
Exploiting sparsity & symmetries in
polynomial optimization

Victor Magron
LAAS CNRS

Lectures on polynomial optimization

University of Murcia 19 May 2022

6

4

5

1

23

1

x2
1

x2
2

x2
3

x2
4

x2
5



What is a sparse/symmetric POP?

Looks like a regular polynomial optimization problem (POP):

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) > 0}

But the input data f , gj are “SPARSE” or “SYMMETRIC”!

Correlative sparsity: few products between
each variable and the others in f , gj

 f (x) = x1x2 + x2x3 + . . . x99x100 1 2 3 10099

Term sparsity: few terms in f , gj

 f (x) = x99
1 x2 + x1x100

2

Symmetry under a subgroup of GL(n):
 f (x) = x1x2 + x2x3 + x3x4 + x4x1
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Where do we find sparse/symmetric POPs?

Everywhere (almost)!

Deep learning
 robustness, computer vision

Output

Hidden

Input

Power systems
 AC optimal power-flow, stability

Quantum Systems
 condensed matter, entanglement
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The Moment-SOS Hierarchy for POP
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem fmin = inf f (x)

Theory

(Primal) (Dual)

inf
∫

f dµ sup λ

with µ proba ⇒ INFINITE LP ⇐ with f − λ > 0

LASSERRE’S HIERARCHY of CONVEX PROBLEMS ↑ f ∗

[Lasserre ’01]

degree d & n vars =⇒ (n+2d
n ) SDP VARIABLES

HOW TO OVERCOME THIS NO-FREE LUNCH RULE?
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Practice
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moments
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem fmin = infx∈X f (x)
spaceM+(X) of probability measures supported on X
quadratic module Q(X) =

{
σ0 + ∑j σjgj, with σj SOS

}
Infinite-dimensional linear programs (LP)

(Primal) (Dual)

inf
∫

X
f dµ = sup λ

s.t. µ ∈ M+(X) s.t. λ ∈ R

f − λ ∈ Q(X)

Pseudo-moment sequences y up to order r
Truncated quadratic module Q(X)r

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr−rj(gj y) < 0 s.t. λ ∈ R

y0 = 1 f − λ ∈ Q(X)r

What is the primal-dual “SPARSE/SYMMETRIC” variant?
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The Moment-SOS Hierarchy for POP

Correlative sparsity

Term sparsity

Symmetries



Sparse matrices

Symmetric matrices indexed by graph vertices

1 2 3

no edge between 1 and 3⇐⇒ 0 entry in the (1, 3) entry

cycle =
1 2

34

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length > 4 have at least one chord
1 2

34
clique = a fully connected subset of vertices

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 5 / 62
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Chordal extensions

1 2

34

Fact
Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges

Chordal extension is not unique!
1 2

34

1 2

34

1 2

34

approximately minimal maximal
Theorem [Gavril ’72, Vandenberghe & Andersen ’15]

The maximal cliques of a chordal graph can be enumerated in
linear time in the number of nodes and edges.
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Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton ’93]
For a chordal graph with maximal cliques I1, . . . , Ip:

(RIP) ∀k < p Ik+1 ∩
⋃
j6k

Ij ⊆ Ii for some i 6 k

(possibly after reordering)

RIP always holds for p = 2

RIP holds for chains 1 2 3 10099

RIP holds for numerous applications!
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Semidefinite Programming (SDP)

min
y

c
>

y

s.t. ∑
i

Fi yi < F0

Linear cost c

Symmetric matrices F0, Fi

Linear matrix inequalities “F < 0”
(F has nonnegative eigenvalues)

Spectrahedron

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 8 / 62



Sparse SDP matrices

Theorem [Griewank Toint ’84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I1, I2

QG < 0 with nonzero entries corresponding to edges of G
=⇒ QG = P1

TQ1P1 + P2
TQ2P2 with Qk < 0 indexed by Ik

1 2 3 1 2 2 3

What are P1, P2? P1 ∈ R|I1|×n P(i, j) =

{
1 if I(i) = j

0 otherwise

I1 = (1, 2) =⇒ P1

(
1 0 0
0 1 0

)
P1

TQ1P1 inflates a |I1| × |I1| matrix Q1 into a sparse n× n matrix
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What is correlative sparsity?

Exploit few links between variables [Lasserre, Waki et al. ’06]

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Correlative sparsity pattern (csp) graph G

Vertices = {1, . . . , n}

(i, j) ∈ Edges⇐⇒ xixj appears in f

6

4

5

1

23

Similar construction with constraints X = {x ∈ Rn : gj(x) > 0}
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What is correlative sparsity?

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

Chordal graph after adding edge (3, 5)

6

4

5

1

23

maximal cliques I1 = {1, 4} I2 = {1, 2, 3, 5} I3 = {1, 3, 5, 6}

f = f1 + f2 + f3 where fk involves only variables in Ik

Let us index moment matrices and SOS with the cliques Ik
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A sparse variant of Putinar’s Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar ’93] Positivstellensatz

If X contains a ball constraint N −∑i x2
i > 0 then

f > 0 on X = {x : gj(x) > 0} =⇒ f = σ0 +∑
j

σjgj with σj SOS

Theorem: Sparse Putinar’s representation [Lasserre ’06]

f = ∑k fk, fk depends on x(Ik)

f > 0 on X
Each gj depends on some Ik

RIP holds for (Ik) =⇒
ball constraints for each x(Ik)

f = ∑
k
(σ0k + ∑

j∈Jk

σjgj)

SOS σ0k “sees” vars in Ik

σj “sees” vars from gj

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 12 / 62
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A first key message

SUMS OF SQUARES PRESERVE SPARSITY

Victor Magron Exploiting sparsity & symmetries in polynomial optimization 12 / 62



Sparse moment matrices

For each subset Ik, submatrix of Mr(y) corresponding of rows
& columns indexed by monomials in x(Ik)

f (x) = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

I1 = {1, 4} =⇒ monomials in x1, x4

M1(y, I1) =


1 | y1,0,0,0,0,0 y0,0,0,1,0,0

− − −
y1,0,0,0,0,0 | y2,0,0,0,0,0 y1,0,0,1,0,0

y0,0,0,1,0,0 | y1,0,0,1,0,0 y0,0,0,2,0,0


same for each localizing matrix Mr(gjy)
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Sparse moment matrices

For each subset Ik, submatrix of Mr(y) corresponding of rows
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Sparse primal-dual Moment-SOS hierarchy

fmin = infx∈X f (x) with X = {x : gj(x) > 0}

Dense Moment-SOS hierarchy

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr(y) < 0 s.t. λ ∈ R

Mr−rj(gj y) < 0 f − λ = σ0 + ∑
j

σjgj

y0 = 1
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f = ∑k fk, with fk depends on x(Ik)

Each gj depends on some Ik
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Mr−rj(gj y, Ik) < 0 f − λ = ∑
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(σk0 + ∑
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σjgj)

y0 = 1

RIP holds for (Ik) + ball constraints for each x(Ik) =⇒ Primal
and dual optimal value converge to fmin by sparse Putinar
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Computational cost

fmin = infx∈X f (x) with X = {x : gj(x) > 0, j 6 m}
τ = max{|I1|, . . . , |Ip|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)

inf ∑
α

fα yα = sup λ

s.t. Mr(y, Ik) < 0 s.t. λ ∈ R

Mr−rj(gj y, Ik) < 0 f − λ = ∑
k
(σk0 + ∑

j∈Jk

σjgj)

y0 = 1

(m + p) SOS in at most τ vars of degree 6 2r
(m + p)O (r2τ) SDP vars vs (m + 1)O (r2n) in the dense SDP
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f (x) = x1x2 + x3x4

Floating-point f̂ (x, e) = [x1x2(1 + e1) + x3x4(1 + e2)](1 + e3)

x ∈ X , | ei |6 2−δ δ = 24 (single) or 53 (double)

1: Error f (x)− f̂ (x, e) = `(x, e) + h(x, e), ` linear in e

2: Bound h(x, e) with interval arithmetic

3: Bound `(x, e) with SPARSE SUMS OF SQUARES

Ik → {x, ek} =⇒ m(n + 1)2r instead of (n + m)2r SDP vars
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Application to roundoff errors

f = x2x5 + x3x6 − x2x3 − x5x6 + x1(−x1 + x2 + x3 − x4 + x5 + x6)

x ∈ [4.00, 6.36]6 , e ∈ [−ε, ε]15 , ε = 2−53

Dense SDP: (6+15+4
6+15 ) = 12650 variables ; Out of memory

Sparse SDP Real2Float tool: 15(6+1+4
6+1 ) = 4950 ; 759ε

Interval arithmetic: 922ε (10 × less CPU)

Symbolic Taylor FPTaylor tool: 721ε (21 × more CPU)

SMT-based rosa tool: 762ε (19 × more CPU)
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Application to roundoff errors
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Application to noncommutative optimization

Self-adjoint noncommutative variables xi, yj

f = x1(y1 + y2 + y3) + x2(y1 + y2 − y3) + x3(y1 − y2)− y1 − 2y1 − y2

with x1x2 6= x2x1, involution (x1y3)? = y3x1

Constraints X = {(x, y) : xi, yj < 0, x2
i = xi, y2

j = yj, xiyj = yjxi}

MINIMAL EIGENVALUE OPTIMIZATION

λmin = inf {〈 f (x, y)v, v〉 : (x, y) ∈ X, ‖v‖ = 1}
= sup λ

s.t. f (x, y)− λI < 0 , ∀(x, y) ∈ X
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Application to noncommutative optimization

Ball constraint N −∑i x2
i < 0 in X

Theorem: NC Putinar’s representation [Helton & McCullough ’02]

f � 0 on X =⇒ f = ∑
i

s?i si + ∑
j

∑
i

t?jigjtji with si, tji ∈ R〈x〉

NC variant of Lasserre’s Hierarchy for λmin:

replace “ f − λI < 0 on X” by f − λI = ∑i s?i si + ∑j ∑i t?jigjtji

with si, tji of bounded degrees = SDP
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Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1, . . . , xn)

Theorem [Helton & McCullough ’02]

f < 0⇔ f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh ’21]
sparse f SOS ; f is a sparse SOS Take f = (x1 + x2 + x3)

2

GOOD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar ’78, Voiculescu ’85]
Theorem: Sparse NC Positivstellensatz [Klep Magron Povh ’21]

f = ∑k f k, f k depends on x(Ik)

f > 0 on X
Each gj depends on some Ik
RIP holds for (Ik) =⇒
ball constraints for each x(Ik)

f = ∑
k,i
(s?kiski + ∑

j∈Jk

tji
?gjtji)

ski “sees” vars in Ik
tji “sees” vars from gj
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Application to noncommutative optimization

I3322 Bell inequality (entanglement in quantum information)

f = x1(y1 + y2 + y3) + x2(y1 + y2 − y3) + x3(y1 − y2)− x1 − 2y1 − y2

Maximal violation levels→ upper bounds on λmax of f on
{(x, y) : x2

i = xi, y2
j = yj, xiyj = yjxi}

Ik → {x1, x2, x3, yk}
level sparse dense [Pál & Vértesi ’18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
3’ 0.2508754 (1 day)
4 0.2508917
5 0.2508763
6 0.2508753977180 (1 hour)

PERFORMANCE VS ACCURACY
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More and more applications!

Sparse positive definite forms [Mai, Lasserre & Magron ’21]

Robust Geometric Perception [Yang & Carlone ’20]

Polynomial matrix inequalities [Zheng & Fantuzzi ’20]

Region of attraction [Tacchi et al., Schlosser et al. ’21]

Volume computation [Tacchi et al. ’21]

Robustness of implicit deep networks [Chen et al. ’21]
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The Moment-SOS Hierarchy for POP

Correlative sparsity

Term sparsity

Symmetries



Term sparsity via Newton polytope

f = 4x4
1x6

2 + x2
1 − x1x2

2 + x2
2

spt( f ) = {(4, 6), (2, 0), (1, 2), (0, 2)}

Newton polytope B = conv (spt( f ))

Squares in SOS decomposition ⊆ B
2 ∩Nn

[Reznick ’78]

f =
(

x1 x2 x1x2 x1x2
2 x2

1x3
2

)
Q︸︷︷︸
<0


x1

x2

x1x2

x1x2
2

x2
1x3

2


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Term sparsity: the unconstrained case

f = x2
1 − 2x1x2 + 3x2

2 − 2x2
1x2 + 2x2

1x2
2 − 2x2x3

+ 6x2
3 + 18x2

2x3 − 54x2x2
3 + 142x2

2x2
3

[Reznick ’78]→ f =
(
1 x1 x2 x3 x1x2 x2x3

)
Q︸︷︷︸
<0



1
x1
x2
x3

x1x2
x2x3

 6×7
2 = 21 “unknown” entries in Q

Replace Q by QG′ with nonzero entries at edges of G′

 6 + 9 = 15 “unknown” entries in QG′
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree 6 r

Edges E with

{α, β} ∈ E⇔ α + β ∈ supp f
⋃

supp gj
⋃
|α|6r

2α

An example with r = 2
f = x4

1 + x1x2
2 + x2x3 + x2

3x2
4

g1 = 1− x2
1 − x2

2 − x2
3 g2 = 1− x3x4

1

x2
1

x2
2

x2
3

x2
4

x1

x2x3x4 x1x2

x1x3 x1x4

x2x3

x2x4

x3x4
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Term sparsity: support extension

α′ + β′ = α + β and (α, β) ∈ E⇒ (α′, β′) ∈ E

1 x1 x2 x3

x2x3 x1x3 x1x2
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree 6 r

Edges E with

{α, β} ∈ E⇔ α + β ∈ supp f
⋃

supp gj
⋃
|α|6r

2α

 support extension chordal extension G′

By iteratively performing support extension & chordal extension

G(1) = G′ ⊆ · · · ⊆ G(s) ⊆ G(s+1) ⊆ · · ·
Two-level hierarchy of lower bounds for fmin, indexed by

sparse order s and relaxation order r
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Term sparsity: primal moment relaxations

Let G′ be a chordal extension of G with maximal cliques (Ci)

Ci 7−→ MCi(y)

In the moment relaxation,

Mr(y) < 0 −→ MCi(y) < 0

Similarly for the localizing matrices Mr−rj(gj y)

Each constraint Gj  G(s)
j  cliques C(s)

j,i
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Term sparsity: primal moment relaxations

Let C(s)
j,i be the maximal cliques of G(s)

j . For each s ≥ 1

f r,s
ts = inf ∑α fαyα

s.t. M
C(s)

0,i
(y) < 0

M
C(s)

j,i
(gj y) < 0

y0 = 1

dual yields the TSSOS hierarchy
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A two-level hierarchy of lower bounds

f rmin,1
ts ≤ f rmin,2

ts ≤ · · · ≤ f rmin

≥ ≥ ≥

f rmin+1,1
ts ≤ f rmin+1,2

ts ≤ · · · ≤ f rmin+1

≥ ≥ ≥

...
...

...
...

≥ ≥ ≥

f r,1
ts ≤ f r,2

ts ≤ · · · ≤ f r

≥ ≥ ≥

...
...

...
...
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Different choices of chordal extensions

x1 x2 x3

x1x2 1 x2x3

x1 x2 x3

x1x2 1 x2x3
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang ’21]

Fixing a sparse order s, the sequence ( f r,s
ts )r≥rmin is monotonically

nondecreasing.

Fixing a relaxation order r, the sequence ( f r,s
ts )s≥1 ↑ f r in

finitely many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the
sign symmetries if the maximal chordal extension is used.

f = 1 + x2
1x4

2 + x4
1x2

2 + x4
1x4

2 − x1x2
2 − 3x2

1x2
2

Newton polytope B = (1 x1x2 x1x2
2 x2

1x2 x2
1x2

2)

x2 7→ −x2

Sign-symmetries blocks (1 x1x2
2 x2

1x2
2) (x1x2 x2

1x2)

TSSOS blocks (1 x1x2
2 x2

1x2
2) (x1x2) (x2

1x2)
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ts )r≥rmin is monotonically

nondecreasing.

Fixing a relaxation order r, the sequence ( f r,s
ts )s≥1 ↑ f r in

finitely many steps if the maximal chordal extension is used.

The block structures converge to the one determined by the
sign symmetries if the maximal chordal extension is used.

f = 1 + x2
1x4

2 + x4
1x2

2 + x4
1x4
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2 − 3x2
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A second key message

TSSOS preserves the block structure

related to sign-symmetries
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Combining correlative & term sparsity

1 Partition the variables w.r.t. the maximal cliques of the csp
graph

2 For each subsystem involving variables from one maximal
clique, apply TSSOS

a two-level CS-TSSOS hierarchy of lower bounds for fmin
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Application to optimal power-flow

Optimal Powerflow n ' 103

bla

[Josz et al. ’18]



inf
Vi ,S

g
s ,Sij

∑s∈G(c2s(<(Sg
s ))

2 + c1s<(Sg
s ) + c0s)

s.t. ∠Vref = 0,

Sgl
s ≤ Sg

s ≤ Sgu
s ∀s ∈ G, υl

i ≤ |Vi| ≤ υu
i ∀i ∈ N

∑s∈Gi
Sg

s − Sd
i − Ys

i |Vi|2 = ∑(i,j)∈Ei∪ER
i

Sij, ∀i ∈ N

Sij = (Y∗ij − i
bc

ij
2 ) |Vi |2
|Tij |2 − Y∗ij

ViVj
∗

Tij
, Sji = · · ·

|Sij| ≤ su
ij , θ∆l

ij ≤ ∠(ViVj
∗) ≤ θ∆u

ij , ∀(i, j) ∈ E
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Application to optimal power-flow

mb = the maximal size of blocks
m = number of constraints

n m
CS (r = 2) CS+TS (r = 2, s = 1)

mb time (s) gap mb time (s) gap
114 315 66 5.59 0.39% 31 2.01 0.73%
348 1809 253 − − 34 278 0.05%
766 3322 153 585 0.68% 44 33.9 0.77%
1112 4613 496 − − 31 410 0.25%
4356 18257 378 − − 27 934 0.51%
6698 29283 1326 − − 76 1886 0.47%
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Application to networked systems stability

Duffing oscillator Hamiltonian V =
N

∑
i=1

ai(
x2

i
2
− x4

i
4
) +

1
8

N

∑
i,k=1

bik(xi − xk)
4

On which domain V > 0?
f = V −

N

∑
i=1

λi︸︷︷︸
>0

x2
i (g− x2

i ) > 0

=⇒ V > 0 when x2
i < g

tsp graph G
x2
jx2

k

x2
i

xixjxixk

xjxk

x1 x2 xN· · ·

 N(N+1)
2 + 6(N

2 ) + N “unknown” entries in QG = 80 for N = 5

Proof that f > 0 for N = 50 in ∼ 1 second!
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The Moment-SOS Hierarchy for POP

Correlative sparsity

Term sparsity

Symmetries



Primer on group representations

Let G be a finite group

1 A representation of G is a finite-dim vector space V with a
homomorphism ρ : G → GL(V), where GL(V) is the set of
all invertible transformations of V

2 dim(V) is the degree of (V, ρ)

3 (V, ρ) isomorphic to (V ′, ρ′) if there is an isomorphism
θ : V → V ′ s.t.

ρ′(g) = θρ(g)θ−1 , ∀g ∈ G

4 A basis of V gives a matrix representation of G, we identify
G with a group M(G) of invertible matrices
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Primer on group representations

V is a G-module if

1 1 · v = v and g1 · (g2 · v) = (g1g2) · v

2 g · (v1 + v2) = g · v1 + g · v2 and g · (λv) = λg · v

ρ : G → GL(V) with ρ(g) = v 7→ g · v is a representation

1 W ⊆ V is a G-submodule if g · w ∈W for all w ∈W and
g ∈ G

2 If V does not contain a non-trivial submodule then V is
irreducible

Example: G = S2 acting on the 2-dim vector space
V = Re1 ⊕Re2 by permuting e1 and e2. Then V is reducible.
W = R(e1 + e2) is an S2-submodule
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Primer on group representations

Let K = R or C and G a finite group.
Theorem [Maschke]
If V is a finite-dim K-vector space and a G-module then V is a
direct sum of irreducible G-modules Wi

V = W1 ⊕W2 ⊕ · · · ⊕Wk

φ is a G-homomorphism if φ(g · v) = φ(v) for all g ∈ G, v ∈ V.

Theorem [Schur’s lemma]
Let V, W be two irreducible G-modules. Then a G-
homomorphism φ : V → W is either zero or an isomorphism.

A G-homomorphism from V to V is equivalent to multiplication
by a scalar.
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Primer on group representations

Corollary
Let V = m1W1 ⊕ · · · ⊕mkWk be a complete decomposition of the
representation V with dim Wi = di. Then there is a basis of V
such that the matrices of M(G) are of the form

M(g) =
k⊕

l=1

mi⊕
j=1

M(l)(g)

where each M(l)(G) represents Wl

Such a basis is called a symmetry adapted basis
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Primer on group representations

Let ρ : G → GLn(K) and Q ∈ Kn×n with ρ(g)Q = Qρ(g) for all
g ∈ G

Assume that ρ = m1ρ1 ⊕ · · · ⊕mkρk with di = dim ρi

Use a symmetric adapted basis of Kn to block-diag Q
=⇒ N = T−1QT andN1 0

. . .
0 Nk

 Ni =

Bi 0
. . .

0 Bi


Each column of T is an element of a symmetry adapted

basis
Bi has size mi
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A first key message

Whenever we have a linear group action on a vector space then

A NICE BASIS MAKES MATRICES SIMPLER
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Symmetries in SDPs

Symn(K): Hermitian matrices

inf
Q
〈C, Q〉

s.t. 〈Ai, Q〉 = fi

Q < 0 , Q ∈ Symn(K)

Let us pick a representation (Kn, ρ) of G and an orthonormal
basis for Kn w.r.t. a G-invariant inner product

The corresponding matrices are unitary: ρ(g)ρ(g)? = Id
Symn(K) is a G-module via

Qg := ρ(g)Qρ(g)?

The above SDP is G-invariant if 〈C, Q〉 = 〈C, Qg〉 and
〈Ai, Qg〉 = fi
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Symmetries in SDPs

inf
Q
〈C, Q〉

s.t. 〈Ai, Q〉 = fi

Q = Qg , ∀g ∈ G

Q < 0 , Q ∈ Symn(K)

Theorem
The optimal value of the SDP is the same as the “dense” one if it
is G-invariant.

Proof
Take a feasible Q and g ∈ G.
Since the feasible region is convex QG := 1

|G| ∑g∈G Qg is feasible
for the “dense” SDP and 〈C, Q〉 = 〈C, QG〉.
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Symmetries in SDPs

One can restrict to invariant matrices (i.e., the commutator)

By Schur’s lemma, we can find a basis that block-diag the
matrices
Let Kn = W1

1 ⊕ · · · ⊕W1
m1
⊕ · · · ⊕Wk

mk
be an orthogonal

decomposition into irreducibles, and choose an orthonormal
basis {ej

l1, . . . , ej
ldj
} for each W j

l

orthonormal symmetry adapted basis T

inf
Ql

k

∑
l=1

dl〈Cl , Ql〉

s.t. 〈Ai, Q〉 = fi , T−1QT = diag (Q1, . . . , Qk)

Ql < 0 , Ql ∈ Symml
(K)
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Ql < 0 , Ql ∈ Symml
(K)
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Symmetries in SDPs: an example

C =

0 0 0
0 1 0
0 0 1

 Q =

a b b
b c1 d
b d c2



C, Q invariant under S2 permuting both the last 2 rows and
columns

one can restrict to the fixed point subspace with c1 = c2 = c
S2 has 2 irreducible representations of dimension

d1 = d2 = 1, with multiplicities m1 = 2, m2 = 1

T =

1 0 0
0 α α

0 α −α

 α =
1√
2

T−1CT =

(
C1 0
0 C2

)
C1 =

(
0 0
0 1

)
C2 = 1

T−1QT =

(
Q1 0
0 Q2

)
Q1 =

(
a

√
2b√

2b c + d

)
Q2 = c− d
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Symmetries in POPs

We come back to our initial POP:

inf f (x)

s.t. x ∈ X = {x ∈ Rn : gj(x) > 0}

Finite group G and representation ρ : G → GLn(R)

f g(x) := f (ρ(g)−1x)
POP is G-invariant if f g = f and gj

g = gj

The Reynolds Operator RG : R[x]→ R[x]G is

RG( f ) :=
1
|G| ∑

g∈G
f g
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Symmetries in POPs: a first hierarchy

Dense vs Symmetric adapted hierarchy

(Dense) (Symmetric)

inf ∑
α

fα yα = inf ∑
α

fα yG
α

s.t. Mr(y) < 0 s.t. Mr(yG) < 0

Mr−rj(gj y) < 0 Mr−rj(gj yG) < 0

y0 = 1 yG
0 = 1

yG
α is the pseudo-moment variable corresponding to the

polynomial RG(xα)
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Symmetries in POPs: a first hierarchy

G = C4 the cyclic group 1

2

3

4

Space of C4-invariant polynomials of deg 6 2:

b0 = 1 b1 =
1
4
(x1 + x2 + x3 + x4) b2 =

1
4
(x2

1 + x2
2 + x2

3 + x2
4)

b3 =
1
4
(x1x2 + x2x3 + x3x4 + x4x1) b4 =

1
2
(x1x3 + x2x4)

RG(x1) = b1 → yG
1 . . . RG(x4) = b1 → yG

1
RG(x2

i ) = b2 → yG
2 RG(x1x2) = b3 → yG

3 RG(x1x3) = b4 → yG
4
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Symmetries in POPs: a first hierarchy

The symmetry-adapted moment matrix looks like this:

M1(y) =


1 y1 y1 y1 y1

y1 y2 y3 y4 y3

y1 y3 y2 y3 y4

y1 y4 y3 y2 y3

y1 y3 y4 y3 y2



4 variables instead of 15

One can do even better!
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Symmetries in POPs: a second hierarchy

The subset of R[x] of degree at most r can be viewed as a real
G-module

R[x]⊗C =
k⊕

l=1

Vl =
k⊕

l=1

⊕
j∈Jl

Wl j

with complex irreducible components Wl j

Pick a basis {sl
j,u} of Wl j and set S l = {sl

j,1 : j ∈ Jl}
One selects the first basis elements of each Wl j
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Symmetries in POPs: a second hierarchy

Truncation S l
r = {sl

α} of S l with basis elements of deg 6 r

B2r a basis of R[x]G2r and yb is the pseudo-moment variable
corresponding to b ∈ B2r

Theorem [Riener et al. ’13]

(Dense) (Symmetric)

inf ∑
α

fα yα = inf ∑
α

fα yα

s.t. Mr(y) < 0 s.t. MG
r (y) < 0

Mr−rj(gj y) < 0 MG
r−rj

(gj y) < 0

y0 = 1 y0 = 1

MG
r (y) =

k⊕
l=1

MG
rl(y) (u, v) entry of MG

rl(y) = RG(sl
usl

v)
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Symmetries in POPs: a second hierarchy

G = C4 the cyclic group 1

2

3

4

Space of C4-invariant polynomials of deg 6 2:

b0 = 1 b1 =
1
4
(x1 + x2 + x3 + x4) b2 =

1
4
(x2

1 + x2
2 + x2

3 + x2
4)

b3 =
1
4
(x1x2 + x2x3 + x3x4 + x4x1) b4 =

1
2
(x1x3 + x2x4)

All irreducible representations are 1-dim with symmetry
adapted basis

1 i −1 −i
1 1 1 1
1 −i −1 i
1 −1 1 −1

 1
2


1 0 −1 2
1 2 1 0
1 0 −1 −2
1 −2 1 0


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S3
1 = { 1

2 (−x1 + x2 − x3 + x4)} S4
1 = {x1 − x3}

RG(
1
2 (x1 + x2 + x3 + x4)) = 2b1 → 2y1

RG(x2 − x4) = RG(
1
2 (−x1 + x2 − x3 + x4)) = RG(x1 − x3) = 0

RG(
1
4 (x1 + x2 + x3 + x4)

2) = b2 + 2b3 + b4 → y2 + 2y3 + y4
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Symmetries in POPs: a second hierarchy

MG
1 (y) =


1 2y1 0 0 0

2y1 y2 + 2y3 + y4 0 0 0
0 0 y2 − y4 0 0
0 0 0 y2 − 2y3 + y4 0
0 0 0 0 y2 − y4



4 variables instead of 15, 2× 2 block + 3 elementary blocks
instead of 5× 5 block
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Symmetries in POPs: special case of Sn

Irreducible repr. of Sn isomorphic to the partitions of n

Young tableau of λ = (4, 3, 1, 1, 1) ` 10 t =
with columns Cj

Classe of equivalent Young tableaux = {t}

1 3 4 6

5 7 8

9

2

10
β = (β1, . . . , βn) with distinct components b1, . . . , b` ordered↘
µj = |i : βi = bj| ⇒ µ = (µ1, . . . , µ`) ` n is the shape of β

(0, 0, 0), (1, 0, 0), (2, 0, 0) have shape (3), (2, 1), (2, 1)
For each β, take pairs (t, T) where t is λ-tableau and T has
shape λ and content µ to build:

xt,T = ∏
i,j

x
bT(i,j)
Cj
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Symmetries in POPs: special case of Sn

Column stabilizer CStabt = SC1 × · · · × SCν

Specht polynomial ∑g∈CStabt
sgn(g)(xt,T)g  generalized

Specht polynomial after summing over tableaux equivalent to T
Theorem
β with shape µ =⇒

R{xβ} =
⊕
λ�µ

⊕
T

R{S(t,T)}

t a λ-tableau with↗ rows & columns
T with shape λ and content µ

Gives a special block-structure for the moment matrix!
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Symmetries in POPs: special case of S3

r = 2 =⇒ moment variables indexed by partitions of {1, 2, 3, 4}
with at most n = 3 parts:

y1 y2 y3 y4 y11 y22 y21 y111 y211

β should be (0, 0, 0) (1, 0, 0) (2, 0, 0) (1, 1, 0)
Possible shapes (3) and (2, 1) with generalized Specht
polynomials

{1 x1 + x2 + x3 x2
1 + x2

2 + x2
3 x1x2 + x2x3 + x3x1}

{x3 − x2 − x1 x2
3 − x2

2 − x2
1 − x1x2 + x2x3 + x3x1}

Leads to 4× 4 + 3× 3-block moment matrices instead of
10× 10!
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Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, joint spectral radius

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

Combine correlative & term sparsity for problems with n = 103
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Further topics

Convergence rate of SPARSE hierarchies?

(smart) solution extraction for term sparse/symmetric POPs

Numerical conditioning of sparse/symmetric SDP relaxations?

Tons of applications . . .
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Thank you for your attention!

https://homepages.laas.fr/vmagron

GITHUB:TSSOS

https://homepages.laas.fr/vmagron
https://github.com/wangjie212/TSSOS
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