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What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}
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Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}

V" But the input data £, g; are “SPARSE” or “SYMMETRIC”!
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What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):
inf  f(x)
st. xeX={xeR":gj(x) >0}
V" But the input data £, g; are “SPARSE” or “SYMMETRIC”!
Correlative sparsity: few products between

each variable and the others in f, g;
~ f(X) = X1X2 + X2X3 + ... X99X100 DO © - 99 - 100

Term sparsity: few terms in f, g;
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What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}

V" But the input data £, g; are “SPARSE” or “SYMMETRIC”!

Correlative sparsity: few products between
each variable and the others in f, g;
~ f(X) = X1X2 + X2X3 + ... X99X100 DO © - 99 - 100

Term sparsity: few terms in f, g;

~ f(x) = 2% + 272000

Symmetry under a subgroup of GL(n): @/@\@
~ f(x) = x1x2 + X2x3 + X3X4 + X427 o
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Where do we find sparse/symmetric POPs?
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Where do we find sparse/symmetric POPs?

Everywhere (almost)!

Hidden

Input

Output

Deep learning
~> robustness, computer vision

Power systems
~» AC optimal power-flow, stability

Quantum Systems
~~ condensed matter, entanglement
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The Moment-SOS Hierarchy for POP
Correlative sparsity
Term sparsity

Symmetries



The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = inf f(x)

Theory

(Primal) , (Dual)
inf /fdy & sup A

with pproba = INFINITELP <with f—A>0
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = inf f(x)

(Primal Relaxation) 'SE ' (Dual Strengthening)
moments / x* dy f — A = sum of squares

finite number = SDP < fixed degree

LASSERRE’S HIERARCHY of CONVEX PROBLEMS 1 f*
[Lasserre "01]

degree d & nvars — (""2') SDP VARIABLES ’f/ﬁﬁ.‘
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = inf f(x)

(Primal Relaxation) 'SE ' (Dual Strengthening)
moments / x* dy f — A = sum of squares

finite number = SDP < fixed degree

LASSERRE’S HIERARCHY of CONVEX PROBLEMS 1 f*
[Lasserre "01]

degree d & nvars — ("1?!) SDP VARIABLES y{ﬁ, = &

HOwW TO OVERCOME THIS NO-FREE LUNCH RULE?‘
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = infycx f(x)
m space M (X) of probability measures supported on X
m quadratic module Q(X) = {(ro + Y058, with o SOS}

Infinite-dimensional linear programs (LP)

(Primal) (Dual)
inf / fdu = sup A
X
st ue Mi(X) st. 1eR

f=2reQ(X)
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f.,i, = infyex f(x)

m Pseudo-moment sequences y up to order r
m Truncated quadratic module Q(X),

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)
inf ) fuva = sup A
st. My_,(gjy) =0 st. LeR

y():l f_/\EQ(X)r
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f.,i, = infyex f(x)

m Pseudo-moment sequences y up to order r
m Truncated quadratic module Q(X),

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)
inf ) fuva = sup A
st. My_,(gjy) =0 st. 1eR
y():l f_/\EQ(X)r

What is the primal-dual “SPARSE/SYMMETRIC” variant? ‘
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Correlative sparsity



Sparse matrices

Symmetric matrices indexed by graph vertices
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1 —2—3 o

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry
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Sparse matrices

Symmetric matrices indexed by graph vertices

1 —2—3 o

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

cycle =

QN
|
W - N
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Sparse matrices

Symmetric matrices indexed by graph vertices

1 —2 —3 .

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

g2
cycle = !
-3

QN

chord = edge between two nonconsecutive vertices in a cycle
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Sparse matrices

Symmetric matrices indexed by graph vertices

17273 [

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

g2
cycle = !
-3

QN

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length > 4 have at least one chord
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Sparse matrices

Symmetric matrices indexed by graph vertices

17273 |:

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

g2
cycle = !
-3

QN

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length > 4 have at least one chord

clique = a fully connected subset of vertices
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Chordal extensions

W - N
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Chordal extensions

Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges
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Chordal extensions

Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges

'¥" Chordal extension is not unique!

1 -2 1 -2 1 -2

L N L X

4 -3 4 -3 4 -3

approximately minimal maximal
Theorem [Gavril '72, Vandenberghe & Andersen ’15]

The maximal cliques of a chordal graph can be enumerated in
linear time in the number of nodes and edges.

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 6/62



Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton 93]

For a chordal graph with maximal cliques Iy, ..., I,:

(RIP) |Vk<p Lan|JI €I forsomei<k

j<k

(possibly after reordering)
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Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton 93]

For a chordal graph with maximal cliques I, . .

Iy

(RIP) |Vk<p Lan|JI €I forsomei<k

j<k

(possibly after reordering)

" RIP always holds for p = 2

V" RIP holds for chains 1—2—3 ------ 99 - 100
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Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton 93]

For a chordal graph with maximal cliques I, . .

Iy

(RIP) |Vk<p Lan|JI €I forsomei<k

j<k

(possibly after reordering)

" RIP always holds for p = 2

V" RIP holds for chains D O © - 99 - 100
V" RIP holds for numerous applications!
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Semidefinite Programming (SDP)

. T
min cy
y

S.t. ZFi Yi = Fy
i

m Linear cost ¢
m Symmetric matrices F, F;

Spectrahedron

m Linear matrix inequalities “F = 0”
(F has nonnegative eigenvalues)
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3

What are Py, P,?
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3

1 ifI(i)=j
What are P, P,? P; € R P(i,j) = (1) _ ]
0  otherwise
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3

1 ifI(i)=j
What are P, P,? P; € R P(i,j) = { (i) =]

0 otherwise
1 00
I = (1,2 P
1=012) = 1(0 1 o)
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2 —3 1y —§2 2 — 3

1 ifI(i)=j
What are P, P,? P; € R P(i,j) = { (i) =]

0 otherwise
1 00
I = (1,2 P
1=012) = 1(0 1 o)

VP, TQ, Py inflates a |I1| x |I| matrix Q; into a sparse n x n matrix
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What is correlative sparsity?

s Exploit few links between variables [Lasserre, Waki et al. '06]

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

6 —————— 5
Correlative sparsity pattern (csp) graph G \ /
Vertices = {1,...,n} /
(i,j) € Edges < x;x; appears in f '

e EEm—
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What is correlative sparsity?

s Exploit few links between variables [Lasserre, Waki et al. '06]

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

Correlative sparsity pattern (csp) graph G

"
Vertices = {1,...,n} /
4
(i,j) € Edges < x;x; appears in f
By ————————————@

Similar construction with constraints X = {x € R" : g;(x) > 0}
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What is correlative sparsity?

f(X) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

\ l/
Chordal graph after adding edge (3, 5) /
4
By ———————————————————————@
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What is correlative sparsity?

f(X) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

\ l/
Chordal graph after adding edge (3, 5) /
4
By ———————————————————————@

maximal cliques I = {1,4} L, =1{1,2,3,5} I3=1{1,3,56}
f = f1+ f2 + f3 where f; involves only variables in I

V" Let us index moment matrices and SOS with the cliques I
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A sparse variant of Putinar’s Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar ’93] Positivstellensatz

If X contains a ball constraint N — }; xi2 > 0 then

f>00nX={x:gj(x) >0} = f=o00+)_0;g with o; SOS
j
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A sparse variant of Putinar’s Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar ’93] Positivstellensatz

If X contains a ball constraint N — }; xi2 > 0 then

f>00nX={x:gj(x) >0} = f=o00+)_0;g with o; SOS
j

Theorem: Sparse Putinar’s representation [Lasserre '06]

f = Yk fr» fr depends on x(Ij)

f>0o0nX f:;(UOkJrZUjgj)
Each g; depends on some I SOS “sees]”E\I/;rs inI
RIP holds for (I) = o '

o; “sees” vars from g;

ball constraints for each x(Iy)
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A first key message

“?”SUMS OF SQUARES PRESERVE SPARSITY | V
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
L = {1,4} = monomials in x1, x4

1 | Y¥1,00000 ¥0,001,00

Mi(y, ) =
Y1,00000 | Y200000 ¥100,1,00

Y000100 | Y1,00100 ¥000200
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
L = {1,4} = monomials in x1, x4

1 | Y¥1,00000 ¥0,001,00

Mi(y, ) =
Y1,00000 | Y200000 ¥100,1,00
Y000100 | Y1,00100 ¥000200

V" same for each localizing matrix M, (g;y)
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Sparse primal-dual Moment-SOS hierarchy

frmin = infeex f(x) with X = {x: g;(x) > 0}

Dense Moment-SOS hierarchy

(Moment) (SOS)
inf ) fava = sup A
14
st. My(y) =0 st. AeR
Mrfrj(gj)’) =0 f—/\:0’0+20’]'gj
)
Yo=1
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Sparse primal-dual Moment-SOS hierarchy

frin = infyex f(x) with X = {x: g;(x) > 0}
f = Yk fr, with f, depends on x(Ij)
Each ¢; depends on some I

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Y fava = sup A
st M,(y, 1) =0 st A€R
Mr*rj(g]'yllk) =0 f_/\:Z(‘TkO‘F Z‘Tjgj)
k j€lk
Yvo=1 )
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Sparse primal-dual Moment-SOS hierarchy

frin = infyex f(x) with X = {x: g;(x) > 0}
f = Y% fr, with f; depends on x(I;)
Each g; depends on some I

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf ) fava = sup A
[
st M,(y, 1) =0 st A€R
Mr*rj(g]'yllk) =0 f_/\:Z(‘TkO‘F Z‘Tjgj)
k J€Jk
Yo=1 )

RIP holds for (I) + ball constraints for each x(Iy) = Primal
and dual optimal value converge to fin by sparse Putinar
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Computational cost

fin = infyex F(x) with X = {x : g;(x) > 0, < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Zf“ Ya = sup A
st My(y, L) =0 st. AeR
Mr*”j(g]'yllk) =0 f=A :Z(‘Tk0+ Zgjgj)
k j€k
v=1 )
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Computational cost

fmin = infyex f(x) with X = {x: gj(x) > 0,j < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Zf“ Ya = sup A
st My(y, L) =0 st. AeR
Mr*”j(g]'yllk) =0 f=A :Z(‘Tk0+ Z‘Tjgj)
k j€k
v=1 )

(m + p) SOS in at most 7 vars of degree < 2r
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Computational cost

fmin = infyex f(x) with X = {x: gj(x) > 0,j < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Zf“ Ya = sup A
st My(y, L) =0 st. AeR
M, (8jy, Ix) = 0 f=A=) (ok+ ), 08
k J€Jk
v=1 )

(m + p) SOS in at most 7 vars of degree < 2r
V" (m+ p) O (r27) SDP vars
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Computational cost

fmin = infyex f(x) with X = {x: g;(x) > 0,j < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf ) fava = sup A
st My (y,I;) =0 st. AeR
M; (8 y,1x) = 0 f=A=Y(0+ ) )
k J€Jk
Yo=1 )

(m + p) SOS in at most 7 vars of degree < 2r
V" (m+p) O (#27) SDP vars vs (m +1) O (") in the dense SDP
15/ 62
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f(x) = x1x2 + x3x4
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Application to roundoff errors
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]
Exact f(x) = x1x2 + x3x4

Floating-point f(x,e) = [x1x2(1 4 e1) 4+ x3x4(1 + e2)](1 + €3)
x€X, |e|<27% §=24(single) or 53 (double)
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f(X) = X1X2 + X3X4
Floating-point f(x,e) = [x1x2(1+e1) + x3x4(1 +€2)] (1 + e3)
x€X, |e|<27% §=24(single) or 53 (double)

1: Error f(x) — f(x,e) = £(x,e) + h(x,e), ¢ linear in e
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Application to roundoff errors
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Exact f(x) = x1x2 + x3x4

Floating-point f(x,e) = [x1x2(1 4 e1) 4+ x3x4(1 + e2)](1 + €3)
x€X, |e|<27% §=24(single) or 53 (double)

1: Error f(x) — f(x,e) = £(x,e) + h(x,e), ¢ linear in e

2: Bound h(x, e) with interval arithmetic
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]
Exact f(x) = x1x2 + x3x4

Floating-point f (x, e) = [x1x2(1+e1) + x3x4(1 + €2)](1 + e3)
x€X, |e|<27% =24 (single) or 53 (double)

1: Error f(x) — f(x,e) = £(x,e) + h(x,e), ¢ linear in e
2: Bound h(x, e) with interval arithmetic

3: Bound /(x, e) with SPARSE SUMS OF SQUARES

VI — {x,e,} = |m(n+1)¥ instead of (n +m)* | SDP vars
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Application to roundoff errors

f = XoX5 + X3Xg — X2X3 — X5X¢ + xl(—xl + X0 4+ x3 — x4+ x5+ x6)

X € [4.00,636]°, ec[-ee€]?®, e=2"

Dense SDP: (°F155%) = 12650 variables ~» Out of memory
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Application to roundoff errors

f = XoX5 + X3Xg — X2X3 — X5X¢ + xl(—xl + X0 4+ x3 — x4+ x5+ x6)
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Application to roundoff errors

f = XoX5 + X3Xg — X2X3 — X5X¢ + xl(—xl + X0 4+ x3 — x4+ x5+ x6)

Victor Magron

X € [4.00,636]°, ec[-ee€]?®, e=2"

Dense SDP: (°F155%) = 12650 variables ~» Out of memory

Sparse SDP Real2Float tool: 15(°(17%) = 4950 ~» 759¢

Interval arithmetic: 922¢ (10 x less CPU)

Symbolic Taylor FPTaylor tool: 721e (21 x more CPU)

SMT-based rosa tool: 762¢ (19 x more CPU)
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Application to roundoff errors
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Application to noncommutative optimization

Self-adjoint noncommutative variables x;, y;

f=x1yity2+ys) +x2(y1+y2—y3) +x3(y1 —v2) —y1 —2y1 — 12

with X1X2 # X2X1, involution (xlyg)* = Y3X1
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Constraints X = {(x,y) : x;,y; %= 0, X2 = xl-,yjz- = Yj, Xiyj = yj¥xi}
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Application to noncommutative optimization

Self-adjoint noncommutative variables x;, y;

f=xyi+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —v1 — 201 — 2
with x1x7 # x,x1, involution (xlyg)* = Y3X1
Constraints X = {(x,y) : x;,y; %= 0, x? = xi,yjz- = Yj, Xiyj = yj¥xi}

MINIMAL EIGENVALUE OPTIMIZATION

Amin = Inf {{f(x,y)v,v) : (x,y) € X, [[v[]| =1}
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Self-adjoint noncommutative variables x;, y;

f=x1yity2+ys) +x2(y1+y2—y3) +x3(y1 —v2) —y1 —2y1 — 12

with x1x7 # x,x1, involution (xlyg)* = Y3X1

Constraints X = {(x,y) : x;,y; %= 0, X2 = xi,yjz- = Yj, Xiyj = yj¥xi}

i=

MINIMAL EIGENVALUE OPTIMIZATION

Amin = Inf{(f(x,y)v,v) : (o, y) € X, [[v]| =1}
=sup A
st f(x,y)—AL=0, VY(x,y)eX

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 19/ 62



Application to noncommutative optimization

Ball constraint N — Y_; x? »= 0 in X

Theorem: NC Putinar’s representation [Helton & McCullough '02]

f=0onX = |f= ZS?SZ' + Zzt;g]tﬂ with s;, tji € R({x)
i 7
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Application to noncommutative optimization

Ball constraint N — Y_; x? »= 0 in X

Theorem: NC Putinar’s representation [Helton & McCullough '02]

f=0onX = |f= ZS?S[ + Ezt;g]t], with s;, tji € R({x)
i 7

NC variant of Lasserre’s Hierarchy for Apin:

¥ replace “f — AL = 00on X" by f — AI = ¥ stsi+ L L tigjtji
with s;, t;; of bounded degrees = SDP &/
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Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)
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Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS Take f = (x1 +x2 +x3)2

GooD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar "78, Voiculescu '85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh '21]

f = Yk frs fx depends on x(Ii)

f>0onX f= kZ:(SZiSki + 2 ti*gjtii)
S

Each g depends on some I § ! _ _ ]I]k

RIP holds for (Ij) — Ski Sees varsin

ball constraints for each x(Iy) tji "sees” vars from g;

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 21/62



Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=xiyi+y2+ys) +x2(y1+y2—ys) +x3(y1 —y2) —x1 =251 — ¥2
Maximal violation levels — upper bounds on A, of f on
{(vy) 02} = xi, 97 =y, %y = vy}
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Maximal violation levels — upper bounds on A, of f on

{(vy) 02} = xi, 97 =y, %y = vy}

A I — {x1,x2, X3,y }

level sparse dense [Pal & Vértesi 18]
2 0.2550008 0.2509397
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Maximal violation levels — upper bounds on A, of f on
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level sparse dense [Pal & Vértesi 18]
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(y1+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —x1 =291 — 12
Maximal violation levels — upper bounds on A, of f on

2 —

{(oy) 1 xf =xi,y7 =y, %y = yxi}

VI — {x1,x2, %3,k }
level sparse
2 0.2550008
3 0.2511592
3

dense [Pal & Vértesi 18]
0.2509397

0.2508756

0.2508754 (1 day)

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 22/62



Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(y1+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —x1 =291 — 12
Maximal violation levels — upper bounds on A, of f on
{(oy) 1 xf =xi,y7 =y, %y = yxi}
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level sparse
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(y1+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —x1 =291 — 12
Maximal violation levels — upper bounds on A, of f on

{(xy):2f =

A I — {x1,x2, X3,y }

level
2

oA Ww

Victor Magron

sparse
0.2550008
0.2511592

0.2508917
0.2508763

i, Y? = Y, xiyj = yjxi}

dense [Pal & Vértesi 18]
0.2509397

0.2508756

0.2508754 (1 day)
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1yity2+ys) tx2(y1+y2—y3) +x3(y1 —y2) —x1 —2y1 — 2

Maximal violation levels — upper bounds on A, of f on

dense [Pal & Vértesi 18]
0.2509397

0.2508756

0.2508754 (1 day)

(1 hour)

{(vy) 02} = xi, 97 =y, %y = vy}
VI — {x1,x2, %3,k }

level sparse

2 0.2550008

3 0.2511592

3

4 0.2508917

5 0.2508763

6 0.2508753977180

PERFORMANCE g]ﬁk’

Victor Magron

NN

T

VS ACCURACY
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More and more applications!

Sparse positive definite forms [Mai, Lasserre & Magron '21]
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More and more applications!

Sparse positive definite forms [Mai, Lasserre & Magron '21]
Robust Geometric Perception [Yang & Carlone "20]
Polynomial matrix inequalities [Zheng & Fantuzzi '20]
Region of attraction [Tacchi et al., Schlosser et al. "21]
Volume computation [Tacchi et al. ’21]

Robustness of implicit deep networks [Chen et al. '21]
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Term sparsity



Term sparsity via Newton polytope

— Ayha6 g 42 2, .2
f = 4x7x3 4+ x7 — x1x5 + x5

spt(f) = {(4,6),(2,0),(1,2),(0,2)}

Newton polytope % = conv (spt(f))

Squares in SOS decomposition C % NIN"
[Reznick ’78]

X1

X2

f:<x1 Xp  X1X2 xlx% x%x%) Q | x1xo
=0 X1X%

X3
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Term sparsity: the unconstrained case

f= x% —2x1x2 + 3x§ — Zx%xz + zx%x% —2xX3 .

+ 633 + 18x3x3 — 54x5x3 + 1423323 %1

[Reznick 78] = f = (1 x1 x2 x3 x1x2 2xx3) Q fé
~~ 857 = 21 *unknown” entries in Q N
XpXx3
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Term sparsity: the unconstrained case

f — xl 2x1X2 + 3x2 2x1X2 + lexz 2x2X3 1
+ 633 + 18x3x3 — 54x2x3 + 142x3x3 X1
X2

[Reznick 78] = f = (1 x1 x x3 x1x2 2xx3) Q
~~| X3
~~ 857 = 21 “unknown” entries in Q 20 xx

| ()
¥" Term sparsity pattern graph G ‘
E——)

X2X3
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Term sparsity: the unconstrained case

f=x2 —2x1x + 3x3 — 2x3xy 4+ 2x3x3 — 22013 1
+ 633 + 18x3x3 — 54x2x3 + 142x3x3 X1
X2

[Reznick 78] = f = (1 x1 x x3 x1x2 2xx3) Q
~~| X3
~~ 857 = 21 “unknown” entries in Q 20 xx

V" Term sparsity pattern graph G
+ chordal extension G’ ° @ @

X2X3
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Term sparsity: the unconstrained case

f=x2 —2x1x + 3x3 — 2x3xy 4+ 2x3x3 — 22013 1

+ 633 + 18x3x3 — 54x2x3 + 142x3x3 X1

[Reznick 78] = f = (1 x1 x x3 x1x2 XpX3) \%, 2
~~ 857 = 21 “unknown” entries in Q 70| xyxo
X2X3

V" Term sparsity pattern graph G

+ chordal extension G’ @ @ @
Replace Q by Q. with nonzero entries at edges of G’
~+ 6 + 9 =15 “unknown” entries in Q¢

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 25/62



Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{a,} € E= a+pcsuppf|Jsuppyg |J 2«

la|<r
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{a,} € E= a+pcsuppf|Jsuppyg |J 2«

la|<r

An example with » = 2
f = xt+x1x3 + xpx3 + x3x3
91 :1—x%—x2—x§ 0 =1—1x3x4
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Term sparsity: support extension

o' +p =a+pand (x,f) € E= («/,p') € E

QO OO
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{w,p} € E< a+pesupp f|suppg |J 2«

laf<r

~> support extension
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At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with
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laf<r
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{w,p} € E< a+pesupp f|suppg |J 2«

laf<r

~ support extension ~» chordal extension G’
By iteratively performing support extension & chordal extension

GOV =G c...cG® cgtth c...

V" Two-level hierarchy of lower bounds for f,..i, indexed by
sparse order s and relaxation order r
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)

Ci — Mc,(y)
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)
Ci — Mc,(y)
In the moment relaxation,

M;(y) =0 — Mc(y) = 0
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)
Ci — Mc,(y)
In the moment relaxation,
M, (y) =0 — Mc,(y) =0

Similarly for the localizing matrices M,—_,,(g;y)
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)
Ci — Mc,(y)
In the moment relaxation,
M, (y) =0 — Mc,(y) =0

Similarly for the localizing matrices M,—_,,(g;y)

V" Each constraint G; ~ G](S) ~~ cliques C](j)
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Term sparsity: primal moment relaxations

Let C](j.) be the maximal cliques of G](S). Foreachs > 1

7,8

ts — inf Zafﬂyﬂé
s.t. Mcéq)(y) =

0
MC/(? (8y) 70

yo=1

V" dual yields the TSSOS hierarchy

Victor Magron Exploiting sparsity & symmetries in polynomial optimization

30/62



A two-level hierarchy of lower bounds

Tmin,1 Tmin,2 Tmin
ts < ts < e S f
Al N Al
Tmin+1,1 Tmin+1,2 Tmin+1
fts < fts < e S f
Al N Al
Al N Al
r,1 r,2 r
g S i S < f
Al N A
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Different choices of chordal extensions

X1X2
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Different choices of chordal extensions
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order s, the sequence (f;.*);>r,.. is monotonically
nondecreasing.
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

1,8

Fixing a sparse order s, the sequence ( f;

nondecreasing.

)r>rm 1S MONOtonically

V" Fixing a relaxation order r, the sequence (f")s>1 T f" in
finitely many steps if the maximal chordal extension is used.

V" The block structures converge to the one determined by the
sign symmetries if the maximal chordal extension is used.

f=1+x3x5 4+ x{x3 + xjx3 — x1x3 — 3x3x3
Newton polytope ~» Z = (1 x1x2 x1x3 x3xp x3x3)
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

1,8

Fixing a sparse order s, the sequence ( f;

nondecreasing.

)r>rm 1S MONOtonically

V" Fixing a relaxation order r, the sequence (f")s>1 T f" in
finitely many steps if the maximal chordal extension is used.

V" The block structures converge to the one determined by the
sign symmetries if the maximal chordal extension is used.

f=1+x3x5 4+ x{x3 + xjx3 — x1x3 — 3x3x3
Newton polytope ~» Z = (1 x1x2 x1x3 x3xp x3x3)

Xy — —Xp
Sign-symmetries blocks (1 x1x3 x2x3) (x1x2 x2x2)
TSSOS blocks (1 x123 x2x%) (x1x2) (x3x2)
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A second key message

. | TSSOS preserves the block structure|
related to sign-symmetries
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Combining correlative & term sparsity

Partition the variables w.r.t. the maximal cliques of the csp
graph
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Combining correlative & term sparsity

Partition the variables w.r.t. the maximal cliques of the csp
graph

For each subsystem involving variables from one maximal
clique, apply TSSOS
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Combining correlative & term sparsity

Partition the variables w.r.t. the maximal cliques of the csp
graph

For each subsystem involving variables from one maximal
clique, apply TSSOS

V" a two-level CS-TSSOS hierarchy of lower bounds for fiin
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Application to optimal power-flow

p%cn +j q(lgcn

Optimal Powerflow 1 ~ 103
[Josz et al. '18]

130 + 20§ 130 + 20j
3 2

65 + 10j

inf ZseG(CZs(%(STE))Z + s R(SF) + cos)
VI,Sé,Sll
st. LVt =0,
s§lgs§<sg”vSeG <V <vivieN

Yeeg, S5 =S =X5|ViP =1 eruek Siip EN
Vi « ViVi* _

Sij = (Y}; — *)|‘Ti].‘|z G Si=

Sy <spi, 03 < Z(ViVy*) <63, V(ij) €E
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Application to optimal power-flow

mb = the maximal size of blocks

m = number of constraints

" - CS(r=2) CS+TS (r=2,s=1)
mb | time(s) | gap | mb | time(s) | gap
114 315 66 5.59 0.39% | 31 2.01 0.73%
348 | 1809 | 253 — - 34 278 0.05%
766 3322 153 585 0.68% | 44 33.9 0.77%
1112 | 4613 496 — — 31 410 0.25%
4356 | 18257 | 378 . - 27 934 0.51%
6698 | 29283 | 1326 — - 76 1886 0.47%

Victor Magron
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Application to networked systems stability

N
Duffing oscillator Hamiltonian V =) " a;(
i=1

=

.
2 4

N
3 Y bye(xi — x)*

ik=1

) +

Z

2 2
On which domain v > 02 /=7 ; Ai x7(8§—x7) =0

>0
= V>0whenx? <g
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Application to networked systems stability

. , I N xi2 x;‘ 1 4
Duffing oscillator Hamiltonian V = ;ai(? — Z) + 3 iz_::l bir (x; — x¢)
Hg—xf) =0

N
On which domain v > 02 /=Y~ ; A x;
>0

@ = V>0whenx? <g

FD 066

W
(e~

V" tsp graph G
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Application to networked systems stability

N x.2 _‘)C‘.L 1 N
Duffing oscillator Hamiltonian V = Zai(jl — Zl) +3 Y bi(xi — x)*
=~ =
1 N 2 i 2
H . = — . “ J— 4 >
On which domain V > 0? f=v Z\ Ai x7(8§—x7) =0

i=1 )

@ = V>0whenx? <g
@eg OJIORNC,
(e~
N(N+1)

s MEEL L 6(0) + N “unknown” entries in Qg = 80 for N =5

V" tsp graph G

Proof that f > 0 for N = 50 in ~ 1 second!
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Symmetries



Primer on group representations

Let G be a finite group

A representation of G is a finite-dim vector space V with a
homomorphism p : G — GL(V'), where GL(V) is the set of
all invertible transformations of V'
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Primer on group representations

Let G be a finite group

A representation of G is a finite-dim vector space V with a
homomorphism p : G — GL(V'), where GL(V) is the set of
all invertible transformations of V'

dim(V) is the degree of (V,p)
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Primer on group representations

Let G be a finite group

A representation of G is a finite-dim vector space V with a
homomorphism p : G — GL(V'), where GL(V) is the set of
all invertible transformations of V'

dim(V) is the degree of (V,p)

(V, p) isomorphic to (V’, o) if there is an isomorphism
6:V =V st

p'(g) =6p(g)6~" Vg€ G
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Primer on group representations

Let G be a finite group

A representation of G is a finite-dim vector space V with a
homomorphism p : G — GL(V'), where GL(V) is the set of
all invertible transformations of V'

dim(V) is the degree of (V,p)

(V, p) isomorphic to (V’, o) if there is an isomorphism
6:V =V st

p'(g) =6p(g)6~" Vg€ G

A basis of V gives a matrix representation of G, we identify
G with a group M(G) of invertible matrices
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Primer on group representations

V is a G-module if
l-v=vandg-(g2-v) = (g182) - ©
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Primer on group representations

V' is a G-module if
l-o=vandg-(g2-v) = (§182) - ©
B (nt+mn)=9-n+g-mnandg-(Av) =Ag-v
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Primer on group representations

V' is a G-module if
l-o=vandg-(g2-v) = (§182) - ©
B (nt+mn)=9-n+g-mnandg-(Av) =Ag-v

p:G— GL(V) with p(g) = v — g - v is a representation
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Primer on group representations

V' is a G-module if
l-o=vandg (82 v) = (8182) -0
By (n+vn)=9g-v1+g-mandg-(Av) =Ag-v

p:G— GL(V) with p(g) = v — g - v is a representation
W C Vis a G-submodule if g-w € W forallw € W and

g€eG

If V does not contain a non-trivial submodule then V is
irreducible

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 40/ 62



Primer on group representations

V' is a G-module if
1-v=vandg1-(g2-v)=(g1g2)'0
By (n+vn)=9g-v1+g-mandg-(Av) =Ag-v

p:G— GL(V) with p(g) = v — g - v is a representation

W C Vis a G-submodule if g-w € W forallw € W and
g€eG

If V does not contain a non-trivial submodule then V is
irreducible

Example: G = S, acting on the 2-dim vector space
V = Re; @ Re; by permuting e; and e,. Then V is reducible.
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Primer on group representations

V' is a G-module if
1-v=vandg1-(g2-v)=(g1g2)'0
By (n+vn)=9g-v1+g-mandg-(Av) =Ag-v

p:G— GL(V) with p(g) = v — g - v is a representation

W C Vis a G-submodule if g-w € W forallw € W and
g€eG

If V does not contain a non-trivial submodule then V is
irreducible

Example: G = S, acting on the 2-dim vector space
V = Re; @ Re; by permuting e; and e,. Then V is reducible.
W = R(e; + e2) is an Sy-submodule

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 40/ 62



Primer on group representations

Let K =R or C and G a finite group.

Theorem [Maschke]

If V is a finite-dim [K-vector space and a G-module then V is a
direct sum of irreducible G-modules W;

V=WeW,d- - Wi
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Primer on group representations

Let K =R or C and G a finite group.

Theorem [Maschke]

If V is a finite-dim K-vector space and a G-module then V is a
direct sum of irreducible G-modules W;

V=WeW,d- - Wi

¢ is a G-homomorphism if ¢(g-v) = ¢(v) forall g € G,v € V.
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Primer on group representations

Let K =R or C and G a finite group.

Theorem [Maschke]

If V is a finite-dim K-vector space and a G-module then V is a
direct sum of irreducible G-modules W;

V=WeW,d- - Wi

¢ is a G-homomorphism if ¢(g-v) = ¢(v) forall g € G,v € V.

Theorem [Schur’s lemma]

Let V,IW Dbe two irreducible G-modules. Then a G-
homomorphism ¢ : V. — W is either zero or an isomorphism.
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Primer on group representations

Let K =R or C and G a finite group.

Theorem [Maschke]

If V is a finite-dim K-vector space and a G-module then V is a
direct sum of irreducible G-modules W;

V=W eW,®--- O Wi

¢ is a G-homomorphism if ¢(g-v) = ¢(v) forall g € G,v € V.

Theorem [Schur’s lemma]

Let V,W Dbe two irreducible G-modules. Then a G-
homomorphism ¢ : V. — W is either zero or an isomorphism.
V" A G-homomorphism from V to V is equivalent to multiplication
by a scalar.
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Primer on group representations

Corollary
LetV =mW; & - - ®mW, be acomplete decomposition of the
representation V with dim W; = d;. Then there is a basis of V
such that the matrices of M(G) are of the form

k  m;

M(g) = PP m(g)

I=1 j=1

where each M()(G) represents W,
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Primer on group representations

Corollary

LetV =mW; & - - ®mW, be acomplete decomposition of the
representation V with dim W; = d;. Then there is a basis of V
such that the matrices of M(G) are of the form

k  m;

M(g) = PP m(g)

I=1 j=1

where each M()(G) represents W,

Such a basis is called a symmetry adapted basis
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Primer on group representations

Letp: G — GL,(K) and Q € K"*" with p(g)Q = Qp(g) for all
g€eG
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Primer on group representations

Letp: G — GL,(K) and Q € K"*" with p(g)Q = Qp(g) for all
g€eG

Assume that p = mp1 ® - - - & mypy With d; = dim p;
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Primer on group representations

Letp: G — GL,(K) and Q € K"*" with p(g)Q = Qp(g) for all
g€eG

Assume that p = mp1 ® - - - & mypy With d; = dim p;

¥ Use a symmetric adapted basis of K" to block-diag Q
— N=T"'QT and

N; 0 B; 0

0 N, 0 B;
'V Each column of T is an element of a symmetry adapted
basis
V" B, has size m;
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A first key message

Whenever we have a linear group action on a vector space then

“&?’"A NICE BASIS MAKES MATRICES SIMPLER |V
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Symmetries in SDPs

Sym,, (K): Hermitian matrices

inf (C, Q)

s.t. <Al', Q> = fz
Q =0,0Q € Sym, (K)
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Symmetries in SDPs

Sym,, (K): Hermitian matrices

igf (C,Q)
s.t. <Al', Q> = fl
Q =0,0Q € Sym, (K)

Let us pick a representation (K", p) of G and an orthonormal
basis for K" w.r.t. a G-invariant inner product
V" The corresponding matrices are unitary: p(g)o(g)* = Id

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 45/62



Symmetries in SDPs

Sym,, (K): Hermitian matrices

inf (C, Q)

s.t. <Al', Q> = fl
Q =0,0Q € Sym, (K)

Let us pick a representation (K", p) of G and an orthonormal
basis for K" w.r.t. a G-invariant inner product

V" The corresponding matrices are unitary: p(g)p(g)* = Id
¥ Sym ,(K) is a G-module via

Q3 :=p(g)Qp(g)”
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Symmetries in SDPs

Sym,, (K): Hermitian matrices

inf (C, Q)

s.t. <Al', Q> = fl
Q =0,0Q € Sym, (K)

Let us pick a representation (K", p) of G and an orthonormal
basis for K" w.r.t. a G-invariant inner product

V" The corresponding matrices are unitary: p(g)p(g)* = Id
¥ Sym ,(K) is a G-module via

Q3 :=p(g)Qp(g)”

The above SDP is G-invariant if (C,Q) = (C, Q%) and
(A;, Q%) = f;

Victor Magron Exploiting sparsity & symmetries in polynomial optimization
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Symmetries in SDPs

inf (C, Q)
s.t. <Ai, Q> = fz
Q=0Q%,vgeG

Q =0,0Q € Sym, (K)
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Symmetries in SDPs

inf (C, Q)
s.t. <Ai/ Q> = fz
Q=0Q%,vgeG

Q0,0 € Sym, (K)

The optimal value of the SDP is the same as the “dense” one if it
is G-invariant.
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Symmetries in SDPs

inf (C, Q)
s.t. <Ai, Q> = fz
Q=0Q%,vgeG

Q =0,0Q € Sym, (K)

The optimal value of the SDP is the same as the “dense” one if it
is G-invariant.

Take a feasible Q and g € G.

Since the feasible region is convex Qg := ‘1@ Ygec Q8 is feasible

for the “dense” SDP and (C, Q) = (C,Qg).
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Symmetries in SDPs

‘¥ One can restrict to invariant matrices (i.e., the commutator)
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Symmetries in SDPs

‘¥ One can restrict to invariant matrices (i.e., the commutator)

By Schur’s lemma, we can find a basis that block-diag the
matrices
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Symmetries in SDPs

‘¥ One can restrict to invariant matrices (i.e., the commutator)

By Schur’s lemma, we can find a basis that block-diag the
matrices

Let K" = W] &--- & W, &---@® Wk be an orthogonal
decomposition i'nto irreducibles, and choose an orthonormal
basis {e};,..., e, } for each W

V" orthonormal symmetry adapted basis T
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Symmetries in SDPs

‘¥ One can restrict to invariant matrices (i.e., the commutator)

By Schur’s lemma, we can find a basis that block-diag the
matrices

Let K" = W] &--- & W, &---@® Wk be an orthogonal
decomposition i'nto irreducibles, and choose an orthonormal
basis {e};,..., e, } for each W

V" orthonormal symmetry adapted basis T

k
inf ) "d;(C;, Q)
Qo

st (A;, Q) =f;, T 'QT =diag (Qy,..., Q)
Q,»0,Q € Sym,, (K)
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Symmetries in SDPs: an example

000 a b b
c=1|010| 0o=[b ¢ 4
00 1 b d o
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Symmetries in SDPs: an example

000 a b b
c=1|010| 0o=[b ¢ 4
00 1 b d o

C, Q invariant under S, permuting both the last 2 rows and
columns
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Symmetries in SDPs: an example

000 a b b
c=1|010| 0o=[b ¢ 4
00 1 b d o

C, Q invariant under S, permuting both the last 2 rows and
columns
V" one can restrict to the fixed point subspace with ¢; = ¢, = ¢
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Symmetries in SDPs: an example

000 a b b
c=|(0o 10| 0=t ¢ 4
00 1 b d

c2
C, Q invariant under S, permuting both the last 2 rows and
columns

V" one can restrict to the fixed point subspace with ¢; = ¢, = ¢

¥ S, has 2 irreducible representations of dimension
dy = d, = 1, with multlpllcmes m =2,m =1
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Symmetries in SDPs: an example

000 a b b
c=|(0o 10| 0=t ¢ 4
00 1 b d

(%]
C, Q invariant under S, permuting both the last 2 rows and
columns
V" one can restrict to the fixed point subspace with ¢; = ¢, = ¢
¥ S, has 2 irreducible representations of dimension
dy = d, = 1, with multlpllcmes m =2,m =1

(1 0 0) 1
T=(0 a « N=—
0 &« —u ﬁ

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 48/62



Symmetries in SDPs: an example

000 a b b
c=|(0o 10| 0=t ¢ 4
00 1 b d

c2
C, Q invariant under S, permuting both the last 2 rows and
columns

V" one can restrict to the fixed point subspace with ¢; = ¢, = ¢

¥ S, has 2 irreducible representations of dimension
dy = d, = 1, with multlpllcmes m =2,m =1
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Symmetries in SDPs: an example

000 a b b
c=|(0o 10| 0=t ¢ 4
00 1 b d

2

C, Q invariant under S, permuting both the last 2 rows and
columns

¥ one can restrict to the fixed point subspace with c; = ¢, = ¢
¥ S, has 2 irreducible representations of dimension
dy = dy = 1, with multlpllcmes mp =2,mpy =1

10 0
0 a« « ® =
0 a« —
T1CT:( ) C = ( ) G =1

At (Q 0 [ a V2 o
T QT_(O Q2> Q={zp cta) L=c74

Exploiting sparsity & symmetries in polynomial optimization

N
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Symmetries in POPs

We come back to our initial POP:

inf  f(x)
st. xeX={xeR":gj(x) >0}

Victor Magron Exploiting sparsity & symmetries in polynomial optimization

49/62



Symmetries in POPs

We come back to our initial POP:

inf  f(x)
st. xeX={xeR":gj(x) >0}

Finite group G and representation p : G — GL,(R)
f&(x) = f(p(g) %)
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Symmetries in POPs

We come back to our initial POP:

inf  f(x)
st. xeX={xeR":gj(x) >0}

Finite group G and representation p : G — GL,(R)

f2(x) = f(p(8) %)
V" POP is G-invariant if f8 = f and ¢;¢ = g;
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Symmetries in POPs

We come back to our initial POP:

inf  f(x)
st. xeX={xeR":gj(x) >0}

Finite group G and representation p : G — GL,(R)
f5(x) = fp(g) %)

V" POP is G-invariant if f8 = f and ¢;¢ = g;

The Reynolds Operator R : R[x] — R[x]C is

Re(f) := ]G]ng

geG
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Symmetries in POPs: a first hierarchy

Dense vs Symmetric adapted hierarchy

(Dense)
inf Zf“ Ya
o
st. M,(y) =0
M, (8jy) =0
yo=1

(Symmetric)
inf Eftx vg
14
st. M,(y“) =0
M;—r,(g; y9) =0
g =1

y$ is the pseudo-moment variable corresponding to the

polynomial R ¢ (x*)

Victor Magron
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Symmetries in POPs: a first hierarchy

| O
G = C4 the cyclic group ®

o’
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Symmetries in POPs: a first hierarchy

| O
G = C4 the cyclic group ®

o’

Space of C4-invariant polynomials of deg < 2:

1 1
by =1 blzi(x1+x2+x3+x4) bzzi(x%—{—x%%—x%—l—xi)

—_

1
by = *(leCz + XoX3 + X3X4 + X4X1) by = E(X1X3 + XzX4)

S
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Symmetries in POPs: a first hierarchy

| O
G = C4 the cyclic group ®

o’

Space of C4-invariant polynomials of deg < 2:

1 1
by =1 blzi(x1+x2+x3+x4) bzzi(x%—{—x%%—x%—l—xi)

—_

1
by = *(leCz + XoX3 + X3X4 + X4X1) by = E(X1X3 + XzX4)

S

RG(Xl) = bl — y?
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Symmetries in POPs: a first hierarchy

| O
G = C4 the cyclic group ®

o’

Space of C4-invariant polynomials of deg < 2:

1 1
by =1 blzi(x1+x2+x3+x4) bzz—(x%—{—x%%—x%—l—xi)

4
1 1
by = Zl(xle + Xox3 + x3X4 + X4X1) by = E(x1X3 + XzX4)
RG(Xl) :b1—>y? RG(X4) :b1 —)yf
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Symmetries in POPs: a first hierarchy

| O
G = C4 the cyclic group ®

o’

Space of C4-invariant polynomials of deg < 2:

1 1
by =1 blzi(x1+x2+x3+x4) bzz—(x%—{—x%%—x%—l—xi)

4
1 1
by = Zl(xle + Xox3 + x3X4 + X4X1) by = E(x1X3 + XzX4)
RG(Xl) :b1—>y? RG(X4) :b1 —)yf

R (x2) = by — 5
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Symmetries in POPs: a first hierarchy

| O
G = C4 the cyclic group ®

o’

Space of C4-invariant polynomials of deg < 2:

1 1
by =1 blzi(x1+x2+x3+x4) bzz—(x%—{—x%%—x%—l—xi)

4
1 1
by = ZL(xlxz + x0x3 + x3x4 + xX4X1) by = E(xlxi% + X2X4)
RG(Xl) :b1—>y? RG(X4) :b1 —)yf

Re(x7) = b2 = y5 Re(vixa) = bs = y5
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Symmetries in POPs: a first hierarchy

| O
G = C4 the cyclic group ®

o’

Space of C4-invariant polynomials of deg < 2:

1 1
by =1 blzi(x1+x2+x3+x4) bzz—(x%—{—x%%—x%—l—xi)

4
1 1
by = ZL(xlxz + x0x3 + x3x4 + xX4X1) by = E(xlxi% + X2X4)
RG(Xl) :b1—>y? RG(X4) :b1 —)yf

Re(x?) = by = y5 Re(xixa) = by = y§ Re(xixz) = by — yy
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Symmetries in POPs: a first hierarchy

The symmetry-adapted moment matrix looks like this:

Mi(y) = | n

Victor Magron

n
Y2
Y3
Y4
Y3

n
Y3
Y2
Y3
Ya

n
Vs
Y3
Y2
Y3

n
Y3
Vs
Y3
Y2
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Symmetries in POPs: a first hierarchy

The symmetry-adapted moment matrix looks like this:

Mi(y) = | n

Victor Magron

n
Y2
Y3
Y4
Y3

n
Y3
Y2
Y3
Ya

n
Vs
Y3
Y2
Y3

n
Y3
Vs
Y3
Y2

'V~ 4 variables instead of 15
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Symmetries in POPs: a first hierarchy

The symmetry-adapted moment matrix looks like this:

1 v1i 1 y1»n
Yi Y2 Y3 Ya Y3 .
Mi(y)=|yi vs vo y3 ya| V¥ 4variables instead of 15

Yi Y4 Y3 Y2 Y3
Yi Y3 Y4 Y3 Y2

One can do even better!
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Symmetries in POPs: a second hierarchy

The subset of R[x| of degree at most r can be viewed as a real
G-module
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Symmetries in POPs: a second hierarchy

The subset of R[x| of degree at most r can be viewed as a real
G-module

k k
]R[X]@C:@V[ :@@Wl]

1=1 1=1 jeJ;

with complex irreducible components W;;
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Symmetries in POPs: a second hierarchy

The subset of R[x| of degree at most r can be viewed as a real
G-module

k k
]R[X]@C:@V[ :@@le

1=1 1=1 jeJ;

with complex irreducible components Wj;

If’lick a basis {s] } of W andsetS' = {s}, :j € J;}
¥ One selects the first basis elements of each Wj;
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Symmetries in POPs: a second hierarchy

Truncation S! = {s}} of S! with basis elements of deg < r
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Symmetries in POPs: a second hierarchy

Truncation S! = {s}} of S! with basis elements of deg < r

B, a basis of R[x]$, and v, is the pseudo-moment variable
corresponding to b € By,
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Symmetries in POPs: a second hierarchy

Truncation S! = {s}} of S! with basis elements of deg < r

B, a basis of R[x]$, and v, is the pseudo-moment variable
corresponding to b € By,

Theorem [Riener et al. '13]

(Dense) (Symmetric)
lnf Zfﬂé yp( - 1nf Efﬂ( le
o 12
st M,(y) =0 st. MS(y) =0
Mf—fj (g] Y) =0 MT’G—r]‘ (g] Y) =0
yo=1 yo=1
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Symmetries in POPs: a second hierarchy

Truncation S! = {s}} of S! with basis elements of deg < r

B, a basis of R[x]$, and v, is the pseudo-moment variable
corresponding to b € By,

Theorem [Riener et al. '13]

(Dense) (Symmetric)
lnf Zfﬂé yp( - 1nf Efﬂ( le
o [/
st M,(y) =0 st. MS(y) =0
Mf—fj (g] Y) =0 MT’G—r]‘ (g] Y) =0
yo=1 yo=1
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Symmetries in POPs: a second hierarchy

p
G = C4 the cyclic group }D
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Symmetries in POPs: a second hierarchy

p
G = C4 the cyclic group }D
®

Space of C4-invariant polynomials of deg < 2:

1 1
bp=1 blzi(x1+x2+X3+x4) bzzi(x%+x%+x§+xﬁ)

—_

1
by = —(x1x2 + xox3 + x3x4 + x4x1) by = Q(xlxg + xpx4)

S
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Symmetries in POPs: a second hierarchy

p
G = C4 the cyclic group }D
®

Space of C4-invariant polynomials of deg < 2:

1 1
bp=1 blzi(x1+x2+x3+x4) bgzi(x%+x%+x§+xﬁ)

1
by = 1(361362 + xoX3 + X3X4 + X4X1) bs = Q(x1x3 + x2x4)

All irreducible representations are 1-dim with symmetry
adapted basis

—_ e
—_
—_
—_

1 -1 1 -1
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Symmetries in POPs: a second hierarchy

p
G = C4 the cyclic group }D
®

Space of C4-invariant polynomials of deg < 2:

1 1
bp=1 blzi(x1+x2+x3+x4) bgzi(x%+x%+x§+xﬁ)

1
by = 1(361362 + xoX3 + X3X4 + X4X1) bs = Q(x1x3 + x2x4)

All irreducible representations are 1-dim with symmetry
adapted basis

1 i -1 —i 1 0 -1 2
1 1 1 1 11 2 1 0
1
1 —i =1 i 211 0o -1 =2
1 -1 1 -1 1 -2 1 0
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Symmetries in POPs: a second hierarchy

1 1
bo=1 b= 7(x1+x+x5+x) bzzi(x%+x%+x§+xﬁ)

1
by = —(x1x2 + Xox3 + x3xg + X4x1) by = E(x1x3 + x2x4)

2
Sl={(m+x+x+x)} S={x2— x4}
Sio’:{%( X1+ X2 —x3+x4)} 54 {x1 — x3}
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Symmetries in POPs: a second hierarchy

1 1
bo=1 b= 7(x1+x+x5+x) bzzi(x%+x%+x§+xﬁ)

1
by = —(x1x2 + Xox3 + x3xg + X4x1) by = E(x1x3 + x2x4)

2
Sl={(m+x+x+x)} S={x2— x4}
Sio’:{%( X1+ X2 —x3+x4)} 54 {x1 — x3}

RG(%(Xl + X2 + x3 + X4)) =2b; — 2y1
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Symmetries in POPs: a second hierarchy

1 1
bo=1 b= 7(x1+x+x5+x) bzzi(x%+x%+x§+xﬁ)

1
by = —(x1x2 + Xox3 + x3xg + X4x1) by = E(x1x3 + x2x4)

2
Sl={(m+x+x+x)} S={x2— x4}
Sio’:{%( X1+ X2 —x3+x4)} 54 {x1 — x3}

RG(%(Xl + X2 + x3 + X4)) =2b; — Zyl

Re(x2 —x4) = Re(3(—x1+x2—x34+x4)) = Rg(x1 —x3) =0
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Symmetries in POPs: a second hierarchy

1 1
bo=1 b= 7(x1+x+x5+x) bzzi(x%+x%+x§+xﬁ)

1
by = —(x1x2 + Xox3 + x3xg + X4x1) by = E(x1x3 + x2x4)

2
Sl={(m+x+x+x)} S={x2— x4}
Sio’:{%( X1+ X2 —x3+x4)} 54 {x1 — x3}

RG(%(Xl + X7 + X3 +x4)) =2b; — Zyl
RG(XZ —X4) = 'RG(%(—JQ + x2 —X3—|—X4)) = RG(x1 —X3) =0

Re(q(x1+ %2+ %3 +x4)%) = ba +2bs+ by = 12+ 23 + s
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Symmetries in POPs: a second hierarchy

1 211 0 0 0
211 Y2 +2y3 +ya 0 0 0
Mf(y)=| 0 0 v2 =y 0 0
0 0 0 Y2 —2y3 + Y4 0
0 0 0 0 Y2 — Y4
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Symmetries in POPs: a second hierarchy

1 211 0 0 0
211 Y2 +2y3 +ya 0 0 0
Mi(y)=] 0 0 Y2 — s 0 0
0 0 0 Y2 —2y3 + Y4 0
0 0 0 0 Y2 — Y4

V" 4 variables instead of 15, 2 x 2 block + 3 elementary blocks
instead of 5 x 5 block
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Symmetries in POPs: special case of S,

V" Irreducible repr. of S,, isomorphic to the partitions of n
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Symmetries in POPs: special case of S,

V" Irreducible repr. of S,, isomorphic to the partitions of n

Young tableau of A = (4,3,1,1,1) - 10 t=
with columns C;
Classe of equivalent Young tableaux = {t}
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SRR
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Classe of equivalent Young tableaux = {t}

—_
SRR

B = (B1,...,B,) with distinct components by, ..., b, ordered \,
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Symmetries in POPs: special case of S,

V" Irreducible repr. of S,, isomorphic to the partitions of n

Young tableau of A = (4,3,1,1,1) - 10 t=
with columns C;
Classe of equivalent Young tableaux = {t}

—_
SRR

B = (B1,...,B,) with distinct components by, ..., b, ordered \,
pj=1li:Bi=0bj| = p=(m,..., 1) - nisthe shape of
(0,0,0),(1,0,0),(2,0,0) have shape (3),(2,1),(2,1)

For each B, take pairs (t, T) where t is A-tableau and T has
shape A and content y to build:

borg :
LT _ T(i,)
T = chf
ij
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Symmetries in POPs: special case of S,

Column stabilizer CStab; = S¢, x - -+ x S¢,
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Symmetries in POPs: special case of S,
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Symmetries in POPs: special case of S,

Column stabilizer CStab; = S¢, x -+ X S¢,

Specht polynomial Y ccstan, sgn(g) (x7)8 ~~ generalized
Specht polynomial after summing over tableaux equivalentto T
Theorem

B with shape 1 —

]R{Xﬁ} = EB @R{S(t,n}

Abu T

t a A-tableau with  rows & columns
T with shape A and content u
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Symmetries in POPs: special case of S,

Column stabilizer CStab; = S¢, x -+ X S¢,

Specht polynomial Y ccstan, sgn(g) (x7)8 ~~ generalized
Specht polynomial after summing over tableaux equivalentto T
Theorem

B with shape 1 —

]R{Xﬁ} = EB @R{S(t,n}

Abu T

t a A-tableau with  rows & columns
T with shape A and content u

V" Gives a special block-structure for the moment matrix!
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Symmetries in POPs: special case of 53

r =2 = moment variables indexed by partitions of {1,2, 3,4}
with at most n = 3 parts:

Vi Y2 Ys Ysi Vi1 Y22 VY21 Yi11 Y211
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Symmetries in POPs: special case of 53

r =2 = moment variables indexed by partitions of {1,2, 3,4}
with at most n = 3 parts:

Vi Y2 Ys Ysi Vi1 Y22 VY21 Yi11 Y211

V" B should be (0,0,0) (1,0,0) (2,0,0) (1,1,0)
Possible shapes (3) and (2,1) with generalized Specht
polynomials

{1 xi4+x+x ¥3+x3+x3 x1x0 + x0x3 + 13701}

2 .2 2
{x3—xp—x1 x5—x5—x] —x1x2+ XoX3 + x3x1}

V" Leads to 4 x 4 + 3 x 3-block moment matrices instead of
10 x 10!
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Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radius
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Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radius

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

V" Combine correlative & term sparsity for problems with n = 10°
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Further topics

Convergence rate of SPARSE hierarchies?
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Further topics

Convergence rate of SPARSE hierarchies? y’ﬁ
@ 8 %

V" (smart) solution extraction for term sparse/symmetric POPs
Numerical conditioning of sparse/symmetric SDP relaxations?

V" Tons of applications . ..
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Thank you for your attention!

https://homepages.laas.fr/vmagron

GITHUB:TSSOS


https://homepages.laas.fr/vmagron
https://github.com/wangjie212/TSSOS
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