Test languages for in-the-loop testing involve many different test interaction in-

structions.
» The organization of instructions within test languages is heterogeneous.
» A coherent organization policy is needed, with predefined extension points.

» Passing test actions as string parameters to generic toolkits does not allow for
static type-checking (e.g., it is possible to call a test action inconsistent with the

target SUT interface type).

» Attaching instructions to strongly-typed SUT interfaces is an interesting organiz-

ing principle.

50

4.6 Time Management

4.5.2 Test Verdict Management

As regards test verdict management, the most powerful built-in facility is provided by
TTCN-3. It allows for the production of local verdicts and the synthesis of a global
verdict from the local ones. The verdict of a higher-level element (e.g., test case) is de-
rived from the local verdicts of lower-level elements it contains (e.g., test components).
Verdicts are ordered from Error to Pass with rules enforcing a conservative direction
of changes: None > Pass > Inconclusive > Fail > Error. Consequently, a Pass
verdict may change to Fail or Inconclusive, but an Error verdict never changes.

A simplified form of verdict management is also provided by PLs, with global test
verdict synthesis from two local possible test verdicts: Pass and Fail. A global test
verdict can be Pass, Fail or Partial (when some local checks have failed). The
other languages do not put emphasis on verdicts, because test evaluation is usually not
performed on-line by an automated test oracle. Sil. and HiL test platforms include
detailed data recording facilities, and the recorded data is analysed off-line by test

engineers with the aid of visualization tools.

Key Ideas Verdict management and automatic test verdict synthesis is quasi-completely

lacking from the proprietary test languages.

4.6 Time Management

An overview of the different features related to time management can be found in

Figure

Time Management

[

¥ ¥ v ¥
Time Control Classic Timers Time Stamping ;
Granularity (all) (PLy, PLy, TTCN-3) Unit Types
I
7 ¥ v v
Block of : -
Test Test Component q R Physical Time Leafeel T
Instructions Instruction ogical Time
(PLs) (PLy, TesthL) #Li (PLy ‘TF;LSNTZ?ML L L

Timed Stimulation
(PLy, PLy, PLs, PLy,
TestML, extended
TTCN-3)

Timed Observation
(PLy, PL,, TestML,
TTCN-3)

Figure 4.8: TimeManagement -
Time is not a major concern for a language like TTCN-3. It addresses functional

issues of distributed systems and merely offers basic timer operations using the local
clock of components. Note that real-time extensions have been proposed [84. [86], with

51

4. TEST LANGUAGES ANALYSIS

a time-stamping of communication events and a timed control of events, although they
are not yet part of the standard.

For in-the-loop testing, time is a prevalent notion. Embedded systems process
time-stamped data and typically exhibit execution cycles of predefined duration. We
already mentioned that the test languages offer a number of time-dependent stimulation
patterns (Listings to . Data observation can also be made time-dependent,
as in the PL; and PL, instructions found in Listing [4.13}

1| /* Waiting for an event in PL_.1 x/
eventToolkit.waitValue(myAccessor, expectedValue, tolerance, timeout);

/* Waiting for an event in PL.4 x/
5| eventToolkit . waitCondition (myCondition, timeout, checkPeriod);

Listing 4.13: Waiting for an Event in PL; and PL4

Note that PL; and PL4 run on top of real-time operating systems.

Usually, time is expressed in physical units (e.g., in seconds). In PLs and PLy,
we found some instructions with logical units (i.e., a number of cycles). This is quite
natural for the MiL testing usage of PLo, because the execution of the test components
can be precisely synchronized with the execution of the models. The resulting test
system can be simulated in a stepwise manner, cycle by cycle. Such a synchronization
is of course not possible for the other forms of in-the-loop testing. Rather, test control
facilities are offered to make the execution of the test compatible with cycle durations
in the target system.

Listings to show the facilities offered by PL;, PL3 and PL,. Depending on
the language, timed test execution control is applied at a different level of granularity:
from blocks of instructions to entire tests.

The finest-grained control is in PLy. It is at the level of blocks of instructions, where
a test can contain blocks to be executed in bounded time on tick reception from the
synchronization service (Listing . Currently this functionality provided by PLy
is deprecated, but was presented in the version of the user manual we analysed. A
problem is that the PL, instructions do not guaranty that there is no tick between
the end of a synchronous block (i.e., tick.complete()) and the beginning of the next
(i.e., tick.wait()). Discussions with test engineers concluded that an enhanced time-
triggered sequential execution could be helpful. It would allow a precise step-by-step
control over the interaction with SUT interfaces. Test behaviour could be “quasi-
synchronized” with the cyclic behaviour of the SUT. In order to address these issues, we
propose a possible solution in the form of a new type of test component (see Subsection
5.4.3]).

In PLq, test execution control is at the component level. A user code instance is
either asynchronous or periodic. The periodic activation comes with a control of the
execution time, which must not exceed the period.

92

4.6 Time Management

PL3 does not have the notion of component, but a test can be repeated periodically.
When test execution is not deterministic, this allows for the execution of various possible
interleavings.

We did not include TestML examples in Listings to Compared to the
others, this language would have a very different flavour due to the use of hybrid
timed automata. Note that the automaton formalism inherently has the possibility to
represent a precise timed control of test execution.

As can be seen, the forms of timed control are heterogeneous among the languages.
It is usually not necessary to have a precise timed control over all test components.
However, parts of the test will need to be aware of the time scales in the system under
test and of its cyclic behaviour. This is where facilities like periodic activation and
bounded time execution prove useful.

Key Ideas

» Time can be measured in physical and logical units, for respectively hardware-in-
the-loop and software/model-in-the-loop testing.

» Predefined timed stimulations and wait instructions are offered.

» Time management is achieved at different granularity levels, ranging from blocks
of instructions to entire tests.

» Periodic activation and bounded time execution facilities are offered.

» A step-by-step control of the interaction with the SUT would be useful, for more
precise testing of real avionics equipment.

With this section we have finished the analysis of the test language features. We
continue with a synthesis of the results of our analysis in a table of guiding principles

for our meta-modelling work.

1| /* User code instances can be declared as periodic in the XML
configuration file. If the execution time exceeds the period at
runtime, an error will be issued. x/

<userCodelnstanceDeclaration ... period = 7100.0”/>

Listing 4.14: Timed Control of Test Execution in PL;

/* A test can be periodic x*/

;)| testIdentification = {... testPeriod = 100.0;}

Listing 4.15: Timed Control of Test Execution in PLg

53

4. TEST LANGUAGES ANALYSIS

/* Execution control is for blocks of test instructions. It uses a tick
service. x/

w

/* Frequency is 50 hertz =/
tick . register (50);

tick . wait () ;

7 /* Code to be executed upon reception of a tick. An error is issued if
another tick occurs before completion. x/

tick .complete () ;

/* Asynchronous code x/
11
tick . wait () ;

13 /*Code to be executed upon reception of some subsequent tick. x/
tick .complete () ;

/* A pseudo periodic behavior can be expressed in a loop. Extra ticks may
occur between two iterations. x/

while (logicalCondition) {

19 tick . wait () ;

/* Pseudo—periodic code. x/
21 tick .complete () ;

}

N

/* From now on, no tick synchronization. x/
25| tick . stop () ;

Listing 4.16: Timed Control of Test Execution in PLy4

4.7 Meta-Modelling Guiding Principles

Table [4.2] presents the list of principles that guided our formalization of the different
domain-specific concepts (e.g., test case, test component, test verdict) inside the test
meta-model. This list is derived from the key ideas found at the end of each previous
subsection.

We briefly discuss here the “General Guiding Principles”. They are declined into
more specific principles found in the rest of the table. For the reduction of the level
of heterogeneity we consider that a controlled customization/extension of the test de-
velopment solution is desirable. Consequently, new types of SUT interface types and
associated test actions can be added at predefined extension points, when needed. We
propose a homogeneous access approach for the interfaces of the SUT, based on the
hierarchical organization of its ICD: the structure of the ICD is projected onto object
structures. Our proposal also deals with fault avoidance, by using only strongly typed
constructs, replacing current practice where SUT interface identifiers and test actions

are sometimes passed as string parameters. Finally, the structural (e.g., test case, test

54

4.7 Meta-Modelling Guiding Principles

component) and behavioural (e.g., calling of test actions on SUT interfaces) elements
are separated, in order to allow the development of a graphical editor for the structural
ones and a textual editor for the behavioural ones.

Category

Principles

General Guiding
Principles

Controlled customization / extension by test solution provider.
Homogenous modlelling approach for all ICD hierarchicallevels.
Strongly-typed constructs for faultavoidance.

Separation between structural and behavioural elements.

TestOrganization
Principles

Inter-test organization concepts:test case, test group, test suite.
Intra-test organization concepts: test section, test component.

SUT Interface
Description Principles

Structured view of SUT interfaces, allowing navigation across hierarchicallevels.
Extension points to enrich the available setof ICD elementtypes.

« Differenttypes oftest component: sequential, periodic, cycle-by-cycle test components
andtest monitors.

+ Static test architecture (i.e., no dynamic creation oftest components).

+ Directaccessto all declared ICD elements from any test component(i.e., no needto
explicitly declare a connection).

« Directaccessto atest pool of auxiliary data (sharing) and events (synchronization):
one producer and potentially many consumers.

+ Indirectaccess by means oftest componentformalinterfaces linkableto any ICD or
testpool element, for multiple instantiation and reusability .

TestArchitecture
Description Principles

+ Imperative programming paradigm.

« Execution flow control statements (e.g., conditional and repetition statements).

+ Automatic verdict management: synthesis of a global verdict from local ones.

+ Extensionpointsto enrich the available set of test actions forthe varioustypes of ICD

elements.
Behaviour Description + Testactions attachedto ICD elements accordingtotheir type, callable from a test
Principles component.

+ Testcomponent execution control (e.g., start a test component).

+ Specifiable behaviour constrainedby the type of component.

« Timed execution for periodic and cycle-by-cycle test components.

+ Timedtestactions (e.g. ramp). Explicit duration parameter and execution time upper-
bounds fortime-related checks(e.g., compatibility with periodicity).

Table 4.2: Test Meta-Modelling Guiding Principles

Table includes all interesting features we found in our analysis of test languages.
In addition to them, we propose two new ones that have been deemed useful.

The first new feature is the cycle-by-cycle test component (“Test Architecture De-
scription Principles”, bullet 1) that is usable for specifying precise test behaviour with
respect to the cyclic behaviour of the SUT. The component has blocks of instructions
to be executed at consecutive cycles.

The second new feature is based on an issue we identified with the existing propri-
etary test languages: they lack control over the type of behaviour that test engineers
can specify inside the different types of test artefacts (e.g., test case, test component).
No control exists over the execution flow (e.g., repetition, conditional statements) and
SUT interaction test actions that can be called. For example, unbounded repetition
statements and test actions exhibiting durations (e.g., ramp, sinus) higher than the

55

4. TEST LANGUAGES ANALYSIS

period of a periodic test component can be called inside the periodic test component.
Moreover, several test components are allowed to call test actions with side-effects (i.e.,
reading the value of an application parameter is side-effect-free, while writing it has side
effects) on ICD elements. This can lead to clashes and unexpected behaviour. Such
test specification problems should be detectable before execution. Consequently, our
second new feature is to constrain and validate the test behaviour before its execution,
in order to prevent inconsistencies (“Behaviour Description Principles”, bullet 7).
Chapter [5] presents the test meta-model we defined. It shows the manner in which
the aforementioned guiding principles where taken into account by our meta-modelling

work.

4.8 Conclusion

In this chapter we have analysed six test languages. We focused on four proprietary
languages (from PL; to PL4) that are currently employed in the avionics industry,
for the in-the-loop testing of avionics embedded systems, at different integration (i.e.,
component, system and multi-system) and maturity (i.e., model/software/hardware-
in-the-loop) levels of the system under test. For comparison purposes, we also looked
at a test language issued from a research project in the automotive industry (TestML)
- covering the same type of testing activity, as well as a mature international standard
(TTCN-3) used for the testing of distributed system in the field of networking and
telecommunications. To the best of our knowledge, no such analysis has been performed
before. A threat to the validity of our analysis is the fact that our sample of test
languages is limited. In any case, it is representative of the partners of Cassidian
Test & Services. Moreover, we had the opportunity to discuss test language issues
while taking part in an industrial project assembling various stakeholders in the field
of avionics.

Our analysis focused on a number of features and the way they are offered by each
test language. It confirmed the heterogeneity of test languages: not all test languages
offer the same features, shared features are offered in different manners, and sometimes
even a same language offers one feature in different manners. It would thus be difficult
to choose one of the proprietary test languages from our list, slightly improve it and
retain it as a standard for the avionics domain.

We consider that our test languages analysis can be useful for the stakeholders in
the avionics domain. If they already have a test language, then they can improve it by
taking into account the best practices we identified. If they wish to define a new test
language, our analysis has revealed the set of domain-specific concepts that need to be
considered.

o6

4.8 Conclusion

The analysis of test languages convinced us that existing standardized test lan-
guages used in other fields are not easily portable to our domain. Test languages used
in hardware testing (ATLAS [112], ATML [I13]) target mostly structural electronic
circuitry defects that are detected by applying electrical signals at different places in
the circuit. In contrast, the in-the-loop testing of avionic embedded systems targets
the functional logic of the system, implemented by software components. TTCN-3 [82]
targets mostly open-loop distributed systems, where the asynchronous sending of a few
messages triggers the functional activity of an otherwise quiescent system. This allows
TTCN-3 to abstract all interactions with the system under test into a small number of
core instructions. This approach does not correspond to our industrial context, where
the system under test exhibits a cyclic behaviour and where the number of instructions
is high and dependent on the type of communication mean (e.g., the AFDX and ARINC
429 each have their own specific possible interactions).

Our analysis convinced us that the multiplicity of in-house solutions should be
addressed at a higher-level, the one of test concepts. This was the foundation for
proposing a model-driven approach where test models are developed, maintained and
shared, and are then automatically translated into target (possibly in-house) executable
languages. The model becomes the central entity of the test development activity,
replacing current approaches where the code occupies this position. The shift is driven
by the perception that test software is indeed software, and that test development can
benefit from advanced software engineering methodologies [92], such as meta-modelling
techniques and model-to-code transformations.

In order to pursue our approach, we developed a meta-model of in-the-loop tests that
captures the language concepts we identified as of interest. Our analysis of the sample
of test languages has lead to the identification of a number of test meta-modelling
guiding principles. Table presents a synthesis of these guiding principles, that were
used when defining the test meta-model. We present the test meta-model next, in
Chapter

o7

4. TEST LANGUAGES ANALYSIS

o8

5]

Test Meta-Model

This chapter presents the test meta-model we defined. It is specific to the in-the-loop
testing of avionics systems, integrating a rich set of domain-specific concepts extracted
from our analysis of test languages (Chapter . The definition of the test meta-model
followed the guiding principles shown in Figure We presented the test meta-model
in an article accepted at an international conference [118].

The test meta-model allows for customization and maintenance of the testing so-
lution, by providing a clear separation between the test solution provider and user
sections, with predefined extension points. Customization refers to the choice that the
test solution provider has over the functionalities that a test solution user has access
to. Maintenance refers to the fact that the test solution provider can add/modify/re-
move functionalities in a controlled way. The test meta-model also keeps a separation
between structural and behavioural concepts. Structural concepts are entered using a
graphical editor, while a textual editor is offered for the behavioural concepts. Still, all
elements are consistently integrated, with type-dependent restrictions for the behaviour
attached to the structure. Overall, the model-driven approach should contribute not
only to homogenization at an abstract level, but also to fault avoidance. Some program-
ming errors are avoided by construction, or detected by automated checks performed
on the test models.

In Section [5.1] we briefly introduce the meta-modelling language we used: Eclipse
Modeling Framework (EMF) Ecore. The following sections present the constituents
of the meta-model, an overview of which is given in Figure We first present the
separation between the test solution provider and the test solution user sections in
Section Afterwards, we discuss the test solution user section and the test context
in Section Its high/low-level structural concepts (e.g., test case, test component,
test section for a test case) are presented in Sections and respectively, while

its behavioural concepts (e.g., test action call statements) are discussed in Section

59

5. TEST META-MODEL

Finally, we show the mixed (graphical and textual) test editors that can be defined in
Section Section [5.8] presents the conclusion.

Test Meta-Model

Test Solution Provider Section Test Solution User Section

Test Contexts

Systemunder Test Interface Types

High-Level Structural Concepts (e.g.,
test case, test component)

Toolkits

Low-Level Structural Concepts
(e.g., test section)

Test Actions

Behavioural Concepts (e.g. test
action calls)

Figure 5.1: Test Meta-Model - High-Level Overview -

5.1 Eclipse Modeling Framework (EMF) Ecore

We retained EMF Ecore [119] as the meta-modelling language. The EMF project is
a modelling framework with facilities for building tools and other applications based
on a structured data model. EMF has a distinction between the meta-model and the
actual model. The meta-model describes the structure of the model. A model is then
the instance of this meta-model. The manner in which a meta-model constraints the
definition of models is similar to the manner in which a language grammar constrains
the writing of code in the given language. From a model specification serialized in XML
Metadata Interchange (XMI) [120], EMF provides tools and runtime support to produce
a set of Java classes for the model, along with a set of adapter classes that enable viewing
and command-based editing of the model, and a basic editor. Moreover, EMF allows
access to associated tools to produce specialized graphical editors (Graphical Modeling
Framework (GMF) [121], Graphiti [122]), textual editors (Xtext [123]), checkers (Object
Constraint Language (OCL) [124]), as well as code generators (Acceleo [125], Xpand
[126]).

An EMF Ecore meta-model comprises the following types of elements, similarly to
a UML [93] Class Diagram:

60

5.2 ProviderData and UserData

e EPackage: represents a set of classes,
e EClass: represents a class, with zero or more attributes, operations or references,

- EAttribute: represents an attribute, which has a name and a type,

- EOperation: represents an operation, which has a name, a type and param-
eters,

- EReference: represents one end of an association between two classes, it has
flag to indicate if it represent a containment and a reference class to which
it points,

e Inheritance: refers to the ability of one class (child class) to inherit the identical
functionality of another class (super class), and then add new functionality of its

own,
e EEnum: represents a set of literals,
- EEnumlLiteral: represents a literal,

Our test meta-model integrates a rich set of concepts formalized in 190 EClass el-
ements. Their characteristics and relations are formalized using 340 EAttribute and
EReference elements, as well as 18 EEnum elements. For some of the concepts, the
traditional two-level (meta-model and model level) instantiation step offered by EMF
Ecore was not sufficient. Let us take the example of the component concept. We
actually need three levels: the abstract test component concept, several user-defined
components (each with its behaviour), and for each component various instances in
the test architecture. In such cases, we used the Type Object design pattern [127].
It consists in decoupling instances from their type. Hence, we have two EClass ele-
ments at the meta-model level (e.g., component type and component instance) with
an association between the two. This method increases the size of the meta-model but
gives the required flexibility to populate the model level. The same pattern is used
for our customization facilities, where SUT interface types need to be created by the
test solution provider and afterwards be instantiated several times by test engineers for
their specific SUT.

5.2 ProviderData and UserData

The root of the test meta-model is the Database (Figure. It contains the Provider-
Data and UserData, which separate the elements that are defined by the test solution
provider from those defined by the test solution user (test engineers). This is a first
important meta-modelling choice: the test solution user receives a pre-instantiated

61

5. TEST META-MODEL

model from the test solution provider, where only the ProviderData section is filled in.
Its elements are accessible to the test solution user inside the UserData section. The
test solution provider can create different variants for its customers, as well as update
existing ones. The test solution provider section offers extension points for SUT types,
SUT interface types, toolkits and test actions that they possess, as existing elements
of these types are abundant and new ones can appear.

.) HaslserDatas 0.*
1."HasProviderDatas E Database |q,
T name : EString l
1 UsesProviderData H UserData
T name : EString
H ProviderData 0.1
T name : EString 'IsOwnedByF‘rDviderData HasSystemUnder TestTypes
HasToolkits - - 0.*
0>] IsOwnedByProviderData
0.1
HasGenericConnectionPaoints HachnnectionPointT}rpe“sl
0.1 0.
El Toolkit H GenericConnectionPaint H connectionPointType H SystemUnderTestType
T name : EString T name : EString | T name : EString | T name : EString
» o r r
HasProviderDefinedTestActions
H Testaction
T name : EString 0.*
T TemporalType : TemporalType \HasproviderDefinedTestActions
= T BlockingType : BlockingType
i fined 0" 2 BoundedType : BoundedType [..* HasProviderDefinedTestActions
HasProviderDefinedTestActions | = SideEffectType ; SideEffectType has

H Parameter
0.* T name : Estring 0.1
T DataType : DataType
HasInputParameters HasOutputParameter
<enumeration> > |<<enumeration>> |<<enumeration=>| [<<enumeration> >
E TemporalType 2 BlockingType £ BoundedType 2 SideEffectType
= UnTimed = MonBlocking = UnBounded = SideEffectFree
= Timed = Blocking — Bounded = SideEffect

Figure 5.2: Database Excerpt -

Constraints are imposed on the manner in which new functionalities are added,
contributing to fault avoidance: the test engineer is obliged to respect the methodology
proposed by the test meta-model, being less prone to render it incoherent. A System-
UnderTestType is used to assemble test actions that are specific to SUT types (e.g., test
actions specific to the virtual avionics SUT type). A GenericConnectionPoint is used
to assemble test actions that are common to all the elements at a particular ICD level

(e.g., test actions common to all physical bus types). A ConnectionPointType is used

62

5.2 ProviderData and UserData

to assemble specific test actions (e.g., test actions specific to the AFDX physical bus
type). Their different specializations (e.g., GenericPhysicalBus, LogicalBusType)
are shown in Figure 5.3

H PropertyType
HasPropertyTypes. | @ name : EString HasPropertyTypes
0.* T PropertyDataType : DataType 0,.*
H Genericconnectionfoint H connectionPaintTyne
T name : EString | T name : EString
]
H GenericPhysicalBug 0.1 H PhysicalbusTypd

ReferencesGenericPhysicalBus

0.1
ReferencesPhysicalBusType

H LogicalBusType

Figure 5.3: GenericPhysicalBus/PhysicalBusType Excerpt -

Any GenericConnectionPoint and ConnectionPointType element can possess
PropertyType elements (Figure . Let us take the example of an AFDX Virtual
Link. Virtual Links are unidirectional logic path from a source end-system to all of the
destination end-systems. Unlike a traditional Ethernet switch which switches frames
based on the Ethernet destination or MAC address, AFDX routes packets using a
Virtual Link identifier. Inside our test model we can define an AFDX Virtual Link
LogicalBusType that owns the Source_ IP and Destination IP PropertyType elements
(Figure . It will be shown later on, in Subsection the manner in which these
types are instantiated, in conformance to the Type Object design pattern philosophy.

H (LogicalBusType) AFDX Virtual Lin
= (PropertyType) Source_IP
= (PropertyType) Destination_IP

Figure 5.4: Test Model Level - ProviderData Example -

A number of EReference elements were introduced inside the test meta-model in
order to define the links between the different ICD hierarchical levels (Figure [5.3).
This part of the test meta-model can be seen as an ICD meta-model. For example, an
instance of a complex physical bus type (e.g., AFDX) can possess several instances
of logical buses (e.g., AFDX Virtual Links). This relation is defined through the
ReferencesPhysicalBusType EReference between an AFDX PhysicalBusType and
the corresponding AFDX Virtual Link LogicalBusType. When test engineers instan-
tiate these elements in order to define the ICD of a specific SUT, verifications are

63

5. TEST META-MODEL

performed with the aid of OCL in order to verify that the instances respect the con-
straints defined on the types. For example, we can verify that an AFDX Virtual Link
LogicalBusInstance is owned by an AFDX PhysicalBusInstance.

The ReferencesGenericPhysicalBus relation is employed to allow a specific bus
type to know the generic bus test actions. All test actions referring to interactions with
the SUT (e.g., sending a message, setting the value for an application parameter) are
distributed inside these GenericConnectionPoint and ConnectionPointType struc-
tures. For example, as all physical buses can implement the stopEmission test action,
then this test action should be attached to a GenericPhysicalBus. Afterwards, any
specific physical bus, such as the AFDX or ARINC 429 PhysicalBusType elements,
would reference the generic physical bus. Additional test actions, coming from external
utilities, are distributed inside Toolkit structures (e.g., fileToolkit with write ()).

Figures and show only an excerpt of the test meta-model with regard to the
specializations of the GenericConnectionPoint and ConnectionPointType elements
and the relations that exist between them. The test meta-model actually covers all the
hierarchical levels present in an ICD:

e GenericConnector/ConnectorType,

e GenericPin/PinType,

e GenericPhysicalBus/PhysicalBusType,

e GenericLogicalBus/LogicalBusType,

e GenericMessage/MessageType,

e GenericMessageField/MessageFieldType,

e GenericApplicationParameter/ApplicationParameterType.

Notice in Figure the different EAttribute elements possible for a TestAction.
They are useful for timing calculations and clash detection.

The TemporalType refers to whether a TestAction has a duration or not (e.g.,
a Timed ramp() stimulation versus a UnTimed setValue()). When test engineers call
a Timed::TestAction inside a TestComponent, the duration parameter is rendered
explicit.

The BoundedType refers to whether a TestAction can be called with an execution
time upper-bound.

The BlockingType refers to whether the execution of a TestAction pauses the
execution of the caller TestComponent. A Blocking::TestAction interrupts the exe-
cution of the caller TestComponent, with the TestComponent continuing its execution

64

5.3 TestContext

only after the execution of the TestAction is finished. A NonBlocking:TestAction
executes in parallel with the caller TestComponent.

Finally, the SideEffectType refers to whether the execution of a TestAction
produces side-effects on the element on which it is called. For example, a Side-
Effect::TestAction is the writing of a new value of an application parameter, while a
SideEffectFree::TestAction is the reading of the value of an application parameter.

5.3 TestContext

The UserData contains TestContext instances. The concept of TestContext is in-
spired from the one proposed in the UML Testing Profile (UTP, [04]). It serves as a
container for a collection of test cases applied to a SUT, together with an architecture
of test components.

Figure 5.5 shows a high-level view of the TestContext.

0.1 HasTestContexts
‘IsO'-NnedByl_JeserData 0.*
H UserData H TestContext
T name : EString £ name : EString
E Testarchitecture B systemUnderTest o H Testsuite
— P Q.. P—
2 name : EString = name : EString HasTestsuites | T name 1 EString
= IsSimulated ; EBoolean | HasSystemsUnder Test o T TestSuiteVerdict : Verdict
0.1 "
HasTestarchitecture IsOwnedByTestContext
1 E TestGroup
IsOwnedeyTestrase 1} E Tfs-tcase 0% HasTestGraups | 5 name : EString
T name : EString ! 0..*| P TestGroupVerdict : Verdict
T TestCaseVerdict : Verdict | HasTestCases
0.,*
HasTestComponentinstances H sharedbata
B TestComponantinstance B TestComponant 2 name : EString
T name : EString T name : EString 0.+ |HasSharedData | o pataType : DataType
2 InstanceMurmber @ EInt o IsGenerated : EBoolean 0.* T Value : EString
2 TestComponentverdict : Verdict HasTestComponents
HasEvents & Bvent
0.* T name : EString

Figure 5.5: TestContext Excerpt -

The SystemUnderTest describes the interfaces of the tested entity according to its
1CD.

The TestCase controls the parallel execution of TestComponent elements. A test
component can be instantiated several times inside a test case, via TestComponent-
Instance elements. The instantiation relation is not present in Figure [5.5] as it is de-
fined on the specializations of the shown concepts (e.g., a SequentialTestComponent-
Instance instantiates a SequentialTestComponent). Figuredoes not present all of
the links between the test case and other elements contained by the test context (e.g.,

65

5. TEST META-MODEL

the EReference IsSequencedByTestSuites linking TestCase and TestSuite elements
is not shown).

Test components interact with the SUT. They can also interact with each-other, by
means of SharedData and Event elements globally declared in the test context.

For the test architecture, we defined a policy of one producer and potentially many
consumers. The TestArchitecture associated with a test case determines which test
component instance produces a global shared data or event. It also links the formal
parameters (if any) of a test component to the SUT, shared data or events.

Test cases can be regrouped within either a TestSuite (for execution order defini-
tion) or a TestGroup (for grouping tests that share a common property).

Conceptually, the test context is actually divided into three hierarchical levels:
e high-level structural concepts (e.g., TestCase, TestComponent),
e low-level structural concepts (e.g., TestSection in a TestCase),
e behavioural concepts (i.e, TestCaseStatement, TestComponentStatement).

These boundaries are useful for the definition of the mixed (graphical and textual)
test model development environment: structural elements are better described inside
a graphical editor, while behavioural ones with a textual editor. Both types of editors
are customizable: several graphical and textual representations can be defined on top
of the same test meta-model. For example, in the textual editor, the concrete syntax

of behavioural elements can be customized to accommodate the user’s habits.

5.4 High-Level Structural Concepts

We discuss in this section the different high-level structural concepts in more detail:

e SystemUnderTest (Subsection [5.4.1)),

TestCase (Subsection [5.4.2)),

TestComponent (Subsection|5.4.3) and the verdict management (Subsection[5.4.4)),

TestArchitecture (Subsection [5.4.5),

TestGroup and TestSuite (Subsection [5.4.6)).

66

5.4 High-Level Structural Concepts

5.4.1 SystemUnderTest

The SystemUnderTest is used to describe the interfaces of the tested entity, according to
its ICD, by comprising ConnectionPointInstance elements (Figure . Notice how
the ICD structure of hierarchical levels is reproduced inside the tree-like structure of
the SystemUnderTest. While the ProviderData corresponded to an ICD meta-model,
the SystemUnderTest corresponds to an ICD model.

H SystemlnderTestType
T name . EString

IsOfSystemlUnder TestType
1

H SystemUnderTest | g IsOwnedBySystemLnder Test
T name : EString -

o IsSimulated @ EBoolean
1 [sOwnedBySystemUnderTest

HasFPhysicalBusInstances
o,.*

H PhysicalBusInstance

IsOwnedByPhysicalBusInstance

0.1
1 IsOwnedByPhysicalBusInstance

0..*HasLogicalBusInstances
H LogicalPusInstance

0..1Is0wnedByLogicalBusInstance

b
0..* HasMessagelnstances 0.
HasMessagelnstances

H Messagelnstance
2 CommunicationDirection : CommunicationDirection |l

0.1

0..1Is0OwnedByMessagelnstance }

HasMessageFieldInstances
0,.*

H MessageFieldinstance

HasEngineervariableInstances
0.*

H EngineerVariablelnstance

= Value @ EString
o Defaultvalue @ EString
o CommunicationDirection : CommunicationDirection

Figure 5.6: System Under Test Excerpt -

ConnectionPointInstance elements are of the ConnectionPointType variants de-
fined previously in the ProviderData (Figure . For example, we can define an
AFDX_VL_1 LogicalBusInstance that is of the AFDX Virtual Link LogicalBusType.
This applies also to PropertyInstance elements that are of the PropertyType vari-
ants. For example, the AFDX_VL_1 LogicalBusInstance can possess the Source IP

67

5. TEST META-MODEL

and Destination IP PropertyInstance elements corresponding to two PropertyType
elements with the same name (Figure [5.8)). This approach is coherent with the Type
Object design pattern.

E PropertyType E FropertyInstance
T name : EString ! 2 name : EString
¥ PropertyDataType : DataTypelfOfFropertyType = PropertyValue : EString
HasProperty Types HasFPropertylnstances
0.* 0.*
B ComvectionPointTyoe g comnectionfointinstance |
—>f § name : ESfring | T name : EString -
] o Permanentldentifier | EString
H PhysicalBusType 1 H PhysicalBusInstance
[sOfPhysicalBusType
0.1 1 IsOwnedByPhysicalBusInstance

ReferencesPhysicalBusType

0..* HasLogicalBusInstances
H LogicalPusInstance

H LogicalBusType 4

IsOfLogicalBusType

Figure 5.7: Connection Point Instance Excerpt -

H (LogicalBusType) AFDX Virtual Link
= (PropertyType) Source_IP
= (PropertyType) Destination_IP

lsOfLogicalBusType

H (LogicalBusInstance) AFDX_VL_1
= (Propertylnstance) Source_[P
= (Propertylnstance) Destination_IP

Figure 5.8: Test Model Level - AFDX Virtual Link Example -

Not all connection point instance specializations are shown in Figure but the
test meta-model covers all ICD hierarchical levels:

e ConnectorInstance,

e PinInstance,

e PhysicalBusInstance,
e LogicalBusInstance,

e MessageInstance,

68

5.4 High-Level Structural Concepts

e MessageFieldInstance,

e ApplicationParameterInstance.

5.4.2 TestCase

A TestCase is an executable element whose execution status is managed either auto-
matically by the test model execution environment via test suites, or manually by a
test engineer. A test case controls the execution of test component instances (which
are executable elements as well). It can also own a test architecture that defines the
mappings between the interfaces of the test components and those of the system under
test, the events and the shared data (Figure A test case cannot interact with the
SUT. It can possesses an InitializationSection in which initial values are set for
the different SharedData elements it employs.

5.4.3 TestComponent

A TestComponent is an element that can be instantiated multiple times inside a test
case, as well as reused across several test cases, yielding several TestComponent-
Instance elements. The test component itself is not a directly executable element,
but its instances are and each one of them possesses its own execution thread. Only
test components are capable of interacting with the SUT. A Test component can di-
rectly access SystemUnderTest, SharedData and Event elements, as well as indirectly
through means provided by its interfaces that we discuss later on.

The isGenerated EAttribute is used in order to identify test components imple-
mented outside the test model, but whose execution needs to be controlled by a test
case. For example, one can control the execution of an externally implemented com-
plex behaviour (e.g., C++/Java class) inside the test model, by assigning it to a test
component. Thus the external behaviour can be instantiated multiple times as well.
This functionality is useful for example in order to control environment models coded
outside of the test model.

Four types of TestComponent element types have been defined (Figure , de-
pending on the behaviour to be specified:

e TestMonitor,
e SequentialTestComponent,
e PeriodicTestComponent,

e CycleByCycleTestComponent.

69

5. TEST META-MODEL

A TestMonitor has a simple behaviour of the form logicalCondition — behaviour.
Notice that the life duration of a test monitor is explicit (ActivatedDuration), as well
as the frequency with which the logicalCondition is evaluated (PredicateCalculation-
RefreshDuration).

A SequentialTestComponent has a behaviour executed only once.

A PeriodicTestComponent has a behaviour that is executed periodically.

A CycleByCycleTestComponent has several behaviours, each one being executed
during one or several consecutive cycles of the SUT. The periodic and cycle-by-cycle test
components are specific to our industrial context, as they can be “quasi-synchronized” with
the execution cycles of the SUT.

Notice in Figure the Period/CycleDuration and TimeMeasurementUnit EAt-
tribute elements. As these elements belong to the test component instances, it is
possible to instantiate a periodic test component several times, with different values for
its period duration. Also notice in the same figure the decoupling of component types
and instances, based on the Type Object design pattern.

H TestCase
T name : EString
1 | T TestCaseVerdict : Verdict

[sOwnedByTestCase

B TestComponeant H TestConmponentinstance |
—{ T name : EString T name : EString]
o IsGenerated @ EBoolean 0..*| 2 InstanceNumber : Elnt
HasTestComponentinstances | F TestComponentVerdict : Verdict

H SequentialTestComponent
1 = IsEnvironmentModel : EBoolean

IsInstanciatedByPeriodicTestComponentInstances 0., *
1 IstnlnstanceOfPeriodicTestComponent

H PeriodicTestComponentinstance
H PeriodicTestComponent T PeriodDuration : EInt —
— = IsEnvironmentModel ;| EBoolean T TimeMeasurementnit : TimeMeasurementUnit

H CycleByCycleTestComponent
— = IsEnvironmentModel | EBoolean

H TestMonitor

Figure 5.9: TestComponent Types Excerpt -

A test component has a number of formal interfaces: Parameter and Accessor
elements (Figure [5.10). They were defined in order to allow the reuse and multiple-
instantiation of the test components.

70

5.4 High-Level Structural Concepts

0..* Hasiccessors l l 0.* HasParameteri
g Accessor | B TesiComporant H Parameter
T name : EString T name : EString T name : EString
o IsGenerated : EBoolean T DataType : DataType

H ConrectionPoirtdccassor

H PhysicalBusAccessor ReferencesPhysicalBusType 1 H PhysicalPusType

H LogicalBusAccessar ReferencesLogicalBusType 1 H LogicalPusTyps

H SharedDatafccessor

H EventAccessor

Figure 5.10: TestComponent Interfaces Excerpt -

A parameter is given a value when instantiating a test component (i.e., call-by-
value argument). For example, if a test component verifies a behaviour of the SUT
where the value of an application parameter is checked against several nominal values
and tolerances, then the Nominal Value and Tolerance can be parametrized. Not shown
here, each test component instance owns ParameterInitialization elements that link
a parameter to a ParameterInitialValue (the one given at instantiation). During the
execution of the test component instance, the initial values of the parameters cannot
be modified.

The Accessor elements are used in order to reuse a same test component on dif-
ferent: connection point instances, property instances, shared data or events (i.e.,
call-by-reference argument). Notice that the ConnectionPointAccessor elements are
strongly-typed, as they reference ConnectionPointType elements. This applies also to
the PropertyAccessor.

For example, if several application parameters need to be verified against their Nom-
inal_Value and Tolerance, then an application parameter accessor should be defined.
The behaviour of the test component would only manipulate the application parameter
accessor. Afterwards, within a test case, a test architecture would link the application
parameter accessor to the different application parameter instances, for each of its test
component instances. An OCL rule (Listing checks that the application parameter

accessor and the application parameter instance are of the same type (i.e., refer the

71

5. TEST META-MODEL

same ApplicationParameterType). For more information on the test architecture see
Subsection [5.4.5

Not all types of connection point accessor types are shown in Figure but the
test meta-model cover all ICD hierarchical levels:

e ConnectorAccessor,

e PinAccessor,

e PhysicalBusAccessor,

e LogicalBusAccessor,

e MessageAccessor,

e MessageFieldAccessor,

e ApplicationParameterAccessor.

In addition to the indirect access via its formal interfaces, a test component also has
a direct access to all SUT interfaces. This direct access, although convenient, can lead
to clashes when a same SUT interface is accessed by different test component instances.
In order to alleviate such problems, we propose the definition of ownership relations
between test component instances and SUT interfaces. The test architecture comprises
the definition of these relations. OCL rules prescribe that only owner test component
instances make side-effect accesses to owned SUT interfaces.

1| context ConnectionPointAccessorConnection

inv ApplicationParameterAccessorType_Is_ApplicationParameterInstanceType:

3 self.ProvidesAccessForConnectionPointAccessor

—>select (aAccessor: Accessor | aAccessor.ocllsTypeOf(
ApplicationParameterAccessor)).oclAsType (
ApplicationParameterAccessor) .

5 ReferencesApplicationParameterType .name

= self.ProvidesAccessToConnectionPointInstance

7| —>select (anlnstance: ConnectionPointInstance | anlnstance.ocllsTypeOf(
ApplicationParameterInstance)).oclAsType (
ApplicationParameterInstance).

IsOfApplicationParameterType .name

Listing 5.1: OCL Rule Example - ApplicationParameterAccessor Type Verification

We would like to finally discuss the possibility to declare ConnectionPointInstance-
Alias elements in order to shorten the identifiers of connection point instance elements
(Figure [5.11). These aliases do not act as formal interfaces for test components. A
test component can own several aliases, declared through the HasConnectionPoint-
InstanceAliases EReference. Each alias is linked to a SUT interface through the

IsAliasForConnectionPointInstance EReference.

72

5.4 High-Level Structural Concepts

HasConnectionPointinstancealiases IsliasForConnectionPointinstance
H TestCompoment 0.* H ConnectionPointinstanceAlias | B cornectionPointinstarce |
T name : EString - T name : EString T name : EString
= [sGenerated : EBoolean = Permanentldentifier | EString

Figure 5.11: TestComponent - ConnectionPointInstanceAlias Excerpts -

5.4.4 Verdict Management

Having presented the test case and test component /test component instance concepts,
it is now appropriate to discuss the verdict management considered for the test meta-
model. Notice in Figures [5.5] and [5.9] the TestCaseVerdict and TestComponent-
Verdict EAttribute elements.

As the proprietary test languages in the sample we analysed (from PL; to PLy)
lacked rich verdict management functionalities, we decided to propose a solution in-
spired from the one proposed by TTCN-3 [83]. Our test meta-model defines five ver-
dicts, with an order relation defined between them: None > Pass > Inconclusive >
Fail > Error.

The verdict of a high-level container (i.e., test case) is automatically computed from
the verdicts of the lower-level containers it includes (i.e., test component instances).
For example, let us consider a test case that owns two test component instances. If
the verdicts of the two test component instances are Pass and respectively Fail, then
the verdict of the test case is Fail (the Fail verdict has a higher order position than
the Pass verdict). A verdict can be overridden only by a verdict with a higher order
position. For example, an Inconclusive verdict can only changed if a Fail or Error
verdict arises. The Error verdict can only be set by the runtime/test platform when
the execution of the test case and test component instances encounters problems, for
example: when test actions are not executed or when the behaviour of a periodic/cycle-
by-cycle test component does not hold its timing constraints.

5.4.5 TestArchitecture

Figure [5.12] presents the TestArchitecture concept. A test architecture is always
associated with a test case.

The test architecture defines the connection of test component instance accessors
to SUT interfaces, SUT interfaces properties, shared data and events. This is achieved
through Connection elements. It also defines the ownership relation between test
component instances and the same set of SUT interfaces, SUT interfaces properties,
shared data and events. This is achieved through OwnershipRelation elements, that
implement the policy of one producer and potentially many consumers that we chose.

73

5. TEST META-MODEL

For example, notice in Figure how a ConnectionPointAccessorConnection
links a SUT interface accessor to a SUT interface. It defines the connection using
a triplet: the TestComponentInstance with its ConnectionPointAccessor and the
targeted ConnectionPointInstance. Figure also shows how a test component
instance is declared the owner of an SUT interface. This capability is useful for clash
detection, as only the owner is allowed to call test actions with side-effects (Figure
on the owned SUT interface. Clash detection can also be performed for access to SUT
interface properties, shared data and events.

IsOwnedBy Testarchitecture |H TestArchitecture
T name : EString

1

HasOwnershipRelations

HasConnections p—
0.* H FestComponantinstance 0.*
| T name : EString i i
_| Cerreetiny 2 InstanceMumber ; EInt E OwnershipRelation

T TestComponentVerdict : Verdict 1

ForTestComponentinstance OwningTestComponentinstance

OwnsConnectionFoints
ProvidesAccessToConnectionPointinstance 0.

—E ConnectionPointAccessorConnection 1 H commectionfomtinstance |

T name : EString

o Permanentidentifier : EString

H PropertyAccessorConnection

ProvidesAccessForConnectionPointbccessor
1

B SharedDatatcressorConnection| (B ConmectionCointdcoassar

H EventtccessorConnection

Figure 5.12: TestArchitecture Excerpt -

5.4.6 TestGroup and TestSuite

As mentioned previously when analysing the sample of test languages, inter-test orga-
nization is not a major issue for test languages. For this reason, we addressed in our
test meta-model only basic functionalities of this type.

A TestGroup is used for the logical organization of test cases (Figure |5.13). This
functionality is useful for requirements management. All test cases linked to a specific
requirement on the behaviour of the SUT can be put together within the same test
group

A TestSuite is used in order to define the execution order of test cases (Figure.
A test suite comprises a tree-like structure of test suite nodes: an execution tree. Each

74

5.5 Low-Level Structural Concepts

test suite node corresponds to the execution of a test case, and has one parent (except for
the first node) and a maximum of five children. These relations are defined through the
ReferencesParentTestSuiteNode and ReferencesChildTestSuiteNodes EReference
elements. Which of the five children is to be executed next depends of the verdict
obtained following the execution of the test case: None, Pass, Inconclusive, Fail,
Error. For this facility, notice the ParentNodeVerdictCondition EAttribute. For
example, one can define a test suite where if the verdict of a first TestCase_1 TestCase
is Fail then the TestCase_2 TestCase is executed next.

We would also like to introduce here the concept of state of the SUT (Figure. A
State is defined by a logicalCondition on the SUT interfaces. For example, different
Flight_Phase State elements can be defined for an Aircraft SystemUnderTest: Pre-
Flight, Taxi, Take-Off, Departure, Climb, Cruise, Descent, Approach and Arrival. Each
flight phase depends on the values of a number of application parameters, such as:
Aircraft_Speed and Aircraft_Altitude. For example, the Cruise state is defined for
an interval of the aforementioned application parameters: Aircraft_Speed €[Speedyin,
Speedprq:] and Aircraft_Altitude €[Altitudepin, Altitudeprq,]. The definition of states
for a SUT is useful as some test cases require the SUT to be in a specific state before
executing (see the RequiresSystemUnderTestState EReference). If this is not the
case, then an alert can be raised to the user with information on the incompatibility
between the test case and the state of the SUT. In this case, the test case is not executed.
This functionality was deemed interesting following discussions with test engineers.

5.5 Low-Level Structural Concepts

All of the high-level structural concepts we presented previously (the test case and the
test component types) have their behaviour organized into low-level structural concepts.

A test case organizes its behaviour inside TestSection containers (Figure [5.14).
Test sections are executed sequentially. This allows test engineers to organise their test
case, for example by defining an Initialization test section as well as a test section for
each test objective that is being verified.

A test component organizes its behaviour inside TestComponentElement containers.
Specializations exist for each type of test component, with the exception of the periodic
test component (i.e., its behaviour usually lasts for a short cycle and is afterwards
repeated): TestMonitorElement, SequentialTestComponentElement and CycleBy-
CycleTestComponentElement.

A test monitor has a TestMonitorPredicateElement and a TestMonitorContainer-
Element (Figure. The TestMonitorPredicateElement contains the logical Condition
that must become valid before the execution of the behaviour contained in the Test-

MonitorContainerElement.

75

5. TEST META-MODEL

H TestGroup 0.
T name : ESfring
T TestGroupVerdict : Verdict

IsOrganizedInto TestGroups

OrganizesTestCases

0. s *
- SequencesTestCases 0..*
<-<enumeration>=
2 Verdict |0. M IsSequencedByTestSuites |
- None H TestSuite H TestCase
- Pass T name ! EString ReferencesTestCases 1..*| T name : EString
= Inconclusive T TestSuiteVerdict : Verdict 2 TestCaseVerdict ; Verdict
= Fail
— Errar |
HasTestSuiteModes
0.* GuaranteedSystemlUnder TestState
, , H TestSuiteMode H state
ReferencesChildTestSuiteModes T name : ESTng = name : ESting 0.1
0.4 o TestSuiteNodeVerdict @ Verdict 0.1 -
o ParentVerdictCondition @ Verdict RequieredSystemUnder TestState
IsDefinedByPredicate
0.1 B owpression | 1.*

ReferencesParentTestSuiteMNode

Figure 5.13: TestGroup and TestSuite Excerpt -

1IsOwnedByTestCase HasTestSections 0..*

H TestCase H TestSection
T name ! ESfring T name : EString
T TestCaseVerdict ; Verdict

Figure 5.14: TestCase - TestSection Excerpt -

H restComponant H TestCamponsSiament
T name : ESring T name . ESring
o IsGenerated : EBoolean |

i

E TestMonitor B TestMonorClement
]
[sOwnedBy TestMonitor)) - -
o1 1 HasTestMonitorPredicateElement |H TestMonitorPredicateElement
[s0OwnedBy TestMonitor)) - -
0.1 1 HasTestMonitorContainerElement |H TestMonitorContainerElement

Figure 5.15: TestMonitor - TestMonitorElement -

76

5.6 Behavioural Concepts

H restComponant
T name : EString H restComponanttiament
o [sGenerated : EBoolean T name : ESfring
]
H SequentialTestComponent HasSequentialElements 1..* |5 Seguentiziiement
-]
]

H Sequentialklock

Figure 5.16: SequentialTestComponent - SequentialTestComponentElement -

A sequential test component has a set of SequentialBlock elements (Figure .
Similarly to the test sections of a test case, sequential blocks are executed sequentially.
They serve a similar purpose as the test sections, allowing test engineers to structure the
behaviour of the sequential test component into meaningful blocks (e.g., initialization,
stimulation, verification).

Finally, a cycle by cycle test component has a number of low-level structural con-
cepts that allow a test engineer to specify different behaviours for each cycle or sequence
of cycles: Cycle, IteratedCycle and ConditionRepeatedCycle (Figure [5.17)). The
Cycle has a behaviour to be executed only once, for a cycle. The IteratedCycle has
a behaviour to be executed for a fixed number of sequential cycles (Number0fCycle-
Iterations EAttribute). Finally, the ConditionRepeatedCycle has a behaviour to
be executed for a number of cycles dependant on the evaluation of a logicalCondition.
The execution of a condition repeated cycle ends when the logical Condition becomes
false or when the MaximumIterations EAttribute number is reached. By instantiating
the elements described above several times, a test engineer can easily specify a complex
behaviour, such as the one presented in Figure [5.18

5.6 Behavioural Concepts

Each of the low-level structural concepts employed for the organization of the behaviour
of test case and test component types owns a specific Behavior, depending on their
type. Figure[5.19shows the different low-level structural concepts on the left, with the
corresponding behaviour on the right.

Each behaviour type is comprised of specific Statement elements. The allowed
statements depend on the type of the element to which the behaviour is attached.
This adds a layer of supervision over the test engineer’s activity and is in favour of
fault avoidance. As mentioned previously, the test components are in charge of the
interaction with the SUT, being able to call test actions on its interfaces; while the

7

5. TEST META-MODEL

H TestComponsnt
T name : ESfring
= [sGenerated : EBoolean

H CycleByCycleTestComponent

HasCycleByCycleElements 1..*

B TestComponanitisment
T name @ EString

H CycleRyCycleTestComponentExpression

o RelationalOperator @ RelationalOperator

1 HasPredicate

H cycle

H cyciesylyciatiamant 4
I

H IteratedCycle

T MurnberOfCyclelterations @ EInt

H ConditionRepeatedCycle

= Maximumlterations : EInt

Figure 5.17: CycleByCycleTestComponentTestComponent - CycleByCy-
cleTestComponentElement -

. logicalCondition logicalCondition
CycleD t
yerepnrakLon =TRUE =FALSE

1 1

1 1

1 i l l
Cycle

A 3 -
Number 1 2 4 8 9 10
ITteratedCycle ConditionBRepeatedCycle

Flement | Cycle Cycle (NumberOfCycle | (LogicalCondition, Cycle

Iterations=2)

MaximumIterations=35)

Figure 5.18: CycleByCycleTestComponent - Complex Behaviour Example -

78

5.6 Behavioural Concepts

g sehavior |

0..1 IsOwnedByTestSection HasTestCaseBehavior 0..1
H TestCaseBehavio

H TestSection
T name : EString

H 7estCompanenttiement

> F name : EString ! H TestComponentiehavior
]

| |B Testvonior E’@’”‘S’”rl Has TestMonitorContainerBehavior 0.1 A
) l *D .1 IsOwnedByTestMonitor ContainerElement | i i i
H TestMonitorContainerElement H TestMonitorContainerBehavio i

HasTestMonitorPredicateBehavior 0..1

.. 11sCwnedBy TestMonitorPredicateElement |

H TestMonitorPredicateElement] E TestMonitorPredicateBehavio |

HasSequentialTestComponentBehavior 0.1

0.1 IsOwnedBySequentiaElerment

H Sequentisitiemant H SequentialTestComponentBehavio

]
]
H SequentialBloch

0..1 IsOwnedByPeriodicTestComponent

HasPeriodic TestComponentBehavior 0..1

H PeriodicTestComponentBehavior—

H PeriodicTestComponent
= IsEnvironmentModel : EBoolean

HasCycleByCycleTestComponentBehavior 0..1

‘U..l [sOwnedByCycleByCycleElement
B Cycietylycietiemeant H CycleByCycleTestComponentBehavior

— |
]
A H cycle

H IteratedCycle
T NumberOfCyclelterations : Elnt

H ConditionRepeatedCycle
= Maximumlterations : EInt

Figure 5.19: Behavior Excerpt -

79

5. TEST META-MODEL

test case is in charge of controlling the execution of the corresponding test component
instances. The relation between the behaviour and corresponding accessible statements
is defined on their specializations, for example: TestCaseBehavior and TestCase-
Statement (Figure. This was necessary in order to prohibit, for example, a Test-
ComponentBehavior to access TestCaseStatement elements, which would have become
accessible because of the Inheritance relation, had it been defined on the generalizations:
Behavior and Statement.

g ashovior | g Ststemant |
H TestCaseBehavio H TestCaseStstemeant
]
[sOwnedBy TestCaseBehavior |
0.1
HasTestCaseStatements
o,.*

El ExecutionFlowStatementi] H TestCasatxarutionciowSiatemeant
]]

H BasicStatementi] H TestCasafasicSistameant
T]

|

H SpecificStaternenti} H TestCaseSpacificStatamant

I '7
x]
<<enumeration=>
H Crecuiablatiemant 2 ExecutableElementOperation,

2 ExecutionStatus : ExecutionStatus OnExecutableElements = StartExecutableElement

8 StartExecutableElement() : ERBoolean : gt:pEEecutatt;l;elE:glment "

@ StopExecutableElement() | EBoolean 0.* _ Rause xE:!cu ta?:l xle;rl'nen t

® PauseExecutableElement() : EBoolean ST T

H ExecutionControlOperation
T CallsExecutableElementOperation : ExecutableElementOperation

Figure 5.20: TestCaseStatement Excerpt

Three types of statements have been defined, with each type being specialized itself
for each of the different high-level structural concepts (Figures and 5.21):

e ExecutionFlowStatement (Subsection [5.6.1)),

80

5.6 Behavioural Concepts

e BasicStatement (Subsection [5.6.2]),

e SpecificStatement (Subsection |5.6.3)).

5.6.1 ExecutionFlowStatement

An ExecutionFlowStatement is used for the definition of instructions that control the
execution flow, for example:

e ConditionalStatement (i.e., if ...then ...else),
e IterationStatement (i.e., for ...),
e RepetitionStatement (i.e., while ...).

Observe the three sequential test component execution flow statements in Fig-
ure STCConditionalStatement, STCIterationStatement and STCRepetition-
Statement. Each one of these elements can own one or two sequential test component
behaviours. The STCConditionStatement owns two, one mandatory in case the condi-
tional predicate (not shown) evaluates to true (HasConsequentBehavior EReference),
and one optional in case it evaluates to false (HasAlternativeBehavior EReference).
Notice the optional MaximumIterations EAttribute of the STCRepetitionStatement.
In order to contribute to fault avoidance, this EAttribute is rendered mandatory in the
case of a periodic and cycle-by-cycle test component.

5.6.2 BasicStatement
A BasicStatement is used for generic instructions, for example:
e VariableDeclarationStatement (i.e., int variableName),
e VariableAssignmentStatement (i.e., variableName = newValue).

We also briefly discuss in this subsection the expressions and literals used in the
statements. For example, in Figure[5.22] the conditional statement has a logical expres-
sion (HasPredicate EReference) and the action call statement has expressions passed
as parameters. We will not go into further detail here concerning the meta-modelling
of expressions. It suffices to say that we cover a rich set of possible expressions, such
as:

e logical expressions: And/0Or,
e equality expressions: EqualTo/NotEqualTo,

e comparison expressions: GreaterThan/GreaterThanOrEqualTo and LessThan/Less-
ThanOrEqualTo,

81

5. TEST META-MODEL

e multiplication expressions: Multiplication/Power/Division/Modulo,
e addition expressions: Plus/Minus,
e unary expressions: Plus/Minus/Negation.

We also defined four types of literals that can be used inside the expressions:
BooleanLiteral, IntegerLiteral, FloatLiteral and StringlLiteral. For more in-
formation on the topic of expressions and data types, please see the following two
examples: the Arithmetics tutorial that accompanies Xtext [123] and the partial pro-
gramming language Xbase (defined with Xtext). When defining the test meta-model we
took inspiration from these two, as well as from the grammars of known general-purpose
programming languages (e.g., C++, Python).

5.6.3 SpecificStatement

A SpecificStatement is used for instructions that are specific to the high-level struc-
tural concept, for example:

e ExecutionControlStatement for a TestCase (Figure ,

e STCTestActionCallStatement for a TestComponent (we prefix all statements
regarding a sequential test component with STC, Figure [5.21)).

The ExecutionControlStatement is used to start/stop/pause/resume (Executable-
ElementOperation EEnum) the execution of a test component instance by the test case.

A specific statement of test components is the TestActionCallStatement. It is
used to call test actions on SUT interfaces, toolkits and accessors. Notice the STC-
TestActionCallStatement in Figure Also observe its different EAttribute ele-
ments that are linked to the type of test action that is being called (Figure . For
example, a Timed::TestAction has to be called with a specific a DurationValue, while
a Bounded::TestAction can be called with a specific MaximumDuration. As mentioned
previously, this information is in favour of fault avoidance as the behaviour can be anal-
ysed before its execution. For example, we were able to identify by means of OCL rules
an incorrect specification where test actions were called with a duration higher than
the period of a periodic test component. A simplified rule can be found in Listing
We also defined a more complex version that covers the imbrication of statements con-
tained by other statements. We achieved its definition by using the transitive closure
offered by OCL, with which recursion can be expressed.

The STCTestConditionEvaluationStatement is used in order to modify the ver-
dict of a sequential test component. It verifies a logicalCondition and sets the verdict
accordingly. For example, if the logicalCondition evaluates to false and the previous
verdict was Pass, then the verdict becomes Fail.

82

5.6 Behavioural Concepts

B Zehavior |

H TestComponsrttshavior
]

0.1

B Statamant |

H FestComponantStztemant

HasSequential TestComponentStatemants

lISOwnedBySequentiaITestCo rmponentBehavior

H SequentialTestComponentBehavio

0..1 HashlternativeBehavior

0”*

B SeguentiaiTestComponentSiatemeant

T

H SeguentiaiTestComponemitrecutionsbwSiatement

|—

N

H sTCConditionalStatement

1 HaslteratedBehavior

1 HasConsequentBehavior

H STCIterationStatement

1 HasRepeatedBehavior

T Numberofiterations | EInt

H STCRepetitionStatement

o MaximumlIterations : EInt

B SeguerntiziTestComponemiBasi Siatemant

'—

H sTCParameterReadStatement]

H SeqguentiziTestComponemtSoecificStatamant

N

H STCTestConditionEvaluationStatement

H sreTastdctionsalisistamant

= DurationValue : EInt

= DurationUnit @ TimeMeasurementlnit
= MaximumbDuration © EInt

o MaximumbDurationUnit @ TimeMeasurementnit

Figure 5.21: SequentialTestComponentStatement Excerpt -

83

5. TEST META-MODEL

H sTCConditionalStatement] H srerestdctionsaistatamant
= DurationValue : Elnt
= Durationtnit @ TimeMeasurementinit 1
’I ; i ; = Maxi Curation : Elnt
WithSequentialTestComponentExpressionsAsParameters EEIIN BT & s)
- & MaximumDurationUnit : TimeMeasure mentUnit
HasPredicate |
1 \Ll CallsTestaction
B SequentiaiTestComponamtExoression g TestAction

I T name : EString

T TemporalType : TemporalType
T BlockingType : BlockingType

T BoundedType : BoundedType

T SideEffectType : SideEffectType

H sTCToolkitTestActionCallStatement]

=

J(1 OnToolki
H Toolkit

T name : EString

H sTCConnectionPointTestArtionCallStatement;

OnSystemunderTest
0.

1
—= [SystemUnderTest
T name : EString
= IsSimulated : EBoolean

OnConnectorInstance

0..1|H Connectorlnstance
L=

H sTCConnectionPointAccessor TestActionCallState ment]

OnConnectionFointAccessor

0..1|H Conmeactionfoirtdcoassar
L=

Figure 5.22: SequentialTestComponent - Details Example -

84

5.7 Test Model Development Environment

context CycleByCycleTestComponentInstance
inv TestActionCallStatement_DurationValue_Smaller_Than_CycleDuration:
self . IsAnInstanceOfCycleByCycleTestComponent. HasCycleByCycleElements.

4 HasCycleByCycleTest ComponentBehavior.
HasCycleByCycleTestComponentStatements

—>select (aStatement : CycleByCycleTestComponentStatement | aStatement.
oclIsKindOf(CBCTCTestActionCallStatement)) .

6| oclAsType(CBCTCTestActionCallStatement)

—>select (aStatement : CBCTCTestActionCallStatement | aStatement.
CallsTestAction . TemporalType = TemporalType:: Timed)

s| —>forAll(DurationValue <= self.CycleDuration)

Listing 5.2: OCL Rule Example - Behavioural Concepts

In addition to the different statements discussed here, the test meta-model also
contains the following ones, used for manipulation of events defined in the test context:
EventWaitStatement, EventRaiseStatement, EventLowerStatement. Manipulation
of shared data is possible through the ReadSharedData and WriteSharedData instruc-
tions.

We have now finished the presentation of our test meta-model. We continue with
a discussion on the graphical and textual editors that can be attached to the test

meta-model in Section 5.7

5.7 Test Model Development Environment

The Eclipse Modeling Framework (EMF) [I19] offers us access to a wide range of tools,
as mentioned at the beginning of this chapter. It is able to automatically generate
a graphical editor of models from a meta-model. This graphical editor was used for
the high/low-level structural concepts of the test meta-model. For the behavioural
concepts, a textual editor was developed with Xtext [123]. These two editors (graphical
and textual) were enriched and integrated inside the Man-Machine Interface (MMI)
component of the U-TEST Real-Time System with the help of three participants: Gilles
BALLANGER, Guilhem BONNAFOUS, Mathieu GARCIA and Etienne ALLOGO, at
Cassidian Test & Services. Snapshots of our prototype can be found in Chapter [7}

5.7.1 Graphical Editor

This graphical editor presents a tree-like structure. Figure [5.23| shows a snapshot of
the automatically generated graphical editor. It is used only for the instantiation of
EReference elements that have their Containment set to true (e.g., the MyTestCon-
text TestContext contains the MyTestCase TestCase and as such MyTestCase is a
branch of MyTestContext). It is accompanied by a Properties view, which allows the
modification of the rest of EReference elements, together with the EAttribute elements.

85

5. TEST META-MODEL

Contextual menus are offered. Although the automatically generated graphical ed-
itor covers all of the test meta-model elements, it can be modified in order to present
only a subset of the test meta-model. In our prototype, some coding was necessary to
produce two graphical editors: one for the UserData section, and one for the Provider-
Data section of the test meta-model; and to hide all child elements of Behavior special-
izations (Figure . The UserData and ProviderData graphical editors only show
high /low-level structural concepts. Behavioural concepts are dealt with within the tex-
tual editor. This graphical editor is only one example of an interface attached to the
test meta-model. For the purpose of our prototype, we considered this type of graphical
editor to suffice. For example, GMF [12I] and Graphiti [122] offer the possibility to

design even more ergonomic and complex graphical editors.

5.7.2 Textual Editor

Xtext [123] is an open-source framework for developing programming languages and
domain-specific languages (DSLs). Unlike standard parser generators, Xtext not only
generates a parser, but also a class model for the Abstract Syntax Tree and a fully
featured, customizable Eclipse-based IDE. To specify a language, a user has to write a
grammar in Xtext’s grammar language. This grammar describes how an Ecore model
is derived from a textual notation. From that definition, a code generator derives an
ANTLR parser and the classes for the object model. In addition, an Eclipse-based
Integrated Development Environment (IDE) integration is generated. That IDE offers,
among other functionalities: syntax colouring and code completion.

Similarly to traditional grammars that employ a Backus-Naur Form notation, an
Xtext grammar consists of a number of derivation rules. Each derivation rule is a piece
of static text with gaps, where each gap in the text can be filled with model information.
The static text is always inserted between quotation marks.

Listing shows a simplified grammar example, relative to the STCToolkitTest-
ActionCallStatement that was discussed previously (Figure . Lines 1-7 present
the grammar rule. Line 11 shows some code that conforms to the grammar rule. Line
15 present a different concrete syntax that could be defined in a similar manner as the
first example, in order to illustrate the capacity for customisation of our approach.

The application of the rule to parse the compliant line of code yields the following

result:

e the Toolkit name is userCommunication and OnToolkit is a reference to this

model element,

e similarly, the called TestAction refers to showMessage,

86

5.7 Test Model Development Environment

4] Example.stelas 53 =0

r[“_j Resource Set

= @ platform: fresourcefstelae/Example, stelae
El- 4 Database MyDatabase
EI <= User Data MyFirstiserData
E| <= Test Context MyTestContext
E| 4 Tesk Case MyTestCase
- 4= Sequential Test Component Instance MyFirstSTC 1
E| <+ Sequential Test Companent MyFirst3TC
I S Sequential Block FirskSE
------ <+ Sequential Block SecondSE
~ < Sequential Test Component MySecondSTC
-4 Periodic Test Component MyPTC

i Event Event_1

-4 Event Event_2

- 4= Provider Daka MyFirstProviderData

RS Physical Bus Type AFDY

; < Logical Bus Type AFDE Yirtual Link

El- 4 Genetic Physical Bus GeneticPhysicalBus_1
© L4 Test Action startEmission

<+ Test Action skopEmission
e Syskem Under Test Type AvionicsSystem

Selection | Parent | Lisk | Tree | Tahble | Tree with Columns |

= Properties 23 o E e e ¥ = O

L T

Propert | alue |
Has Current State

Is Of aystem Under Test Type < Syskem Under Test Tvpe Avionics3yskem

Is Simulated ¢ False
Is Werified By Test Cases 4 Test Case MyTestCase
Marne L= MySUT

Figure 5.23: Default Graphical Editor Snapshot -

87

5. TEST META-MODEL

e a single parameter is identified between parentheses, the string expression ‘Hello

world!’.

Notice that the syntax of Line 11 adopts an object-oriented paradigm, where the
showMessage TestAction acts as a method of the userCommunication Toolkit ob-
ject. As mentioned previously, this is only one of the many concrete syntaxes/textual
representations that can be attached to the test meta-model. The second example of
definable concrete syntax (Line 15), although resembling the string solution offered by
existing test languages, exhibits the same fault avoidance capabilities as the first ex-
ample. The fact that the name of the test action appears within quotation marks is
only a visual representation, as the test action remains a strongly-typed element of the

test model.

Although simple versions of the different graphical and textual editor functionalities
are available out-of-the-box, some coding is necessary in order to implement semantics
that is expressed within the meta-model but that is not automatically exploitable by
the framework. For example, when a STCToolkitTestActionCallStatement calls a
TestAction on a Toolkit, it also allows calling TestAction elements on the wrong
Toolkit. Although the test meta-model contains information on which TestAction
is attached to which Toolkit (the HasProviderDefinedTestActions EReference in
Figure , this information is not directly exploitable when automatically generating
the textual editor. The same holds true for the graphical editor in similar situations.
As such, code has been developed in order to implement this semantics, for example in
order for the code completion functionality to offer for a given Toolkit only the list of

TestAction elements it comprises.

88

5.7 Test Model Development Environment

/* Derivation rule definition =/

STCToolkitTestActionCallStatement returns
STCToolkitTestActionCallStatement :

/* Derivation rule body x*/

OnToolkit = [Toolkit|EString] ”7.” CallsTestAction = [TestAction|EString]
(7 (WithSequentialTestComponentExpressionAsParameters+=
SequentialTestComponentExpression (7,7
WithSequentialTestComponentExpressionAsParameters+=
SequentialTestComponentExpression)*)? 7)”

/* Compliant line of code x/
userCommunication.showMessage (” Hello world!”);
/* A different concrete syntax that could be defined x/

14
userCommunication (”showMessage” ,” Hello world!”);

”

Listing 5.3: Xtext STCToolkitTestActionCallStatement Excerpt

Figure shows a screen-shot of the prototype mixed (graphical and textual) test
model development environment, integrated into the Man-Machine Interface (MMI)
component of the U-TEST Real-Time System [3] integration test platform developed
by Cassidian Test & Services. Notice in the centre of the image the UserData section
graphical editor, with the textual editor being visible on the right. When the test
solution user selects in the graphical editor an element that possesses a Behavior, then
automatically the textual editor opens, showing the corresponding Behavior. The
ProviderData section graphical editor (not shown) is protected from unauthorized
access, as only test solution provider users can modify this section.

In Chapter [7|we present a case study, where we define in the test model development
environment a number of test models.

89

5. TEST META-MODEL

uiupe ¥ —

[«] [Il [

(JuoTlEJANQITEM UOTIOVISaL BuTtindax3 (Iv:ive:60

B NI PJTUL J185==()an1eA12b 10 4195 [ssvd]l (Tt:¥E:60
()anearsb uoTioyissl Butinoex3 (Tv:ivZ:60

()eniea1sb uoTyoyysal BuTindex3 (Tb:pzZ:60
(JUoT3EINQITEM UOTIOYISSL BuTindax3 (BE:WE:60
()1eubtsautsajelauab uoTioyisal Butinoex3 (6E:pZ:60
()aniealas uoT3oyisal BuTindex3 (6E:pZ:60

()enleapl=@s uoTioylsal Dbutinoex3 (6E:vZ:60

()an1eplas uoTidylsal BuTindax3 (6E:vZ:60
dwodlselauTs 2ouelsulluauodwodlsal Buridels (6E:vZ:60
35EJ15818UTS ©se)3}sal buriieis (BE:WE:60

H
c

aseDjsal MnegxajdwoD g
@ 3se0IsalauIS
m\ asedisal Anedsiduwns

] F5ED1S3][BUILLION

N4 UOTIEVMWTS 1S3LIapunwalsAs BuTIIEIS (6E:bE:60
- BUTIUD FY13LS sl il
dE R FS 0% E@ L] o
O o g = 52 Juswsbeuew s1sa) \L SLUB|0Id ﬂ; sauadold =

(11 Il [+

‘PAIUL J055833WIIED == (JaniealsbLNo 10S523311e) %33Ud
([puo3es oT])ucREINaIEM HHIoQLIUSWSBEUESLUIL

pliyL dossaddyped == (Janealsb L no Jossad0yjed) 3234
([puodas o]juoneingiem Ijjog Juawabeueyawl]

‘payL aossadawned == (Janepsblino sossasowned) y2aud
([puodas 7])ucheinguem Woo Iuaabeue|yawl L

1T v [puosas gT])eubisauisalelsuab - puodas Jossa3dy]eD)
[5-) anjeplas NI PALL J0SS320Y]IED

(0) @N[eAI=S NI PUODSS 0SS0y D

(0T-)eNIEAISS NI 1S JOSS322W]IeD

Jolaeyag

€1 [i D]

2UNSIS2LNDH 2UNS 1S3 4

ND4 1saL Jspun wi=lsAs @ q

JolaEL3d 20|g [enuanbas m <]

1NO 1055220 2lqeuen Jaaubul
NI PJIUL J0S5320Y 2jgeuen j2aulful 4
NITPU0D35 1055220V 3qeuen j2aulbul 4
NITI514 1055830y 3|geLep Jasulbug 4
Juauodwoenlsal auls Juauoduwen 1sa] [enuanbag _%9 A
auodwosa] Ayneqxajdwo juauodwao 1531 [Enuanbag _m? 4
jauodwoosa] Ayne4aidus usuodwod s3] |epuanbag _m# q
jusuoduwoDysal euiiop Juauoduwol 1s3] [epuanbag _m# q
@seDysalauls aseD ysal & ¢
asedlsal Aneqxaidwon ased 1sal WL q
aseisa) Ayneqaiduwis ased i1sal WL q
aseDjsalleulwioN ased isal & ¢
HRIO0DISILND IX2W0D 15aL 7 A
IHIUODISTLSML IR0 IsaL 1 ¢
eleuasnAlp B1eq 1950 & A

ejeq J42sn

52 2ez1sAw @

(KX

I [r]

0119 sapadoid ping 13
0TTo 03@23e ping
5TT0 UsD-IsaL B9 ¢
FIT9 samy 49
5965 HNsaY)

5819 aefRIsAw < 8

vL09 [3POI < 7 A
TTTO ANIFYLIW B ¢
sapuapuadag u-bnig ¥ ¢

l&'T-352(1 Areaar wsishs Tl g

\S/UOISIBAGN

Ho o =

BTTo Uew < B ¢

60To sal =3 ¢
6965 Jusuod 8 ¢
8110 sedwal < B A

duyl 5TTS 1I9pownsal smy < F5 A

52 s303loud 19pow @

XA [t P B F R e vE s DG

UjWpe - jlomsweld JWid 1d . 1531-N

e EELEH

ung disH smaia wp3 =i

Mixed (Graphical and Textual) Test Model Development Envi-

ronment Screenshot -

Figure 5.24

90

5.8 Conclusion

5.8 Conclusion

In this chapter we have presented the test meta-model we defined. The definition
represented an effort of six person-months (with no prior experience of the author with
meta-modelling and EMF Ecore).

One of the challenges was to homogeneously integrate all of the domain-specific con-
cepts we had previously identified. We achieved this objective, but the resulting test
meta-model is inherently complex. For future industrialization purposes, this complex-
ity could be hidden by developing wizards to guide the test engineer and automatically
fill-in some test model elements.

We noticed that some constraints on the activity of test engineers with test models
could be either introduced inside the test meta-model by construction, or added later
by means of OCL [124] rules for example. A choice had to be made where part of the
complexity of the approach is to be inserted. We preferred enriching the test meta-
model, as we believe that not allowing a test engineer to perform an incorrect action
is preferable to her/him doing it, verifying its correctness and afterwards correcting it.
In addition, our approach tried to insert as much as possible of the domain-specific
concepts and their relations inside the test meta-model, instead of having this informa-
tion scattered around in the test meta-model, OCL rules, Java classes analysing test
models, informal documents as well as inside the textual representation.

Another issue we encountered concerned the two levels used in model-driven engi-
neering: the meta-model and model levels with one instantiation step between them. In
most applications these two levels suffice, but in our work we encountered cases when
three levels are required. In such cases, we employed the Type Object design pattern
[127]. Although this pattern offers remarkable flexibility to create new components and
connection points at the model level, its usage was one of the factors that led to the
growth in complexity of the test meta-model.

Concerning OCL rules, we found them very practical in order to express constraints
on the test models. However, they quickly grow in complexity. This is also due to the
complexity of the test meta-model. Moreover, we found it difficult to express some
behaviours with OCL. For example, we were interested in calculating the sum of all
the durations with which test actions are called, in order to compare this result with
the period of a periodic test component. In order to calculate the sum, the different
durations would have to be converted to a same time measurement unit. We were not
able to express this conversion directly in OCL. However, it is possible to call external
operations coded in Java from OCL, that would do the necessary conversion.

The development of the graphical and textual editors for our demonstrator was very
fast (the equivalent of a three person-months effort), as our first prototype required only
basic functionalities. In their current state, the editors do not yet offer test engineers all

91

5. TEST META-MODEL

the functionalities/short-cuts they would need. The prototype is called STELAE (Sys-
tems TEst LAnguage Environment). Our evaluation of the development of richer, more
ergonomic editors, with technologies such as Graphical Modeling Framework (GMF)
[121] or Graphiti [122], leads us to believe that an industrial product would require a
much greater effort than that for our first prototype. One challenging issue we encoun-
tered when developing the two editors was to ensure their synchronization. The current
state of the technology is not optimized for a usage of several editors synchronized on
a same model.

Finally, we would like to mention that some activities performed manually by test
engineers on test models should be automated in the future: such as the definition of
the interfaces of the SUT that can be automated by parsing the ICD document.

92

6

Test Model Implementation

In this chapter we illustrate the manner in which test models (conforming to the test
meta-model that was previously discussed) are implemented by template-based model-
to-text transformations. For this task, the Acceleo model-to-text tool [I125] was chosen
because of its tight integration within EMF [I19]. The target test language is based on
the Python programming language and was developed by Cassidian Test & Services.
Inside the company, this test language is known as Automatic Test Language (ATL).
In order to avoid confusion with the Atlas Transformation Language (also abbreviated
ATL) [128], we shall refer to our test language as PLj5 in the rest of this document.
PL; is executed on top of the U-TEST Real-Time System [3] integration test platform.
PLs was not part of the sample of test languages analysed in Chapter |4l as it did not
exist at that time. It allowed us to challenge the genericity of our test meta-model.

Our implementation covers only a subset of the test meta-model concepts, that were
considered to be sufficient with regards to the case studies (Chapter . We followed
a methodology to cover concepts that were offered completely, partially, or not offered
at all by PLs5, in order to investigate the specificities and difficulties of automatic code
generation in these cases. We also paid attention to whether the implementation part
of our work would impact or not the test languages analysis or the test meta-model.

Section [6.1] presents the functionalities of the Acceleo tool on a simple meta-model
example. This example captures, at a smaller scale, the main choices that were made
for the implementation of the test meta-model.

Section presents the Python-based target executable test language PLs. We
focus on the functionalities that it totally or partially offers, or does not offer at all, in
comparison with the functionalities we defined in the test meta-model. We discuss five
high-level feature categories: test case (Subsection [6.2.1]), access to SUT interfaces and
associated test actions (Subsection , test component (Subsection , verdict

management (Subsection [6.2.4]) and test suite (Subsection [6.2.5]).

93

6. TEST MODEL IMPLEMENTATION

Section discusses the manner in which test meta-model concepts were imple-
mented through template-based automatic code generation, by targeting PLs func-
tionalities. We present automatically generated code and templates examples for our
partial implementation of: the ProviderData (Subsection , SystemUnderTest
(Subsection [6.3.2)), TestCase (Subsection [6.3.3)), TestComponent (Subsection
and TestArchitecture (Subsection concepts. Verdict management is discussed
together with the test case and test component implementation.

Section concludes this chapter.

6.1 Acceleo Model-to-Text Tool

Acceleo is an implementation of the Object Management Group (OMG) [129] Meta-
Object Facility (MOF) [130] Model to Text Language (MTL) [I31] standard. In our
case, it takes as input: a test model together with the automatic code generation
templates. It produces as output: files in the target test language. An automatic code
generation template defines the mapping between the concepts from the test meta-
model and the test language file structure and code. The template is actually a text with
gaps, where for each individual test model the gaps are filled differently. The various
templates are organized within Acceleo modules. The architecture of the Acceleo tool,
together with the test meta-model, the test models and the templates is shown in Figure

6.1

Test

Acceleo Language

Y
Test Meta-Model > template File / Code
Structure
| |7
| conformance i
! conformance !
I 3
Test Model > Accele_oTool Test
Engine Language
File / Code

Figure 6.1: Acceleo Tool Achitecture -

We present the Acceleo tool on an example. We begin by discussing the two mod-
elling layers that are employed: meta-model level and model level. Next we present the
corresponding code and files that should be automatically generated. Finally, we dis-
cuss the transformation between the model layer and the code by means of automatic
code generation templates with the Acceleo tool.

94

6.1 Acceleo Model-to-Text Tool

We consider a simplified meta-model for the definition of Python classes, with
two EClass elements (PythonClass and ClassAttribute) and two EReference ele-
ments (HasClassAttributes and InheritanceRelation). Notice that the HasClass-
Attributes EReference is a Containment relation. The diagram for this meta-model
is shown in Figure We chose this example as the target test language for imple-

mentation of test models is based on Python.

H Classatiribute
T name : ESfring

0..*
HasClassatributes

H PythonClass
T name : ESfring

0..*
InheritanceRelation

Figure 6.2: Meta-Model Level: PythonClass/ClassAttribute EClass Elements

With this meta-model it is possible to define a model for the following classic ex-
ample: the Person and Student classes (Figure . The Student PythonClass of the
model has an Inheritance with the Person PythonClass. The Person PythonClass
has the HasClassAttributes EReference association with the name and respectively
surname ClassAttribute elements, while the Student PythonClass adds a HasClass-

Attribute EReference association with the major ClassAttribute element.

H Person H Student
= name :ﬂ = |'|'|aj.:||'
0O surname

Figure 6.3: Model Level: Person/Student Python Classes -

For this model, the desired code is shown in Listing [6.I] Each class is defined in its

own Python module.

95

6. TEST MODEL IMPLEMENTATION

Person.py Python module
3| class Person():

name = 77

5 surname = "7

7|# Student.py Python module

import Person

class Student (Person):
major = "7

Listing 6.1: Python Modules and Code

In order to automatically generate this desired code, we define an architecture of
three Acceleo modules: one main module (main.mtl) and two modules corresponding to
the PythonClass and ClassAttribute EClass elements (respectively PythonClass.mtl
and ClassAttribute.mtl in Figure . Each module can contain one or several tem-
plates. We chose to regroup templates concerning a specific meta-model element within
a same module. In this toy example, each module contains only one template.

> ClassAttribute

.mtl
[H ClassAttribute |
l < name : EString 7
0.* o AN
HasClassAtrbutes |:> 5 main.mt
=
[PythonClass
| £ name : EString |
0.* PythonClass.
InheritanceRelation mtl
imports

)

Figure 6.4: Link between Example Meta-Model Classes and Modules/Tem-
plates -

Let us look at the main module (main.mtl in Listing [6.2)). The generateDatabase
template (Lines 8-15) has a simple behaviour: for each PythonClass element inside
the model it calls the PythonClass template. Notice the manner in which the model is
explored inside the Acceleo templates: Acceleo statements are given inside the bracket-
delimited structures: “[... /]”. For example, the model is browsed with the [for ...] ...
[/for] construct. In the case of our example model, the PythonClass template is called
twice: once for the Person and once again for the Student. Notice that the main mod-
ule needs to import the PythonClass module before calling the template it contains.

96

6.1 Acceleo Model-to-Text Tool

Information from the model is extracted and then inserted into the automatically gen-
erated code. The text outside the bracket-delimited structures is not interpreted by

the Acceleo tool; it is inserted “as is”into the automatically generated code.

1| [comment] main.mtl Acceleo module [/comment]

;| [comment encoding = UTF-8 /]
[module main(’PythonClassExemple’)]

[import PythonClass /]

[template public generateDatabase(aDatabase : Database)]
9| [comment @main /]

11| [for (aPythonClass : PythonClass | aDatabase.HasPythonClass)]
[aPythonClass. generatePythonClass () /]
13| [/ for]

15| [/ template]

Listing 6.2: main.mtl

For each PythonClass, the generatePythonClass template inside the PythonClass.mtl
module (Listing generates the corresponding Python module (Person.py and Stu-
dent.py) and a class skeleton. The generation of Python module files is indicated by the
following structure: [file ...]. In case thePythonClass for which the Python module
is generated has an InheritanceRelation with another PythonClass, the necessary
import statements are automatically generated as well. This is the case for the Student
PythonClass. The 7 variable (Line 17) is implicit and corresponds to the current loop
index inside the repetition statement. For clarity issues we did not reproduce in these
Listings the exact page setting of the different templates. Notice that this issue of page
setting is extremely important, as Python is a language for which the page setting in

meaningful: scoping is defined by means of indentations in the code.

In case the PythonClass for which the Python module is generated has one or more
ClassAttribute elements, for each one of these elements the ClassAttribute template
is called (Listing [6.4]). For the Person PythonClass the ClassAttribute template is
called twice, while for the Student PythonClass it is called only once. Notice that the
ClassAttribute template does not generate any Python modules, as it serves only to fill

in the Python modules that were already generated by the PythonClass template.

97

6. TEST MODEL IMPLEMENTATION

1| [comment] PythonClass.mtl Acceleo module [/comment]

3| [comment encoding = UTF-8 /]
[module PythonClass(’PythonClassExemple’)]
5/ [import ClassAttribute /]

7| [template public generatePythonClass(aPythonClass : PythonClass)]
[file (aPythonClass.name.concat(’'py’), false, 'UTF-87)]

[for (inheritedPythonClass : PythonClass | aPythonClass.
InheritanceRelation)]
11| import [inheritedPythonClass.name/]

[/ for]

class [aPythonClass.name/]

15| [for (inheritedPythonClass : PythonClass | aPythonClass.
InheritanceRelation)]

[1nher1tedPyth0nClass name /|

[if (i < aPythonClass.InheritanceRelation—>size ())],[/ if]

[/ for])

[for (aClassAttribute : ClassAttribute | aPythonClass.HasClassAttributes)]
[aClassAttribute.generateClassAttribute () /]

[/ for]

19

S| [/ file]

[/ template]

Listing 6.3: PythonClass.mtl

1| [comment] ClassAttribute.mtl Aceleo module [/comment]

3| [module ClassAttribute (’PythonClassExemple’)]

5| [template public generateClassAttribute (aClassAttribute : ClassAttribute)]
7| [aClassAttribute .name/] = 77

ol [/ template]

Listing 6.4: ClassAttribute.mtl

The approach that we presented begins with the definition of a model and of the
corresponding code and files. Only afterwards do we define the automatic code genera-
tion modules/templates that produce the code and files from the model. This is a well
known approach in literature that has shown its benefits [132]. We confirm that first
defining the targeted code and files eases the implementation of the model.

EReference elements with a true value for the Containment (e.g., HasClassAttributes
between PythonClass and ClassAttribute) appear at Acceleo module level as import
statements (see Figure and Listing [6.3). EReference elements with a false value

for the Containment (e.g., InheritanceRelation between two PythonClass elements)

98

6.2 Target Python-Based Test Language (PL5)

appear as import statements as well, but at Python module level (see Listing. The
projection of the meta-model architecture on Acceleo modules/templates and automat-
ically generated code files can aid in the maintenance of the automatic code generation
functionality. Engineers can easily find an existing Acceleo module that implements
a specific meta-model element. When adding new Acceleo templates, they are to be
added by respecting this constraint. The links between automatically generated code
files can be more easily identified as well. These same organization principles were
employed for our demonstrator, but at a larger scale.

The fact that the test meta-model integrates concepts that are present in existing
test languages decreases the difference in level of abstraction between the test meta-
model and the test language targeted for implementation. Work such as [I33] resolves
issues like this one by separating the automatic generation of code and its packaging
within files. In our case, we did not consider such an approach to be necessary because
of the closeness between the concepts of the test meta-model and those of the target
test language. The mapping of the test meta-model architecture at automatic code
generation module/template level and Python module level sufficed as an organization
principle.

In this section, we have discussed the Acceleo tool and the different functionalities
it offers for automatic code generation. The concepts presented herein were used for the
implementation of the test meta-model, but at a larger scale than for the toy example
that was discussed.

6.2 Target Python-Based Test Language (PLs;)

We discuss in this section a subset of the functionalities and concepts offered by the tar-
get test language PL5, which is based on the scripting programming language Python:

e Test Case (Subsection [6.2.1)),
Access to SUT Interfaces and Associated Test Actions (Subsection [6.2.2)),

Test Component (Subsection [6.2.3)),

Verdict Management (Subsection [6.2.4)),
e Test Suite (Subsection [6.2.5)).

Although mainly focusing on these PLy functionalities, the discussion also gives
some hints on which test meta-model concepts were mapped onto which PL5 function-
alities. This mapping issue is elaborated further on in Section [6.3

We chose to target a test language outside of the initial sample of test languages
(PL; to PLy4) in order to see how our test meta-model would accommodate a new test

99

6. TEST MODEL IMPLEMENTATION

language. At the time of the test language sample analysis (Chapter , PL5 did not
exist. Moreover, PL5 lacks some of the functionalities offered by other test languages.
This allowed us to analyse how functionalities not offered or only partially offered by a
test language can be handled.

In case PL5 does not natively offer a functionality present in the test meta-model,
offers it only partially or in a manner inconsistent with the test meta-model, we propose
the following solutions:

e implement the functionality or the missing parts using low-level functionalities
(e.g., test component implemented with Python multi-threading capabilities),

e generate a wrapper around existing functionalities (e.g., PLs instructions that
access SUT interfaces using their string identifier are wrapped inside navigable
strongly-typed object-oriented structures) and code that employs the wrapper,

e define model-to-text generation only for test models that are compatible with the
offered functionality (e.g., PLs offers test monitors whose only possible action is
to change the test verdict),

e abandon altogether the implementation of the functionality (e.g., access to SUT
low-level interfaces such as physical buses is not offered by PLs).

The second solution was interesting in order to minimize the differences between
the test meta-model and PLs5, for an easier definition and maintenance of the automatic
code generation templates.

We present the various functionalities offered by PLs, by discussing also the manner
in which they were linked with test meta-model concepts.

6.2.1 Test Case

A test case in PL5 is a Python class. It is a specialization of the predefined ATLTestCase
class. Listing [6.5] presents the Python module defined in PLj5 corresponding to a test
case skeleton. The name of the Python module and of the Python class for the test case
is the same. These conditions must be met in order to ensure that the PL5 execution
engine is capable of comprehending and executing the test case. Test engineers define
the desired behaviour inside the three existing methods (initialize(), execute()
and finalize()). They are executed sequentially by the external PLj execution test
engine.

We could directly map the TestCase concept from the test meta-model to the
ATLTestCase class specializations in PLs.

100

6.2 Target Python-Based Test Language (PL5)

aTestCase.py Python module
from utest .ATL import =

class aTestCase(ATLTestCase):

7 def initialize (self):

Initialization section
9 pass

11 def execute(self):
Execution section
13 pass

15 def finalize (self):
Finalization section
17 pass

Listing 6.5: aTestCase.py

6.2.2 Access to SUT Interfaces and Associated Test Actions

We discuss in this subsection the manner in which access to ICD elements is achieved in
PLs, as well as the associated test actions that can be called. We consider application
parameters only, as PLs; does not offer access to lower ICD levels. We mapped the
TestAction concept in the test meta-model to the various instructions offered by PLs.

6.2.2.1 Simple Test Actions

For simple interaction with the SUT, PLj5 offers access to the dictionary of application
parameters (similarly to PL3). This dictionary is called VsUtils.variables. The applica-
tion parameters are distinguished by means of their string identifiers. Listing shows
hot to get and set a parameter value.

While the test meta-model offers a clear object-oriented organization of the SUT
interfaces, this is not the case with PL5. In order to bridge this gap and facilitate
the definition and maintenance of Acceleo templates, we developed wrappers around
the SUT access instructions offered by PLs. These wrappers reconstruct in PLs the
organization of the test meta-model: navigable strongly-typed tree-like SUT interface
objects and test actions as associated methods. Listing [6.7] shows a simple wrapper.

Get value
oldValue = VsUtils.variables [’SUT_1/ARINC_429_1/LABEL_1/ACSPEED’ |

N

#Set value
VsUtils. variables ['SUT_1/ARINC_429_1/LABEL_1/ACSPEED’| = newValue

Listing 6.6: Simple Test Actions in PLj

101

6. TEST MODEL IMPLEMENTATION

The wrapper
3| SUT-1. ARINC_429_1 .LABEL_1.ACSPEED. setValue (newValue)

The wrapped target test language instruction called by setValue()
VsUtils. variables ['SUT_1/ARINC_429_1/LABEL_1/ACSPEED’| = newValue

Listing 6.7: Wrapper Example in PLj

6.2.2.2 Time-Dependent Test Actions

For time-dependent interaction with the SUT, PLj5 offers predefined instructions (e.g.,
for sine, ramp or square signals). These interactions do not block the execution of the
caller thread, being executed in parallel. The application parameters are distinguished

by means of their string identifiers. An example is given in Listing

Time—dependant test action declaration on SUT interface
signalSinus = ATLInjectionVSSinus(’SUT_1/ARINC_429_1/LABEL_1/ACSPEED’ ,
amplitude=10, period_-ms=10000, phase_rad=math.pi*0.5, sampling_ms=50)

Time—dependant test action execution control
signalSinus.start ()

time.sleep (duration)

7| signalSinus.stop ()

o

Listing 6.8: Time-Dependant Test Actions in PLj

In the above example the desired signal is first defined, together with the SUT
interface on which it is to be applied. Afterwards, the start() command begins the
generation of the signal in a separate execution thread. The generation of the signal is
halted by the stop() command.

Notice that the duration of the time-dependent test action does not appear within
the list of parameters: a time.sleep() instruction is required. As such, we had to
render it explicit within our automatic code generation, so that it corresponds to our
classification of TestAction elements: Timed versus UnTimed (Figure .

The wrappers used for this type of instructions follow the same principles as the

ones previously discussed, although they are more complex.

6.2.2.3 Fault Injection Test Actions

For fault injection on SUT application parameters, PLs employs the instructions such
as those shown in Listing

102

6.2 Target Python-Based Test Language (PL5)

VsUtils. variables.addVariables (['SUT_1/ARINC_429_1/LABEL_1/ACSPEED’ ,
SUT_1/ARINC_429_1/LABEL_1/AC_ALTITUDE])

3| VsUtils.ve. configurelnjection (’SUT_1/ARINC_429_1/LABEL_1/ACSPEED’ , ”
FixedValue” , injectionParams)

Listing 6.9: Fault-Injection Test Actions in PLs

First, the application parameters on which fault injection is to be applied must
be added to a specific set with the addVariables command. Afterwards, the fault
injection is configured for each application parameter in this set with the configure-
Injection command. In the above example, the fault injection consists in forcing a
value for an application parameter.

As previously discussed, this type of instructions were also wrapped and attached
to SUT interface objects.

6.2.3 Test Component

PLj5 does not offer the concept of test component, with the exception of a simplified test
monitor. We enriched PLs with the TestComponent concept of the test meta-model,
by employing the native Python multi-threading functionalities in the automatic code
generation. We did this for the SequentialTestComponent, PeriodicTestComponent
and CycleByCycleTestComponent specializations. We do not discuss it here how these
concepts were implemented, for more information refer to Subsection [6.3.4, For the
sake of variety, we mapped the TestMonitor concept of the test meta-model to the
simplified test monitor offered by PL5. We could have implemented the complete test
monitor concept using low-level functionalities offered by Python, but decided to try
a case with partial implementation of a concept. Only simple test monitors in test
models, compatible with the PL5 test monitor, were targeted in our prototype.

In PLj5, a test monitor is a class specializing the predefined ATLAsyncTest class
(Listing . It has two simple types of conditions on the value of an application
parameter:

e a condition on the last value of an application parameter, at the end of the
execution of the test monitor,

e a condition on the values of an application parameter, during the life of the test
monitor.

The condition is passed as a string parameter to the test monitor. The resulting
behaviour of the test monitor following the activation of the logical condition is implicit:
a local verdict is set depending on the evaluation of the condition during/at the end of
the life of the test monitor. Test engineers cannot modify this predefined behaviour.
In the example in Listing if the application parameter has a value higher than

103

6. TEST MODEL IMPLEMENTATION

an admissible threshold during the life of the test monitor, the local test verdict is
automatically set to Fail. The activation duration for the test monitor is passed as a
parameter to the execute command.

As PLs does not natively offer test components, it also lacks the concept of test
architecture, which we implemented using Python low-level functionalities.

asyncExec = ATLAsyncTest(self)

asyncExec. faillfInterval (’SUT_1/ARINC_429_1/LABEL_1/ACSPEED > 100",
Message ")

5| asyncExec. execute (5)

Listing 6.10: Test Monitor in PLg

6.2.4 Verdict Management

We have already seen some verdict management functionalities when discussing the test
monitor concept in PL5. Verdict management is also possible inside an ATLTestCase.
Two types of test verdicts exist in PL5: pass and fail. See the example in Listing [6.11
where the value of an application parameter is verified against an expected value.

Our implementation considers the following test verdicts defined in the test meta-
model: None, Pass, Fail and Error. The Pass and Fail values were mapped directly
to the ones already offered by PL5. The Error verdict was also mapped to the PLs5 fail
verdict, but we accompanied it with specific error messages so as to differentiate the
two. The management of all test verdicts, with the exception of Inconclusive, was
implemented from scratch (see Sections [6.3.3] and [6.3.4]).

self. faillf (VsUtils.variables[’SUT_1/ARINC_429_1/LABEL_1/ACSPEED’ | =
100, ’Message’)

Listing 6.11: Verdict Management in PLj5

6.2.5 Test Suite

A PLj5 test suite is defined outside of the test language itself, inside a GUI that stores
it in external configuration files. A PL5 test group is a sequence of test cases (not to be
confused with the test meta-model TestGroup concept). A PLj test suite is a file that
contains a sequence of test groups and individual test cases. An example of such an
external configuration file is given in Listing It shows two test groups (containing
test cases), as well as two independent test cases.

The TestSuite concept in the test meta-model allows the definition of richer ex-
ecution orders for TestCase elements than PL5. Full implementation of the concept
would have had to be developed from scratch. As inter-test organization was not one of

104

6.3 Architecture of Acceleo Modules/Templates

our major concerns, we chose in our prototype to address only the implementation of

TestSuite elements compatible with the functionalities offered by the PLs framework.

The next chapter discusses the manner in which a subset of test meta-model con-

cepts was mapped to functionalities offered by PLs.

TestSuite.tsdef test suite configuration file

3|<TestCases>

<TestGroup ID="MyTestGroup-1” nbOfExecutions="1" isEnabled="True”>
<TestCase ID="MyTestCase_-1” nbOfExecutions="2" isEnabled="True” />
<TestCase ID="MyTestCase_2” nbOfExecutions="3" isEnabled="True” />

< /TestGroup>

<TestGroup ID="MyTestGroup_-2” nbOfExecutions="4" isEnabled="True”>
<TestCase ID="MyTestCase_-3” nbOfExecutions="5" isEnabled="True” />

</TestGroup>

<TestCase ID="MyTestCase_-4” nbOfExecutions="6" isEnabled="True” />

<TestCase ID="MyTestCase_5” nbOfExecutions="7" isEnabled="True” />

</TestCases>

Listing 6.12: Test Suite in PLj

6.3 Architecture of Acceleo Modules/Templates

Before discussing the automatic code generation templates in more detail, let us re-

view the list of test meta-model concepts that were implemented in the demonstrator,

together with the target test language PL5 functionalities they were mapped to:

e ProviderData: ConnectionPointType and associated TestAction elements in

test meta-model — wrapper around PLj5 instructions,
SystemUnderTest in test meta-model — usage of ProviderData wrapper,
TestCase in test meta-model — ATLTestCase class specializations in PLs,

TestComponent (except TestMonitor) in test meta-model — code generation
using low-level Python functionalities,

TestMonitor in test meta-model — partial implementation towards ATLAsyncTest
class specialization in PLs,

TestArchitecture in test meta-model — code generation using low-level Python
functionalities,

TestSuite in test meta-model — partial implementation towards PL5 framework
test suites,

Verdict Management — PLs functionality upgraded by code generation using
low-level Python functionalities.

105

6. TEST MODEL IMPLEMENTATION

In the demonstrator we only targeted the application parameter level of the ICD.
As PLj5 does not offer access to buses and messages, it would not have been realistic to
develop this functionality from scratch for our prototype.

This section presents some of the Acceleo automatic code generation modules/tem-
plates that implement the test meta-model concepts. In Subsection we cover
the wrapper created around PLjg for the ProviderData concept. Next we discuss in
Subsection [6.3.21the manner in which the interfaces of the SUT are defined from the “in-
stantiation” of ProviderData elements inside SystemUnderTest elements. Finally we
present the implementation choices for the test case (Subsection, test component
(Subsection and test architecture (Subsection concepts. We focus on these
structural elements as the behavioural elements had a straight forward implementation.

6.3.1 ProviderData Implementation

A wrapper is defined for the implementation of the ProviderData concept, including
SUT interface types, toolkits and attached test actions. The wrapper hides the instruc-
tions of the target test language by reproducing the organization of the ProviderData
using Python classes and methods. This was one of the first architectural choices for

the automatic code generation. It allowed us to:

e reduce the abstraction level between the test models and the automatically gen-
erated code and consequently simplifying the Acceleo modules/templates,

e facilitate the link between the test model and automatically generated code, for
debugging purposes.

We will see next how this is achieved. Listing[6.13|shows the file My_ProviderData.py,
created for a hypothetical My_ProviderData ProviderData instance in a test model.
Let us consider that My_ProviderData contains:

e a FloatApplicationParameter instance of the ApplicationParameterType con-
cept, with:

- the setValue and generateRampSignal instances of the TestAction concept,
e a TimeManagementToolkit instance of the Toolkit concept, with:
- the waitDuration instance of the TestAction concept.

All test actions have input/output parameters that we do not detail here.

A Python class is defined for each concept in the test meta-model. For example,
the ApplicationParameterType Python class is created for the ApplicationParameter-—
Type EClass (Listing Line 7). Afterwards, for each instance of the said concept

106

6.3 Architecture of Acceleo Modules/Templates

inside the test model, specialization classes are defined. For example, for the Float-
ApplicationParameter instance of the ApplicationParameterType EClass, a Python
class with the same name is created specializing the ApplicationParameterType Python

class (Line 15).

Observe that the instantiation relation between the ApplicationParameterType in
the test meta-model and the FloatApplicationParameter in the test model is trans-
lated into a specialization relation between the ApplicationParameterType Python
class and the FloatApplicationParameter Python class. This is linked to our imple-
mentation of the Type Object design pattern [127]: classes are created for the type (in
the test meta-model) and the type instances (in the test model), with specialization re-
lations between them. Thus, some instantiation relations between the test meta-model

and test models are transformed into specialization relations at code level.

A number of methods are attached to the Python classes, corresponding to the
associated test actions. As previously discussed, some test actions are attached to SUT
interface types (Lines 19-22), while others are attached to tookits (Listing Line
25). These methods hide the implementation details in PLs, making it resemble the
test meta-model. For example, the generateRampSignal method (corresponding to the
test action in the test model with the same name) hides the ATLInjection VSRamp()
time-dependent test action from PLj5 (Subsection , acting as a wrapper.

A snippet of the ProviderData.mtl template, which led to the creation of the
My _ProviderData.py file, is shown in Listing Notice towards the end of the
file that additional templates are called: generateConnectionPointType and generate-
Toolkit (Lines 26-30). The modules containing them were imported at the beginning
of the file: ConnectionPointType and Toolkit (Lines 5, 6). For each concept in the
test meta-model we created its own module. Consequently, the architecture of Ac-
celeo modules maps the organization of the test meta-model, similarly to the manner
in which this organization is mapped onto the automatically generated files and code.
This was another architectural choice for our implementation, which we believe can aid
test solution provider engineers to work with the modules and with the automatically
generated files and code based on their knowledge of the structure of the test meta-
model. Some information inside the template is static (identical to the generated code)

(Lines 11-23), while some information is dynamically generated (Lines 25-31).

107

6. TEST MODEL IMPLEMENTATION

ot

4

19

from utest.ATL import x*
import time
from threading import Thread

[From Test Meta—Model] ConnectionPointType EClass Specializations (

showing here only a subset)

class ApplicationParameterType:

9

name —

class Toolkit:

9

name —

[From Test Model] ConnectionPointType First ”Instantiation”
here only a subset)

class FloatApplicationParameter (ApplicationParameterType):
name = " Float Application Parameter”
instanceName = 77
fullPath = 77
def setValue(self newValue):

(showing

print 7 (7 ,time.strftime ("7H:%M:%S’ ,time . localtime ()),”)” ,” Executing

TestAction” ,” setValue ()”
VsUtils. variables [self.fullPath] = newValue

def generateRampSignal(self ,startValue ,endValue,DurationValue ,

DurationUnit) :

class TimeManagementToolkit (Toolkit):
name = ”TimeManagementToolkit”
def waitDuration(self ,DurationValue , DurationUnit):

Listing 6.13: My_ProviderData.py Snippet

108

6.3 Architecture of Acceleo Modules/Templates

10

12

16

30

[comment] ProviderData.mtl Aceleo module [/comment]

[module ProviderData(http://eads.ts.ate.hmi.stelae.model/model/stelae.
ecore’)]

[import content :: getNameQuery /]

[import ConnectionPointType /]

[import Toolkit /]

[template public generateProviderData(aProviderData : ProviderData)]

[file (aProviderData.name.getName().concat(’ .py’), false, 'UTF-8")]

from utest.ATL import =
import time
from threading import Thread

[From Test Meta—Model] ConnectionPointType EClass Specializations (
showing here only a subset)

class ApplicationParameterType:

name = "7

class Toolkit:

9

name =

[From Test Model] ConnectionPointType First ”"Instantiation” (showing
here only a subset)

[for (aConnectionPointType : ConnectionPointType | aProviderData.
HasConnectionPointTypes—>select (any : ConnectionPointType | any.
oclIsTypeOf(ApplicationParameterType)))]

[aConnectionPointType. generateConnectionPointType () /]

[/ for]

[for (aToolkit : Toolkit | aProviderData.HasToolkits)]
[aToolkit.generateToolkit () /]

[/ for]

[/ file]
[/ template]

Listing 6.14: ProviderData.mtl Snippet

6.3.2 SystemUnderTest Implementation

Here we discuss how ICD element types (e.g., Float ApplicationParamater Python class)

presented in the previous Subsection are instantiated in order to define the interfaces

of an SUT. Let us consider a My_TestContext instance of the TestContext concept,

containing a My_SUT instance of the SystemUnderTest concept. MySUT contains:

e an ARINC_429_1 PhysicalBusInstance of the ARINC_429 PhysicalBusType,

109

6. TEST MODEL IMPLEMENTATION

o with an ARINC_429_Label_1 MessageInstance of the ARINC_429_Label Message-

Type,

e that transports a App_Parameter_1 ApplicationParameterInstance of the Float-

ApplicationParameter ApplicationParameterType.

The needed files and code for the various types of SUT interface are automatically
generated through the means presented in the previous Subsection (see for example the

Python class created for the float type of application parameter in Listing [6.13)).

The simplified automatically generated file and code for My_SUT is shown in List-
ing Observe the cascading instantiation: the My_SUT creates an instance of
an ARINC_429 physical bus (Line 31), which in turn creates an object for an AR-
INC_429_Label_(Line 20), and so forth until reaching the application parameter level.
This example corresponds to the second instantiation step discussed in Section|5.8] The
only element that is not instantiated here is My_SUT. As will be seen in Subsection
it is instantiated by the test components that interact with the SUT. In Listing
My _ProviderData is imported at the beginning so as to have access to the Python
classes defined for the different SUT interface types (Line 1). The fullPath attribute
(Listing[6.15]- Lines 7, 18, 30) is used to store the string identifier for each ICD element.

The simplified Acceleo module/template that created the My _SUT.py file can be
found in Listing [6.16] The cascade instantiation by the My_SUT for all the physical
buses it contains can be observed in Lines 22-24, while the instantiation by the AR-
INC_429_1 for all the messages in contains can be observed in Lines 12-14. Notice
also the creation of the fullPath attribute by concatenating several SUT interface ele-
ment names (Lines 9, 20), while exploring the test model in a direction inverse to the
containment direction (a SystemUnderTest owns a PhysicalBusInstance, while this
PhysicalBusInstance knows who its owner is through the IsOwnedBySystemUnderTest

EReference).

110

6.3 Architecture of Acceleo Modules/Templates

16

24

30

import My_ProviderData
The ApplicationParameter Elements

class Instance_App_Parameter_1(MyProviderData.FloatApplicationParameter):
instanceName = ”"My_App_Parameter_1”
fullPath = "My SUT/ARINC_429_1/ARINC_429_Label_1/App_Parameter_1"
permanentldentifier = 77

The Messagelnstance Elements

The LogicalBusInstance Elements

The PhysicalBuslnstance Elements

class Instance_ARINC_429_1(MyProviderData.ARINC_429) :
instanceName = ”"ARINC_429_1”
fullPath = "My SUT/ARINC_429_1”
permanentldentifier = 77
ARINC_429_Label.1 = Instance . ARINC_429_Label_1()

The Pinlnstance Elements

The ConnectorInstance Elements

The SystemUnderTest Element

class Instance_My_SUT (MyProviderData .CPIOM) :
instanceName = ”My_SUT”

fullPath = "My SUT”
ARINC_429_1 = Instance ARINC_429_1()

Listing 6.15: My_SUT.py Snippet

111

6. TEST MODEL IMPLEMENTATION

import [aSystemUnderTest.IsOfSystemUnderTestType.IsOwnedByProviderData.
name . getName () /]

The PhysicalBuslnstance Elements

[for (aPhysicalBusInstance : PhysicalBusInstance | aSystemUnderTest.
HasPhysicalBusInstances) |

class Instance_[aPhysicalBusInstance.name.getName() /] (]
aPhysicalBusInstance.IsOfPhysicalBusType.IsOwnedByProviderData .name.
getName () /].[aPhysicalBusInstance.IsOfPhysicalBusType.name. getName ()

~

/)
instanceName = ” [aPhysicalBusInstance .name/]”
9 fullPath = ”[aPhysicalBusInstance.IsOwnedBySystemUnderTest .name.getName
() /]/[aPhysicalBusInstance .name.getName () /]”
permanentlIdentifier = ”[aPhysicalBuslnstance.PermanentlIdentifier /]”
11 PP
[for (aMessagelnstance : Messagelnstance | aPhysicalBusInstance.
HasMessagelnstances) |
13 [aMessagelnstance .name.getName () /] = Instance_[aMessagelnstance .name.
getName () /]()
[/ for]
15| [/ for]

17|# The SystemUnderTest Element

class Instance.[aSystemUnderTest.name.getName() /] ([aSystemUnderTest .
IsOfSystemUnderTestType.IsOwnedByProviderData.name. getName () /].[
aSystemUnderTest . IsOfSystemUnderTestType .name. getName () /]) :

19| instanceName = 7 [aSystemUnderTest.name/]”

fullPath = ” [aSystemUnderTest.name.getName () /]”

[for (aPhysicalBusInstance : PhysicalBusInstance | aSystemUnderTest.
HasPhysicalBusInstances) |

23 [aPhysicalBusInstance .name.getName() /] = Instance_[aPhysicalBusInstance.

name . getName () /] ()

[/ for]
25| [/ file]
[/ template]

Listing 6.16: SystemUnderTest.mtl Snippet

6.3.3 TestCase Implementation

We discuss here the implementation of the test case concept of the test meta-model.
Let us consider that the My_TestContext discussed in the previous Subsection also
contains a My_TestCase and a My_Sequential TestComponent. The latter is instan-
tiated once inside the test case, the name of the instance being My_SequentialTest-
Component_1. This instance is started within the My_TestSection of the test case. The

corresponding automatically generated file and code is shown in Listing [6.1

112

6.3 Architecture of Acceleo Modules/Templates

Notice the manner in which we reuse the ATLTestCase class from PLj5 (previously

discussed in Subsection [5.4.2)):

e My TestCase is a specialization of the the ATLTestCase class (Line 7),

e we implement the predefined ATLTestCase class methods: initialize(), execute()

and finalize() (Lines 16, 20, 35).

First an instance of My _Sequential TestComponent is defined (Line 10). Within the
execute() method, inside the My_TestSection indicated by a comment (Line 24), the
test component instance is started (Line 25). The end of this method presents part
of our implementation of the global test verdict synthesis from local test verdicts: the
global test verdict of the test case is synthesized from the local test verdicts of the
test component instances (Listing Lines 27-31). In this simplified example, the
global test verdict of the test case is equivalent to the local test verdict of its sole test
component instance. Notice the import statements at the beginning (Listing Lines
2-5). The test context is necessary as the test component instance needs to be made
aware of the environment in which it is executed (Line 11), so as to have access to the
SUT interfaces, shared data pool and events. The provider data is necessary so that the
test case be capable of calling test actions on toolkits, although our simplified example
does not take advantage of this functionality. The names of the Python modules to
import are derived by exploring the relations of the test meta-model, in the same

manner in which the fullPath attribute was previously constructed.

We do not discuss here the corresponding Acceleo automatic code generation tem-
plate, as it does not bring any new information in comparison to those templates we

already presented.

113

6. TEST MODEL IMPLEMENTATION

from utest.ATL import x*

import time

import My_TestContext

import My_ProviderData

import My_SequentialTestComponent

'

class My _TestCase (ATLTestCase) :

8 TestCaseVerdict = 0

MyTestContext = MyTestContext. MyTestContext ()

10 My_SequentialTestComponent_1 = My_SequentialTestComponent .
My _SequentialTestComponent ()

My_SequentialTestComponent_1.TestContext = MyTestContext

12 My_SequentialTestComponent_1.InstanceName = 7

My_SequentialTestComponent_1”

14 # TestArchitecture Implementation
16| def initialize (self):
print "STELAE Online..”

18 pass

20 def execute(self):
self . My_SequentialTestComponent_1.TestCase = self

22 print 7 (7 ,time.strftime ("YH:%M:%S’ ,time . localtime ()),”)” ,” Starting
TestCase 7 ,”My_TestCase”
24 # My_TestSection

self.My_SequentialTestComponent_1.StartExecutableElement ()

26 while (not (self.My_SequentialTestComponent_1.ExecutionStatus=—"
ExecutionStopped”)): pass

self.TestCaseVerdict = self.My_SequentialTestComponent_1.
TestComponentVerdict

28 if (self.TestCaseVerdict = 0):

self.faillf (True, "NONE”)

30 print 7 (7 ,time.strftime ("YH:%M:%S’ ,time . localtime ()),”)” ,” [NONE]” ,”

Verdict of TestCase” ,” My_TestCase”

32 print 7 (7 ,time.strftime ("%:%M:%S’ ,time . localtime ()),”)” ,” Stopping
TestCase 7 ,”My_TestCase”
pass

def finalize (self):
36 print "STELAE Offline ..”
pass

Listing 6.17: My_TestCase.py Snippet

6.3.4 TestComponent Implementation

In this Subsection we discuss the implementation of the test component concept. This
functionality was not natively offered by PL5 and consequently we had to add it through
our code generation, using native Python multi-threading instructions.

114

6.3 Architecture of Acceleo Modules/Templates

Let us consider My_SequentialTestComponent that we previously discussed. We
assume that its behaviour corresponds to a simplified auto-test scenario and is sepa-
rated into two sequential blocks: Initialization and Verification. Initialization sets the
value of App_Parameter_1 to zero and afterwards pauses its execution for one sec-
ond. Verification sets the value of App_Parameter_1 to one and verifies after one
second that the initial value has changed. Listing presents the corresponding
automatically generated file and code. Notice that the Python class corresponding
to the test component is a specialization of threading.Thread (Line 5), which al-
lows us to launch the execution of each test component in a separate thread. Our
test component also inherits the run() (Line 24) and start() (Line 17) methods
from thread.Threading. The start () method launches the execution of the run() be-
haviour in a separate thread. We added three new interfaces to the test component,
taken from the test meta-model: Start/Pause/StopExecutableElement () (Lines 14,
20, 22). StartExecutableElement () acts as a wrapper for the start() method. We
also added an ExecutionStatus attribute for the test component (Line 11), needed for
implementing from scratch the manner in which the execution of a test component
is controlled. Notice how the test sections in the model are transformed into code

annotations (Lines 27, 31).

The end of the run() method shows our implementation of the global test verdict
synthesis from local test verdicts: the test verdict of the test component is derived
from the verdicts of all the checks (Lines 34-39). The catching of exception leads to
the Error test verdict (Lines 41-44).

The periodic and cycle-by-cycle test components have a more complex execution
control that manages the duration of the code execution, while setting an error local

verdict in case the code execution duration is not respected by the test platform.

Because of the size of the Acceleo automatic code generation modules/templates
for the test component concept, we do not present them here. We tried to reuse as
much as possible of the templates for all test component types. All templates for test
component are identical, with the exception of the behavioural part that appears inside
the run() method, which is specific to each test component type. We do not discuss
the test monitor implementation because of the simplicity of reusing the PLs monitor

construct.

As you will see later on (Chapter @, the test model is much more concise and

user-friendly than the generated code.

115

6. TEST MODEL IMPLEMENTATION

w

ot

9

13

19

39

import My_ProviderData
import MySUT

class My_SequentialTestComponent (threading . Thread):
My SUT = My SUT. Instance_-My_SUT ()
TimeManagementToolkit = MyProviderData. TimeManagementToolkit ()

Accessor Declaration

ExecutionStatus = ” ExecutionStopped”
TestComponentVerdict = 0

def StartExecutableElement (self):

if (self.ExecutionStatus != ”ExecutionRunning”):
self.ExecutionStatus = ”ExecutionRunning”
self.start ()

else:

print ”"TestComponentInstance” ,self.InstanceName ,” Already Running”
def PauseExecutableElement (self):

def StopExecutableElement (self):

def run(self):
print 7 (7 ,time.strftime ("7H:%M:%S’ ,time . localtime ()),”)”,” Starting
TestComponentInstance” ; self.InstanceName
try:
Initialization
self .My SUT.ARINC_429_.1. ARINC_429_Label_1. App_Parameter.setValue (0)
self . TimeManagementToolkit. waitDuration (1,” second”)

Verification
self .My SUT.ARINC_429_1. ARINC_429_Label_1. App_Parameter.setValue (1)
self . TimeManagementToolkit. waitDuration (1,” second”)
if (self.MySUT.ARINC_429_1.ARINC_429_Label_1. App_Parameter.getValue
(O)==1):
print 7 (7 ,time.strftime ("7L:%M %S’ ,time . localtime ()),”)” ,” [PASS]
self .My SUT.ARINC_429_1. ARINC_429_Label_1. App_Parameter.
getValue ()==1"
self . TestComponentVerdict = max(1, self.TestComponentVerdict)
self . TestCase. faillf (False, "PASS”)
else:
pass
except:
print 7 (7 jtime.strftime ("%dL:%M:%S’ ,time . localtime ()),”)”,” [ERROR]” ,
self .InstanceName
traceback.print_exc(file=sys.stdout)
self.TestComponentVerdict = 4
print 7 (7 ,time.strftime ("%H:%M:%S’ ,time . localtime ()),”)” ,” Stopping
TestComponentInstance” , self.InstanceName
self.ExecutionStatus = ” ExecutionStopped”

Listing 6.18: My_Sequential TestComponent.py Snippet

116

6.3 Architecture of Acceleo Modules/Templates

6.3.5 TestArchitecture Implementation

We discuss in this subsection the implementation of the test architecture concept. Let
us consider that My_Sequential TestComponent has an My_Accessor formal interface for
float application parameters. All of the behaviour of the test component is defined on
this accessor, while the test architecture specifies on which SUT interface this behaviour
is reflected. Listing |6.19] shows the definition of the accessor inside the automatically
generated code for My _Sequential TestComponent (Line 4). The accessor is a strongly-
typed object, having access to all the test actions (i.e., methods) owned by the SUT
interface type to which it connects (this is the reason why we implemented the accessor
as an instance of connection point type). Listing shows the template that was
used for generating this accessor definition. Once defined, the accessor is used in the
Initialization section (Listing Line 9), replacing the previous direct access to the
application parameter (Listing[6.18] Line 28).

class My_SequentialTestComponent (threading . Thread):

Accessor Declaration
| My_Accessor = My_ProviderData.FloatApplicationParameter ()

6 def run(self):

8 # Initialization
self .My_Accessor.setValue (0)

Listing 6.19: My _SequentialTestComponent.py - ApplicationParameterAccessor Snippet

[module EngineerVariableAccessor(http://eads.ts.ate.hmi.stelae.model/
model/stelae.ecore’)]
[import content :: getNameQuery /]

[template public generateEngineerVariableAccessor (
aEngineerVariableAccessor : EngineerVariableAccessor)]

5| [aEngineerVariableAccessor .name. getName() /] = [aEngineerVariableAccessor.

ReferencesEngineerVariableType.IsOwnedByProviderData .name. getName ()

/].[aEngineerVariableAccessor. ReferencesEngineerVariableType .name.

getName () /] ()
[/ template]

Listing 6.20: EngineerVariableAccessor.mtl Snippet

We consider that the test architecture specifies a connection between My_Accessor
and App_Parameter_1 of the SUT. The accessor is defined in the Python class cor-
responding to the test component, while the connection is in the Python class corre-
sponding to the test case. Listing shows the definition of the connection inside the
automatically generated code for My_TestCase (Line 4). This is achieved by giving the
accessor the identifier of the SUT interface, through the fullPath attribute. Listing[6.22
shows the template used for assigning the value of the fullPath attribute, by traversing

117

6. TEST MODEL IMPLEMENTATION

the tree-like ICD structure and concatenating the names of the interfaces, in reverse

order of containment. The various [comment| .. [/comment] blocks where used only to

spread the template code onto several lines, so as to enhance its clarity.

10

class My_TestCase (ATLTestCase) :

TestArchitecture Implementation
My_SequentialTestComponent_1.My_Accessor. fullPath = "My SUT/ARINC_429_1/
ARINC_429 _Label_1/App_Parameter_17

Listing 6.21: My_TestCase.py - TestArchitecture Snippet

[module ConnectionPointAccessorConnection(http://eads.ts.ate.hmi.stelae.
model /model/stelae.ecore’)]
[import content ::getNameQuery /]

[template public generateConnectionPointAccessorConnection (
aConnectionPointAccessorConnection : ConnectionPointAccessorConnection
)]

[if (aConnectionPointAccessorConnection.
ProvidesAccessToConnectionPointInstance. oclIsTypeOf(
EngineerVariableInstance)) |

[aConnectionPointAccessorConnection. ForTestComponentInstance .name. getName
() /].[comment]

[/ comment | [aConnectionPointAccessorConnection .
ProvidesAccessForConnectionPointAccessor.name.getName () /]. fullPath = |
comment |

[/comment]” [aConnectionPointAccessorConnection.
ProvidesAccessToConnectionPointInstance.oclAsType (
EngineerVariableInstance).IsOwnedByMessagelnstance .
IsOwnedByPhysicalBusInstance .IsOwnedBySystemUnderTest . name. getName ()
/1/[comment]

[/ comment][aConnectionPointAccessorConnection.
ProvidesAccessToConnectionPointInstance.oclAsType(
EngineerVariableInstance).IsOwnedByMessagelnstance.
IsOwnedByPhysicalBusInstance .name. getName () /]/[comment]

[/comment | [aConnectionPointAccessorConnection.
ProvidesAccessToConnectionPointInstance.oclAsType (
EngineerVariableInstance).IsOwnedByMessagelnstance.name. getName () /]/]
comment |

[/ comment][aConnectionPointAccessorConnection .
ProvidesAccessToConnectionPointInstance.oclAsType (
EngineerVariableInstance) .name.getName () /]”

[/ if]

[/ template]

Listing 6.22: ConnectionPointAccessorConnection.mtl Snippet

118

6.4 Conclusion

6.4 Conclusion

In this Chapter we presented the implementation of some of the concepts of the test
meta-model (test case, test component, SUT interfaces and interactions, test verdict
management), through model-to-text template-based automatic code generation. We
targeted a new test language that we called PL5, which is executable on the U-TEST
Real-Time System [3] integration test platform. The Acceleo tool [125] was used for the
automatic code generation. For our implementation, we took the structure of the test
meta-model as an organizing principle of the Acceleo modules/templates, as well as of
the automatically generated Python files and code. We found that this approach was
helpful and allowed us to better navigate the rich set of domain-specific concepts. We
also showed how information from test models is handled by the Acceleo modules/tem-
plates in order to implement the chosen concepts. We targeted functionalities already
offered by PLj (e.g., test case), functionalities that were lacking (e.g., test component),
as well as functionalities that were partially offered (e.g., test monitor).

The automatic code generation from test models to test language files and code is
quasi-instantaneous.

A well-known approach for an easy and rapid definition of automatic code generation
templates is to first select a source simple example (we chose a test case from a case
study that we will discuss in Chapter , then define the expected target (what the
generated files and code would be) and only afterwards develop the templates that
map the two [I32]. Our experience confirms this, as we encountered no difficulty
when developing the templates while being guided by the use case. Currently, around
40% of the concepts present in the test meta-model have been implemented. The
missing concepts were not implemented as the simple/medium complexity case study
did not require them. Moreover, we targeted a test language that only offered access to
the application parameter level of the SUT interfaces. Consequently, concepts related
to the bus and message ICD hierarchical levels could not be implemented. For the
implemented concepts we defined a total of seventy-five Acceleo modules, each with
one template. A total effort of one person-month was required for the definition of the
modules/templates.

The implementation did not raise major questions concerning the test meta-model,
which did not suffer many modifications. The only problems that were identified con-
cerned information inside the test meta-model which was not always directly accessible
from a given concept. For example, as test components can call toolkits, they need to
have access to the test solution provider section where the toolkits are declared. In the
test meta-model no direct relation exists between the two. A path can nevertheless be
found linking the two, by traversing the relations between the test component, the test
case that instantiates it, the test engineer section and finally the test solution provider
section. Some of the relations on this path were initially uni-directional in the test

119

6. TEST MODEL IMPLEMENTATION

meta-model, and consequently for a given test solution provider section we could find
all the test components linked to it, but not the other way around. The implementa-
tion helped us identify such situations and complete the test meta-model by rendering
some relations bi-directional. The implementation did not raise major questions con-
cerning the test languages analysis either. As PL5 did not exist when we finalized our
test languages analysis, its usage for the implementation of our approach allowed us to
challenge the genericity of our analysis, as well as of our test meta-model. Had PLjy
existed at that time, it would not have changed the outcomes of our test languages
analysis, nor the structure of the test meta-model.

The approach based on model-to-text transformations and structured templates
sufficed for our implementation. We did not consider it useful to use more complex
techniques for implementing the test models, such as those discussed in [132] or [133]
(e.g., a two-step transformation: generation of unstructured code followed by its orga-
nization within files, useful when one part of the model acts as a source to several pieces
of code). In addition, model-to-model transformations were not considered, as none of
the test languages to which we had access had a corresponding meta-model that we
could target. Our approach was motivated by the similarity between the test meta-
model concepts and the target test language functionalities. Moreover, our organization
of the different domain-specific concepts is inspired from what the test languages of-
fer and as such sometimes direct mappings can be defined from test models to test
language files/code. In any case, we believe that the following minimal functionalities
need to be offered by a target programming language in order to implement our test
models without much difficulty:

e access to the SUT interfaces by employing ICD-derived identifiers,
e an object-oriented programming paradigm,
e multi-threading capabilities.

We would also like to mention an issue that is important in an industrial envi-
ronment: debugging. This topic can be discussed from two complementary points of
view. The first concerns the debugging of the automatic code generation templates by
test solution provider engineers. The second concerns the debugging of test models by
test engineers (i.e., test engineers do not debug the automatically generated code, in
conformance with the model-driven engineering philosophy).

As regards faults inside automatic code generation templates, we currently do not
have a validation solution. This would be a difficult issue to resolve due to the fact
that the target proprietary test languages do not have a formal semantics or implicitly
verified properties (as in the case of the SCADE Suite [134]). We tried to alleviate the
problem by proposing;:

120

6.4 Conclusion

e wrappers around target test language instructions, based on the textual represen-
tation of the test meta-model, in order to enhance the clarity of the link between
the automatically generated code and the textual representation (going even fur-
ther with the wrapper method by defining additional ones would be possible),

e an agile use-case-based approach, where automatic code generation templates
are defined and verified based on a use-case containing the input model and the
expected output files/code,

e a test meta-model-based architecture of automatic code generation templates
and automatically generated files/code, that eases their definition, navigation
and maintenance (in addition, the Acceleo environment offers auto-completion
facilities for navigating the meta-model and inserting the required data inside the
templates).

With regard to faults inside test models, this issue is common to all model-driven
approaches, as existing debugging tools were developed to work at code level. For our
specific approach, various solutions have been identified:

e tackle the debug issue at test model level, for example by inserting the break-
point concept inside the test meta-model, employing annotation-based round-trip
engineering techniques, adding extra OCL rules or developing a specific tool,

e bring closer together the grammars of the textual representation of the test meta-
model behavioural part and of the target test language: by modifying the concrete
test model syntax and adding wrappers (we did this but there were limitations:
the concrete syntax we were able to define was not exactly that of Python),

e a more radical solution (allowed by the modularity of the test meta-model) would
be to decouple the structural and behavioural aspects of the test meta-model, with
the templates previously presented being reused for the structural part, while the
behavioural part being defined directly in the target test language. This solution
would forfeit the fault avoidance, customization and portability features the test
meta-model currently offers, but would allow the reuse of existing tools (at least
for the behaviour, if not for the structural concepts). Such partial uses for our
work are further discussed in the perspectives of Chapter

The next chapter presents two case studies inspired from real-life.

121

6. TEST MODEL IMPLEMENTATION

122

7

Case Studies

Our prototype, called Systems TEst LAnguage Environment (STELAE), was developed
as an Eclipse plug-in for the Man-Machine Interface (MMI) component of the U-TEST
Real-Time System [3]. STELAE allows us to illustrate the complete test development
approach, from the editing of test models to the execution of the automatically gener-
ated code on the U-TEST Real-Time System test platform. The targeted executable
test language was PLs.

In this chapter we demonstrate the functionalities of STELAE on two simplified case
studies inspired from real-life. They target Flight Warning System (FWS) (Section [7.1])
and respectively Air Data Inertial Reference System (ADIRS) (Section simplified
models. We presented STELAE and the ADIRS case study in an article accepted at

an international conference [135].

7.1 FWS - Engine Fire Alarm Synthesis

This first case study is inspired from a real one targeting an FWS. We chose this
FWS-inspired test study as we had access to the real ICD. For confidentiality issues we
cannot present the ICD or its model here. Our simplified FWS employs AFDX buses
for transporting its input and output application parameters. We developed a simple
simulation of the FWS behaviour in PL;, based on the original detailed design. PL; is
executable in parallel with PLs, on the same target integration test platform: U-TEST
Real-Time System [3].

An FWS monitors other systems of an aircraft, and in case failures or dangerous
flight conditions are detected, informs the crew of these problems by means of alarms.

We deal here with the synthesis of an output alarm for an engine fire situation,
based on four input partial alarms. This logic is validated in two steps. First the four

input partial alarms are activated and the starting of the output alarm within 1 second

123

7. CASE STUDIES

is verified. Secondly, two among the four input partial alarms are deactivated and the
stopping of the output alarm after 17 seconds is verified.

For this demonstration we defined a MyProviderData with the different types of
SUT interface levels for an AFDX bus (Figure . Taking the logic of the test case
into account, the test engineer is offered several test actions for the BooleanAppli-
cationParameter type, such as: getValue() and setValue(). Test actions that do not
correspond to interactions with the SUT are distributed inside toolkit structures. Such
an example is waitDuration(), attached to the TimeManagementToolkit. Figure
does not show the parameters of these test actions, but they are part of the test model.

In STELAE, a password-based access control system restricts access to the test
solution provider section.

- & Provider Data MyProviderData

<+ Connector Type Avionic Connector
< Pin Type Avionic Pin
< Physical Bus Type Avionics Full Duplex
< Logical Bus Type Avionics Full Duplex Virtual Link
4 Message Type Avionics Full Duplex Message
= < Engineer Variable Type Boolean Application Parameter
P 4 Test Action setValue
< Test Action getValue
< Test Action generateSineSignal
< Test Action generatelmpulseSignal
Physical Bus Type ARINC 429
Message Type ARINC 429 Label
Engineer Variable Type Float Application Parameter
< Test Action setValue
< Test Action getValue
< Test Action generatelmpulseSignal
< Test Action generateRampsSignal

< Test Action generateSineSignal

q
H T T T T T L b b T T T

4

Toolkit TmeManagementToolkit

4 Test Action waitDuration

Figure 7.1: U-TEST MMI - STELAE Perspective - MyProviderData -

With the user role, we entered the MyUserData part of the test model (Figure .
Let us first look at the structural elements entered in the graphical editor on the left.
We entered the FWS system under test and its interfaces, using the types available in
MyProviderData. We defined an Alarm_reset_function test case that starts an instance
of the STC_Alarm_reset_function sequential test component, in a new thread. The
test component has its behaviour structured in four sequential blocks: Initialization,

124

7.2 ADIRS - Consolidated Aircraft Speed Value

SetAlarmCheck, ResetAlarmCheck and Delnitialization. Initialization sets the four
input partial alarms to false and waits for 1 second. SetAlarmCheck activates the
four input partial alarms, waits for 1 second and then verifies that the output alarm is
activated. ResetAlarmCheck deactivates two among the four input partial alarms, waits
for 17 second and then verifies that the output alarm is deactivated. Delnitialization
puts the FWS in a no-alarm state. Figure also shows the test context for the other
case study concerning the ADIRS, as well as another test case we implemented for the
FWS but that we do not discuss here.

A number of Python scripts were generated. They can be noticed in the left “Model
Project”view of Figure After their execution in the “Console” view, the results of
the test are shown in the “Test Management” view.

In order to test our implementation of the test verdict management, we inserted a
fault inside the FWS model: the output alarm is not deactivated. As expected, the
test verdict that was returned was False.

7.2 ADIRS - Consolidated Aircraft Speed Value

This case-study concerns the consolidated aircraft speed value functionality. It is in-
spired from a real one targeting the ADIRS [65]. We chose the ADIRS-inspired case
study as it allowed us to demonstrate a number of domain-specific concepts that we
integrated in the test meta-model (e.g., timed stimulations such as sine, the cycle-by-
cycle test component). We did not have access to the real ICD, nor to the real ADIRS
design.

We developed a simple simulation of part of the ADIRS behaviour in Python. The
ADIRS deals with the acquisition of several application parameters necessary for the
flight control system (e.g., altitude, speed, angle of attack). For each of these application
parameters, redundant sensors exist and a consolidated value is computed from the set
of available input values.

We deal here with the aircraft speed application parameter. The values of three
input application parameters (AC_SPEED_1/2/3) are used to compute the value of the
output consolidated application parameter (AC_SPEED). We assume that our simpli-
fied ADIRS employs ARINC 429 buses for transporting its input and output application
parameters. Figure [7.3] shows the interfaces of the ADIRS in our test model.

The ADIRS logic is the following:

e Nominal behaviour: The consolidated value is the median of the three input
values, if the median does not diverge from the other two values. The divergence is
measured as the differences between the median value and the other two values.
The median is divergent if these differences exceed a certain threshold during
three consecutive execution cycles.

125

7. CASE STUDIES

uiipe ¥ —

[I D]

(1ameplsh
(Juotieangitem
()anep3ss
()anep3ss
()anieplss
()aniealas
(JuoTiEdNOITEM
()anieaiss
()aniealss
()aniep3ss
— ()aniep3ss

[r]

-

uoTiouny 13sal wiely

uoT10¥1531
uoT1oY153 1
UoT1OY3s3]L
UoT1OY3s3]L
UoT10Y3s3]
uoT1oy1sal
UOT10Y152]
uoT10¥1531
uoT10¥1531
uoT1oY153 1
uoT1oY1531

a1 wiely J1S @duelsuTijusuodwolisa] Buridels { @7 15:60
ased3sa) Burideis { 0z 1560

Butindax3 (£2:15:60
Butindsx3 (ZzZ:'15:60
Butinosx3 (ZZ:15:60
Butinosx3 (ZZ:15:60
Butinoex3 (ZzZ:15:60
Butinoex3 { 2Z:15:60
Butinoax3 (1Z:15:60
Butinoax3 (1Z2:15:60
Butinoax3 { 1Z2:15:60
Butindsx3 (TZ'15:60
Butindsx3 (@Z'15:60

T'autiug Jvidls

13] |Ew>m|tocmm 4

[uonaunylasal ey q

sniels

i@ E FFEY E e

0=

53 8l0sU0D &

o

O = 52 sbeuew sisal \.; SLUB|O0d ﬂ; Bo soug @; samuadoid =

Jias

D]

@

[Iuawa|3a|geIndaxIiaels T uonoung 1@sal wley J1s

{

} sanaaxa

FLILCIET:|

al [D]

uoneplieA” SHIQY 1¥33uoD 1531 7
wiesboud 15317 S 23NS 1531 4
SAd 353L Japun WlsAs e |
JayuaAa Uoys ol s uauodwo i3s3l [equanbas _u,# q

uonezilenuiad ®30ig lepuanbas =

32240 wuee 13say ¥doig lequasnbas 2 ¢

322UD wuee 135 320ig lepuanbag o ¢

uopeziieniul ¥20ig lepuanbas o 4
uonauny 1asal” wuey D1s Juasuodwos 1sa] |enuanbasg _?m .
181 USRS HIoYS B5eD 3saL | ¢

anjT1esal” wuely ols aduelsuyl jusuodwos 1531 [enuanbasg \.\#.

uoIIas Uonduny 1asa.

1ey uondas isal i

uon3uny j@sal ULely aseD 353l] a
IXIPUODISILS ML IX3IU0D 353 5 A

ejeqlasnAp e1eq Jasn ¢ A

eieq 43sn

e

(] I 1] D)
= Ad ssedisal eunuop [d]
2Adusuodwol leunuon £

Adusuodwo leunuon (4
2Ad eequspinoidAnp =

Ad erequspinoid A &
Adxauodisalsamd &)
Jopsy weiboidIsa1 sM4 [F]
aAd asen1sal papelbag

Ad asedisa) “papelbag

aAdusuodwoen papelbaq

2] [(] dm

Adusuodwos papesbaqg

Ad-uoneinuwiSTI WoIdD &
Ad TTMWOID &

Aduonsunyiasal ey &

(=

(=

(2

43psY 8UNSISALSHIaY
sAd uspenLISSHIaY 5
Ad uoneinunssyiay [
sAd'syiav =
Ad swiav [d]
sAd uoneplen” sy =
Ad-uopnepiien sy]
ATTO USD-1s3L <47 a
5819 1porejss <)
PITO S8y < 437 A
5965 INsaY L9

819 ae@ishw < I

/09 12P0 < £ A

TTTO ANIFYLAW 2
sapuspuadag w-bnid & ¢

[1-352[1 Adesar] weisAs Jul W& 4
8TTo ajeidwal < 57 ¢

—ioisiaAans//duy] 6TTO [2pouwnsay sml < 55 A

= 52 s103loud 13pok @

B d¥ At @ B FRe v T % g

ulwpe - jioMmawely Jhi L

Joyp3 sejEs unyg digH smaA WP Blg

FWS -

ive -

U-TEST MMI - STELAE Perspect

Figure 7.2

126

7.2 ADIRS - Consolidated Aircraft Speed Value

- ¥ System Under Test ADIRS

< " Physical Bus Instance ARINC_429_IN_1
~ [4l Message Instance LABEL IN_1
|| Engineer Variable Instance AC_SPEED_1
P Physical Bus Instance ARINC_429_IN_2
P < Physical Bus Instance ARINC_429_IN_3
= . Physical Bus Instance ARINC_429_OUT
= [4l Message Instance LABEL_OUT
|| Engineer Variable Instance AC_SPEED

Figure 7.3: ADIRS - SystemUnderTest -

e Degraded behaviour: If the median of the three input values diverges from the
remaining two for more than three cycles, then the source having produced the
median is permanently eliminated. The consolidated value is the average of the
remaining two values.

For this system under test, we consider here two test cases verifying the behaviour:

e Nominal behaviour test case: Verify that the consolidated value remains equal
to the median of the three input values in the presence of a small-amplitude sine
oscillation that does not render the three input values divergent.

e Degraded behaviour test case: Inject a divergence on one of the three input
values and verify that the consolidated value is equal to the average of the two
remaining values. Verify that the divergent source is permanently eliminated,
even if the divergence is corrected.

These test cases should be executed on all combinations of input application param-
eters. For example, one can render divergent first AC_.SPEED_1, then AC_SPEED _2
and finally AC_.SPEED_3. As the tested behaviour is identical in all these three cases,
the reuse of a parametrized test component is convenient.

We first discuss the functionalities that the test solution provider must make avail-
able to test engineers (Figure . Let us assume that only the following elements are
already available to the test engineer: the AFDX bus and float application parameter
types. The following predefined test actions are accessible for the FloatApplicationPa-
rameter type: setValue(), getValue() and generateRampSignal(). But the test engineer
will also need access to the ARINC 429 bus type and to the generateSineSignal() test
action on float application parameter type. Consequently, the test solution provider
can add them to the list of already existing ones using the predefined extension points.
Once these elements are rendered available by the test solution provider, they can be
used by the test engineers in order to model the ICD of their SUT and to call test

actions on its different interface elements.

127

7. CASE STUDIES

For our case study, a test engineer would define a unique ADIRS_Validation test
context, comprising the two test cases: Nominal TestCase and Degraded_TestCase.
Two test components are added as well to the test context: Nominal Component and
Degraded_Component. In the framework of the case study, each test component is
instantiated once within each previously mentioned test cases: Nominal Component_1
and respectively Degraded_Component_1. In real life, there would be several test cases,
each with its own component instances.

In order to render the test components reusable, we add four formal interfaces
to each one: three for the inputs (First_IN, Second_IN and Third_-IN) and one for the
output (OUT). The connection to the corresponding permutation of ADIRS parameters
is defined within the test architectures owned by the test cases.

Let us now look at our two test components. First it is important to mention that
the two test components are of different types, as they need to behave differently in
order to validate the SUT. The Nominal_TestComponent is a sequential test component
because the test logic is fairly simple, while the Degraded_Component is a cycle-by-cycle
test component, as a finer temporal control was needed for expressing the tolerance in
number of cycles the ADIRS has with regard to its inputs.

We defined three sequential blocks for the Nominal _Component sequential test com-
ponent: Initialization, Stimulation and Behaviour. The Initialization sequential block
initializes the SUT by setting three coherent values for the three input engineer vari-
ables (First/Second/Third IN). Notice that we refer here to the formal interfaces of
the test component. The Stimulation sequential block applies a sine signal on one of
the input engineer variables (Second_IN). The sine signal does not render the engineer
variable divergent with regard to the remaining two. The Behaviour sequential block
verifies that the value for the output parameter (OUT) is the median.

Figure exemplifies the cycle-by-cycle behaviour for the Degraded_Component
test component. First the ADIRS is initialized with coherent values for the three input
engineer variables. Next, one of the inputs (First_IN) is rendered divergent and the
fact that the divergent source has been eliminated after three cycles is verified. Finally
the divergent source is rendered coherent and the fact that it remains permanently
eliminated is verified. Note that in our case study the chosen values for the aircraft
speed are fictional and do not correspond to realistic ones.

Figure shows the corresponding model in the STELAE graphical editor.

Listings[7.1 and [7.2]show the behaviour of the Initialization and respectively Cycle_5
cycles in the STELAE textual editor. It is important to re-mention that the concrete
syntax presented is only an example, as several ones can be defined for the test meta-

model, catering to the individual needs and tastes of the different users.

128

7.2 ADIRS - Consolidated Aircraft Speed Value

Cycle #0 #1 #2 to #4 #5
Behaviour First_IN = 29_0 First_IN=10.0 Verify
ol <15 Second_IN = 30.0 - (OUT == 35.0)
(tolerance =15) | g IN = 40.0 '

Cycle #6 #7 to #9 #10

First_IN=15.0

Behaviour - verity

(OUT == 35.0)

Figure 7.4: Degraded Component - Behaviour Description -

= < Cycle By Cycle Test Component Degraded_Component

< Engineer Variable Accessor First_IN
4 Engineer Variable Accessor Second_IN
< Engineer Variable Accessor Third_IN
< Engineer Variable Accessor OUT

P 4 Cycle Cycle 1
< lterated Cycle Cycle_2_to_4

P <4 Cycle Cycle_5

b < Cycle Cycle &
< lterated Cycle Cycle_7_to_9

P 4 Cycle Cycle 10

Figure 7.5: Degraded Component - Low-Level Structural Elements -

129

7. CASE STUDIES

CallAccessor first_IN .setValue(20.0)
CallAccessor second_IN.setValue(30.0)
3| CallAccessor third_ IN.setValue(40.0)

Listing 7.1: Degraded Component - Initialization Cycle

Check (OUT = 35.0)

Listing 7.2: Degraded Component - Cycle_5 Cycle

In order to test one of our OCL checks and the Error verdict, we inserted a fault
inside one of the cycles of the Degraded_Component: a waitDuration() call with a pa-
rameter higher than the cycle duration. The OCL check we defined for such situations
correctly identified the design problem. Nevertheless, we pursued with the production
of the erroneous code. The problem was also identified at runtime, when our imple-
mentation set an Error verdict as the duration of the cycles was not being respected
during execution.

As can be seen in Figure[7.6] we implemented several other test cases for the ADIRS
in order to test our approach. We do not discuss those here as they do not bring new
information in comparison to the test cases we already presented. Figure|[7.6|also shows
the test context for the other case study concerning the FWS.

For the Nominal TestCase, Figure [7.7] shows the “Runtime”perspective of the U-
TEST MMI component, where we can observe the modification of the values for our
different application parameters during execution. The “Array”view on the left com-
prises a list of application parameters that we observe during the execution of the tests.
Notice the three AC_SPEED_1/2/3_STATUS variables. They are internal to our sim-
ulation of the ADIRS (i.e., not part of the ICD), corresponding to whether a source
was eliminated or not because of its divergence from the other two. We rendered them
observable in order to see the internal state of the simulated SUT. The different “Os-
cilloscope” views show the evolution of the different engineer variables in time. Notice
the sine variation injected by the Degraded_TestCase.

7.3 Conclusion

In this chapter we demonstrated the functionalities of our first prototype called STE-
LAE on two case studies inspired from real-life. They concerned the FWS and ADIRS
avionics embedded systems. For each of these systems we developed a simulation for
their behaviour, for the first one in PL; and for the second one in Python. We had
access to the real ICD of the FWS. For the ADIRS we defined one from scratch. We
focused on the AFDX avionic bus in the first test case, while the second employed the
ARINC 429 avionic bus.

130

7.3 Conclusion

uipe ¥ —

[[Il D)
‘sz =i (J@mea1sb ino’41es [SSwdl (£#:9T:01
()anieaisb uoTioyisal BuTindex3 (£+:91:01
()@niealss uoTioyisal Butindex3 (g¢:91:01
'zz == ()amep3sbrino’s1es [ssvdl (8€:97:01
— ()aniealsb uoTioyysal BuTinosx3 (8£:97:01
()aniealss uoTioyisal Burindsx3 (L£:91:01

{

{

(

(

(

[v]

{)aneprss uotyoyisa) Burinosx3 { 9g£:971:01

{)aneprss uwotyoyisa) Burinosx3 { 9g:91:01

()aneplss uorioyisa) Burinosx3 (gc:igr:01

woy papedbasg soueisuriusauodwodisas) Burjaeas gc:97:01
asejlsal papesbag asejlsal Buridels (9g:iof 0T

aseD)sal papesbad |«

s [puosas 0T])eublsausslelausb NITPUODSS J055833V1ED

Pl

Jo|aeysg

@ B5E2]53L |EULION q
SHIOQY UOTIRLNWTS 153 LldapunwaisAs Buriiels (9g:97:01
[*rauTuUQ 3v3Ls snjels ai
<L «@ H |5 F ml_@ " m | L] 1=~ [
. 53 80sUoD F | O o 52 abeuew sisal \L SLUB|O0d ﬂ; boq sou3g @; samuadoid =
[A] I o [[L D]

uoReINLIRS 30lg leausnbas g

uojeziieniul ¥ooig lequanbas o ¢
1NO 1055222 2|qeuen Jasulbul 4
NI PJIUL J055320% 2jgeuen Jaaubul 4
NITPU0D3S 1055220 3|qeuen Jaaulbul <4
NIT154H 1055220 3|qeuen Jaaubul <4
wauodwos ™ [euruon JuauodwoD 1531 epuanbas __,# N
Jusuodweon” dwey jusuadwoo 1531 [enuanbasg __mv 4
wsuodwos” Anedajduws jusuodwes 15| |enuanbasg __mv 4
wauodwon ajdwis Jusuodwo 53] [enuanbasg __mv 4
aseDisal papelbaq ased isaL | ¢
aseDisal |eulon ased isal] 4
aseDisal dwey ased jsaL] 4
aseDisal Aynega|duwis asesdisal % 4
aseD)sal a|dwis ased 3saL] 4
uonepleA” SHIQY 3X3ju0) 353§ A
XSO TISTLS M XS0 3531 5 ¢
ejeqlasnAp e1EQ 135N 4 A

eleq 48sn

[i D

Jc

Ad ssedisal jeunuon (4]
2Adusuodwonleuiuon £
Aduauodwo leuiuon [
2Ad exequapinoidAn =

Ad erequapinold A &
Adxajuodisalsmd &)

Jopsy weaboud 3531 spmd 4
aAd asen1sal papelbag
Ad asedlsal " papelbaqg
aAdusuodwon papelbag

fa] fn (el A

Adjusuodwon papelbag
Ad-uoneinuSTI WOoIdD &
Ad TT WOIdD

Ad uonouny 1@sa) uuely &

(2

2

(2

J8psy 81NSISaL SHIaY
2Ad uopenLISSHIaY 5
Ad uoneinuissyiay (4]
2Ad'syiav
Ad'swiav [d
aAd uogepen”suiay =
Aduonepiien”sulay @
6TT9 UaD-1sal =49 A

CH19 |20°3.|3)s = @
pITO s3Iy <49 A
6965 NsaY 49

5819 seEsAw < &

/09 18P0l < &7 A
TTTO ANIFVLIW 2 ¢
saipuaspuadag u-bnid V&
[o T-352[] Adesqr] weisAs 3dl W& 4
2TTo ajeidwal < 57 ¢

dnul 6TTO 19pounsay smy < §5 A

= 52 s123loud 13pok _H_

UIWpe - JiomMalueld JIWKW 14 ,,1531-N

ELTEELENS

ung digF smaiA wpT 2lg

- ADIRS -

1ve

U-TEST MMI - STELAE Perspect

Figure 7.6

131

7. CASE STUDIES

[+ 'puoaas %] 03345 DWLNG TFFYVLNO 624 INIEWSHIQY w
awg &
000°0P 6297 Q0062 9T Q0QQ0EZ8T QO000P2l:9T 000°0Z:8Z°007 000°00:82:9T m
0z m 5100d @ 4
‘-
P o]
g o sa|qeuen __Cnurr_m_:_ i q
6L m SHOLINOW M ¢
a3 M 1T WOoIdD @ 4
53002 5 ¢
W adoasoaso
g= ¥ B i¥ HINHDYY B 4
W SHIQV @ 4
[4 'puodas %] SNLYLS 7 033d5 DwisIaenen A10wak sanjep sa|qeuen
awy m -
Q00°0F62°9T 00Q°0T'6Z'9T O000'0Q6Z'SL Q00 QP 2T9T 000°0T°8Z'9T Q00:00:27:9T W)
5 Q- W :<= R[S}
re 57 15 SalgeLen
0 m
1 m
E|
O= ¥ 52 2do3so|Rso Y Z9%-LE°6E-9T 0000°ST IDUEI3|0YSI|QELEA AIOLIB)Y
: PES 0562 9T T SNLVLS £ a33ds Dw/sajqeuen Aowsi
[:4 puodas %] 7 433d5 oWZ NI 138V VE NIT6ZE DNISHIaY w PES0S'6Z 9T 0 SNLVLS Z a33ds Dw/sajqenen Aowsipy
awy _m PESI0S6Z:9T T SMLVLS T 033dS Dw/Salteuen Alowap
000'0E'5E9T 000°0T'6Z0T, Q00'Q5BE'9T QOQQE'2T9T QO00QTEZ'9L 000°05LT:9T ”M . . . - = — -
Tm. w PES 0562 9T 0000°22 a33dS OW/LNO 1387 VLNO 62 DNIYW/SHIOY
; a B Z9¥iLE 69T 0000°FE £ 033dS DOW/E NI 138VVE NI 62¢ DNIHV/SHIQY
! : 2
&éés/ \35% - m £0S'€762 9T 000052 € 033ds Dv/Z NIT138VIE NIT6TY DNIMV/SHIOY
T MM m Z9t:LE6Z:9T 0000°0T T @33dS OW/T NI 138VVT NI 6ZF DINIYW/SHIaY
9t dweysawur] anjep, aweu s|geuen
§
= % 57 adodso|Ias0 O x 53 Aeway 7]

B A ASE

UILWPE - HloMmatiel] |k 14 ., 1531-N

gt SR e vE e g
urmg disH uomsinboy smain 3p3 319

ime Perspective - ADIRS -

U-TEST MMI - Runt

Figure 7.7

132

7.3 Conclusion

We covered a number of test engineer activities on these case studies: the definition
of test models, the automatic generation of files and code, as well as the execution on
top of a real integration test platform: the U-TEST Real-Time System [3]. Currently
we can demonstrate these functionalities on simple to medium complexity test cases.

Once the SUT interfaces are entered, defining the different test models of our case
studies took only a couple of minutes.

One of our perspectives is to demonstrate the functionalities of STELAE on more
complex case studies