State polynomials for nonlinear Bell inequalities

Victor Magron, LAAS CNRS, POP team

Joint work with Igor Klep, Jurij Volčič \& Jie Wang

Séminaire d'Analyse Fonctionnelle de Lille
17 May 2024

Motivation: Bell inequalities

State polynomials

NPA hierarchy for state polynomials

Back to Bell inequalities

Linear Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Linear Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Alice \rightsquigarrow Source \rightsquigarrow Bob
Correlations = conditional joint probabilities: $P(a b \mid s t)=P$ (Alice, Bob answer $a, b \mid$ Alice, Bob are asked $s, t)$

Linear Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Alice \rightsquigarrow Source \rightsquigarrow Bob
Correlations = conditional joint probabilities: $P(a b \mid s t)=P($ Alice, Bob answer $a, b \mid$ Alice, Bob are asked $s, t)$

Deterministic (= classical) strategies

$$
P(a \mid s), P(b \mid t) \in\{0,1\} \Longrightarrow P(a b \mid s t)=P(a \mid s) P(b \mid t) \in\{0,1\}
$$

Linear Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Alice \rightsquigarrow Source \rightsquigarrow Bob
Correlations = conditional joint probabilities:
$P(a b \mid s t)=P$ (Alice, Bob answer $a, b \mid$ Alice, Bob are asked $s, t)$
Deterministic (= classical) strategies

$$
P(a \mid s), P(b \mid t) \in\{0,1\} \Longrightarrow P(a b \mid s t)=P(a \mid s) P(b \mid t) \in\{0,1\}
$$

Independent strategies $P(a b \mid s t)=p_{s}(a) p_{t}(b) \in[0,1]$

Linear Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Alice \rightsquigarrow Source \rightsquigarrow Bob
Correlations = conditional joint probabilities:
$P(a b \mid s t)=P($ Alice, Bob answer $a, b \mid$ Alice, Bob are asked $s, t)$
Deterministic (= classical) strategies

$$
P(a \mid s), P(b \mid t) \in\{0,1\} \Longrightarrow P(a b \mid s t)=P(a \mid s) P(b \mid t) \in\{0,1\}
$$

Independent strategies $P(a b \mid s t)=p_{s}(a) p_{t}(b) \in[0,1]$
Shared randomness $=$ local hidden variable model $P(a b \mid s t)=d_{s, t}(a, b)$

Linear Bell inequalities

"Pillars" of quantum physics: violations imply that properties (e.g. entanglement) can't be represented by classical physics

Alice \rightsquigarrow Source \rightsquigarrow Bob
Correlations = conditional joint probabilities:
$P(a b \mid s t)=P($ Alice, Bob answer $a, b \mid$ Alice, Bob are asked $s, t)$
Deterministic (= classical) strategies

$$
P(a \mid s), P(b \mid t) \in\{0,1\} \Longrightarrow P(a b \mid s t)=P(a \mid s) P(b \mid t) \in\{0,1\}
$$

Independent strategies $P(a b \mid s t)=p_{s}(a) p_{t}(b) \in[0,1]$
Shared randomness $=$ local hidden variable model $P(a b \mid s t)=d_{s, t}(a, b)$
classical correlations = convex comb. of deterministic correlations

Linear Bell inequalities

Bell inequalities = linear in the correlations $P(a b \mid s t)$ \& marginals $P(a \mid s), P(b \mid t)$, valid for all classical correlations

Linear Bell inequalities

Bell inequalities $=$ linear in the correlations $P(a b \mid s t)$ \& marginals $P(a \mid s), P(b \mid t)$, valid for all classical correlations

Clauser-Horne-Shimony-Holt (CHSH) inequality is violated by quantum systems [Tsirelson 80]

$$
-P_{a}(1 \mid 0)-P_{b}(1 \mid 0)+P(11 \mid 00)+P(11 \mid 01)+P(11 \mid 10)-P(11 \mid 11) \leqslant 0
$$

Linear Bell inequalities

Bell inequalities $=$ linear in the correlations $P(a b \mid s t)$ \& marginals $P(a \mid s), P(b \mid t)$, valid for all classical correlations

Clauser-Horne-Shimony-Holt (CHSH) inequality is violated by quantum systems [Tsirelson 80]

$$
-P_{a}(1 \mid 0)-P_{b}(1 \mid 0)+P(11 \mid 00)+P(11 \mid 01)+P(11 \mid 10)-P(11 \mid 11) \leqslant 0
$$

Alice \& Bob share a bipartite quantum state Ψ and they answer a, b by performing quantum measurements on their part of Ψ :

$$
P(a b \mid s t)=\Psi^{\star} A_{s}^{a} B_{t}^{b} \Psi, \quad P(a \mid s)=\Psi^{\star} A_{s}^{a} \Psi, \quad P(b \mid t)=\Psi^{\star} B_{t}^{b} \Psi
$$

for some projector-valued measures (PVM) $\left\{A_{s}^{a}\right\},\left\{B_{t}^{b}\right\}$

Linear Bell inequalities

Bell inequalities $=$ linear in the correlations $P(a b \mid s t)$ \& marginals $P(a \mid s), P(b \mid t)$, valid for all classical correlations

Clauser-Horne-Shimony-Holt (CHSH) inequality is violated by quantum systems [Tsirelson 80]

$$
-P_{a}(1 \mid 0)-P_{b}(1 \mid 0)+P(11 \mid 00)+P(11 \mid 01)+P(11 \mid 10)-P(11 \mid 11) \leqslant 0
$$

Alice \& Bob share a bipartite quantum state Ψ and they answer a, b by performing quantum measurements on their part of Ψ :

$$
P(a b \mid s t)=\Psi^{\star} A_{s}^{a} B_{t}^{b} \Psi, \quad P(a \mid s)=\Psi^{\star} A_{s}^{a} \Psi, \quad P(b \mid t)=\Psi^{\star} B_{t}^{b} \Psi
$$

for some projector-valued measures (PVM) $\left\{A_{s}^{a}\right\},\left\{B_{t}^{b}\right\}$
Bounded operators $A_{s}^{a}, B_{t}^{b} \in \mathcal{B}(\mathcal{H})$ on separable Hilbert space \mathcal{H} with

$$
\begin{gathered}
A_{s}^{a} B_{t}^{b}=B_{t}^{b} A_{s}^{a}, \quad A_{s}^{a} A_{s}^{a}=A_{s}^{a}, \quad B_{t}^{b} B_{t}^{b}=B_{t}^{b} \\
\sum_{a} A_{s}^{a}=\sum_{b} B_{t}^{b}=\mathbf{1}
\end{gathered}
$$

Linear Bell inequalities

Bell inequalities = linear in the correlations $P(a b \mid s t) \&$ marginals $P(a \mid s), P(b \mid t)$, valid for all classical correlations

Clauser-Horne-Shimony-Holt (CHSH) inequality is violated by quantum systems [Tsirelson 80]

$$
-P_{a}(1 \mid 0)-P_{b}(1 \mid 0)+P(11 \mid 00)+P(11 \mid 01)+P(11 \mid 10)-P(11 \mid 11) \leqslant 0
$$

Alice \& Bob share a bipartite quantum state Ψ and they answer a, b by performing quantum measurements on their part of Ψ :

$$
P(a b \mid s t)=\Psi^{\star} A_{s}^{a} B_{t}^{b} \Psi, \quad P(a \mid s)=\Psi^{\star} A_{s}^{a} \Psi, \quad P(b \mid t)=\Psi^{\star} B_{t}^{b} \Psi
$$

for some projector-valued measures (PVM) $\left\{A_{s}^{a}\right\},\left\{B_{t}^{b}\right\}$
Bounded operators $A_{s}^{a}, B_{t}^{b} \in \mathcal{B}(\mathcal{H})$ on separable Hilbert space \mathcal{H} with

$$
\begin{gathered}
A_{s}^{a} B_{t}^{b}=B_{t}^{b} A_{s}^{a}, \quad A_{s}^{a} A_{s}^{a}=A_{s}^{a}, \quad B_{t}^{b} B_{t}^{b}=B_{t}^{b} \\
\sum_{a} A_{s}^{a}=\sum_{b} B_{t}^{b}=\mathbf{1}
\end{gathered}
$$

éInequality on eigenvalues of noncommutative polynomials

Pure, mixed and entangled states

$Y \in \mathcal{B}(\mathcal{H}) \mapsto \Psi^{\star} Y \Psi$ is called a state vector when $\|\Psi\|=1$

Pure, mixed and entangled states

$Y \in \mathcal{B}(\mathcal{H}) \mapsto \Psi^{\star} Y \Psi$ is called a state vector when $\|\Psi\|=1$
Quantum states are positive unital linear functionals on $\mathcal{B}(\mathcal{H})$ with separable Hilbert space \mathcal{H}

$$
\begin{aligned}
\lambda: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{R} \text { is linear } \quad \lambda\left(Y Y^{\star}\right) & \geq 0 \\
\lambda(Y)=\lambda\left(Y^{\star}\right) \quad \lambda(\mathbf{1}) & =1
\end{aligned}
$$

Pure, mixed and entangled states

$Y \in \mathcal{B}(\mathcal{H}) \mapsto \Psi^{\star} Y \Psi$ is called a state vector when $\|\Psi\|=1$
$\ddot{\mathcal{V}}$ Quantum states are positive unital linear functionals on $\mathcal{B}(\mathcal{H})$ with separable Hilbert space \mathcal{H}

$$
\begin{aligned}
\lambda: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{R} \text { is linear } \quad \lambda\left(Y Y^{\star}\right) & \geq 0 \\
\lambda(Y)=\lambda\left(Y^{\star}\right) \quad \lambda(\mathbf{1}) & =1
\end{aligned}
$$

Two Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B}

- If \mathcal{H}_{A} is finite-dim then a quantum state $\lambda \in \mathcal{S}\left(\mathcal{H}_{A}\right)=$ SDP matrix with unit trace

Pure, mixed and entangled states

$Y \in \mathcal{B}(\mathcal{H}) \mapsto \Psi^{\star} Y \Psi$ is called a state vector when $\|\Psi\|=1$
Quantum states are positive unital linear functionals on $\mathcal{B}(\mathcal{H})$ with separable Hilbert space \mathcal{H}

$$
\begin{aligned}
\lambda: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{R} \text { is linear } \quad \lambda\left(Y Y^{\star}\right) & \geq 0 \\
\lambda(Y)=\lambda\left(Y^{\star}\right) \quad \lambda(\mathbf{1}) & =1
\end{aligned}
$$

Two Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B}

- If \mathcal{H}_{A} is finite-dim then a quantum state $\lambda \in \mathcal{S}\left(\mathcal{H}_{A}\right)=$ SDP matrix with unit trace
- pure state $=$ rank-1 state $=\Psi \Psi^{\star}$ for $\Psi \in \mathcal{H}_{A}$

Pure, mixed and entangled states

$Y \in \mathcal{B}(\mathcal{H}) \mapsto \Psi^{\star} Y \Psi$ is called a state vector when $\|\Psi\|=1$
Quantum states are positive unital linear functionals on $\mathcal{B}(\mathcal{H})$ with separable Hilbert space \mathcal{H}

$$
\begin{aligned}
\lambda: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{R} \text { is linear } \quad \lambda\left(Y Y^{\star}\right) & \geq 0 \\
\lambda(Y)=\lambda\left(Y^{\star}\right) \quad \lambda(\mathbf{1}) & =1
\end{aligned}
$$

Two Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B}

- If \mathcal{H}_{A} is finite-dim then a quantum state $\lambda \in \mathcal{S}\left(\mathcal{H}_{A}\right)=$ SDP matrix with unit trace
- pure state $=$ rank-1 state $=\Psi \Psi^{\star}$ for $\Psi \in \mathcal{H}_{A}$
- mixed state $\lambda^{A}=\sum_{i} v_{i} \Psi_{i} \Psi_{i}^{\star}=$ convex comb. of pure states

Pure, mixed and entangled states

$Y \in \mathcal{B}(\mathcal{H}) \mapsto \Psi^{\star} Y \Psi$ is called a state vector when $\|\Psi\|=1$
Quantum states are positive unital linear functionals on $\mathcal{B}(\mathcal{H})$ with separable Hilbert space \mathcal{H}

$$
\begin{aligned}
\lambda: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{R} \text { is linear } \quad \lambda\left(Y Y^{\star}\right) & \geq 0 \\
\lambda(Y)=\lambda\left(Y^{\star}\right) \quad \lambda(\mathbf{1}) & =1
\end{aligned}
$$

Two Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B}

- If \mathcal{H}_{A} is finite-dim then a quantum state $\lambda \in \mathcal{S}\left(\mathcal{H}_{A}\right)=$ SDP matrix with unit trace
- pure state $=$ rank-1 state $=\Psi \Psi^{\star}$ for $\Psi \in \mathcal{H}_{A}$
- mixed state $\lambda^{A}=\sum_{i} v_{i} \Psi_{i} \Psi_{i}^{\star}=$ convex comb. of pure states
- separable state $\lambda \in \mathcal{S}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)=$ mixture of product states $\lambda=\sum_{i} v_{i} \lambda_{i}^{A} \otimes \lambda_{i}^{B}$

Pure, mixed and entangled states

$Y \in \mathcal{B}(\mathcal{H}) \mapsto \Psi^{\star} Y \Psi$ is called a state vector when $\|\Psi\|=1$
Quantum states are positive unital linear functionals on $\mathcal{B}(\mathcal{H})$ with separable Hilbert space \mathcal{H}

$$
\begin{aligned}
\lambda: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{R} \text { is linear } \quad \lambda\left(Y Y^{\star}\right) & \geq 0 \\
\lambda(Y)=\lambda\left(Y^{\star}\right) \quad \lambda(\mathbf{1}) & =1
\end{aligned}
$$

Two Hilbert spaces \mathcal{H}_{A} and \mathcal{H}_{B}

- If \mathcal{H}_{A} is finite-dim then a quantum state $\lambda \in \mathcal{S}\left(\mathcal{H}_{A}\right)=$ SDP matrix with unit trace
- pure state $=$ rank-1 state $=\Psi \Psi^{\star}$ for $\Psi \in \mathcal{H}_{A}$
- mixed state $\lambda^{A}=\sum_{i} v_{i} \Psi_{i} \Psi_{i}^{\star}=$ convex comb. of pure states
- separable state $\lambda \in \mathcal{S}\left(\mathcal{H}_{A} \otimes \mathcal{H}_{B}\right)=$ mixture of product states $\lambda=\sum_{i} v_{i} \lambda_{i}^{A} \otimes \lambda_{i}^{B}$
■ entangled states cannot be written as mixtures of product states

Linear Bell inequalities

$\mathrm{CHSH}: \quad \Psi \star\left(-A_{0}^{1}-B_{0}^{1}+A_{0}^{1} B_{0}^{1}+A_{0}^{1} B_{1}^{1}-A_{1}^{1} B_{1}^{1}\right) \Psi \leqslant 0$

Linear Bell inequalities

$\mathrm{CHSH}: \quad \Psi^{\star}\left(-A_{0}^{1}-B_{0}^{1}+A_{0}^{1} B_{0}^{1}+A_{0}^{1} B_{1}^{1}-A_{1}^{1} B_{1}^{1}\right) \Psi \leqslant 0$
is violated for the entangled state $\Psi=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right)$

Linear Bell inequalities

$\mathrm{CHSH}: \quad \Psi^{\star}\left(-A_{0}^{1}-B_{0}^{1}+A_{0}^{1} B_{0}^{1}+A_{0}^{1} B_{1}^{1}-A_{1}^{1} B_{1}^{1}\right) \Psi \leqslant 0$
is violated for the entangled state $\Psi=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right)$

$$
\lambda_{\min }=\inf \{\langle f(A, B) \Psi, \Psi\rangle:(A, B) \mathrm{PVM}, \Psi \in \mathcal{H},\|\Psi\|=1\}
$$

Linear Bell inequalities

$\mathrm{CHSH}: \quad \Psi^{\star}\left(-A_{0}^{1}-B_{0}^{1}+A_{0}^{1} B_{0}^{1}+A_{0}^{1} B_{1}^{1}-A_{1}^{1} B_{1}^{1}\right) \Psi \leqslant 0$
is violated for the entangled state $\Psi=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right)$

$$
\begin{aligned}
& \lambda_{\min }=\inf \{\langle f(A, B) \Psi, \Psi\rangle:(A, B) \mathrm{PVM}, \Psi \in \mathcal{H},\|\Psi\|=1\} \\
&= \sup \quad \lambda \\
& \text { s.t. } \quad f(A, B)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall(A, B) \mathrm{PVM}, \quad \lambda \in \mathbb{R}
\end{aligned}
$$

Linear Bell inequalities

CHSH: $\quad \Psi^{\star}\left(-A_{0}^{1}-B_{0}^{1}+A_{0}^{1} B_{0}^{1}+A_{0}^{1} B_{1}^{1}-A_{1}^{1} B_{1}^{1}\right) \Psi \leqslant 0$
is violated for the entangled state $\Psi=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right)$

$$
\begin{aligned}
& \lambda_{\text {min }}=\inf \{\langle f(A, B) \Psi, \Psi\rangle:(A, B) \mathrm{PVM}, \Psi \in \mathcal{H},\|\Psi\|=1\} \\
&= \sup \quad \lambda \\
& \quad \text { s.t. } \quad f(A, B)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall(A, B) \mathrm{PVM}, \quad \lambda \in \mathbb{R}
\end{aligned}
$$

Navascués-Pironio-Acín hierarchy [NPA 08]

There is a sequence of lower bounds $f_{r} \uparrow \lambda_{\text {min }}$

Linear Bell inequalities

CHSH: $\quad \Psi^{\star}\left(-A_{0}^{1}-B_{0}^{1}+A_{0}^{1} B_{0}^{1}+A_{0}^{1} B_{1}^{1}-A_{1}^{1} B_{1}^{1}\right) \Psi \leqslant 0$
is violated for the entangled state $\Psi=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right)$

$$
\begin{aligned}
& \lambda_{\text {min }}=\inf \{ \{f(A, B) \Psi, \Psi\rangle:(A, B) \mathrm{PVM}, \Psi \in \mathcal{H},\|\Psi\|=1\} \\
&= \sup \quad \lambda \\
& \quad \text { s.t. } \quad f(A, B)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall(A, B) \mathrm{PVM}, \quad \lambda \in \mathbb{R}
\end{aligned}
$$

Navascués-Pironio-Acín hierarchy [NPA 08]

There is a sequence of lower bounds $f_{r} \uparrow \lambda_{\text {min }}$
" each f_{r} is the solution of a semidefinite program

Linear Bell inequalities

CHSH: $\quad \Psi^{\star}\left(-A_{0}^{1}-B_{0}^{1}+A_{0}^{1} B_{0}^{1}+A_{0}^{1} B_{1}^{1}-A_{1}^{1} B_{1}^{1}\right) \Psi \leqslant 0$
is violated for the entangled state $\Psi=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right)$

$$
\begin{aligned}
& \lambda_{\text {min }}=\inf \{ \langle f(A, B) \Psi, \Psi\rangle:(A, B) \mathrm{PVM}, \Psi \in \mathcal{H},\|\Psi\|=1\} \\
&= \sup \quad \lambda \\
& \text { s.t. } \quad f(A, B)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall(A, B) \mathrm{PVM}, \quad \lambda \in \mathbb{R}
\end{aligned}
$$

Navascués-Pironio-Acín hierarchy [NPA 08]

There is a sequence of lower bounds $f_{r} \uparrow \lambda_{\text {min }}$
\ddot{f} each f_{r} is the solution of a semidefinite program
\hookrightarrow relies on powerful representations of noncommutative positive polynomials [Helton-McCullough 04]

Linear Bell inequalities

CHSH: $\quad \Psi^{\star}\left(-A_{0}^{1}-B_{0}^{1}+A_{0}^{1} B_{0}^{1}+A_{0}^{1} B_{1}^{1}-A_{1}^{1} B_{1}^{1}\right) \Psi \leqslant 0$
is violated for the entangled state $\Psi=\frac{1}{\sqrt{2}}\left(e_{1} \otimes e_{1}+e_{2} \otimes e_{2}\right)$

$$
\begin{aligned}
& \lambda_{\text {min }}= \inf \{\langle f(A, B) \Psi, \Psi\rangle:(A, B) \mathrm{PVM}, \Psi \in \mathcal{H},\|\Psi\|=1\} \\
&= \sup \quad \lambda \\
& \quad \text { s.t. } \quad f(A, B)-\lambda \mathbf{1} \succcurlyeq 0, \quad \forall(A, B) \mathrm{PVM}, \quad \lambda \in \mathbb{R}
\end{aligned}
$$

Navascués-Pironio-Acín hierarchy [NPA 08]

There is a sequence of lower bounds $f_{r} \uparrow \lambda_{\text {min }}$
' \quad ' each f_{r} is the solution of a semidefinite program
\hookrightarrow relies on powerful representations of noncommutative positive polynomials [Helton-McCullough 04]
\hookrightarrow noncommutative analogue of [Lasserre 01] hierarchy for classical polynomial optimization

Covariance Bell inequalities [Pozsgay et al. 17]

Device-independent cryptography protocols: guaranteed by quantum mechanics laws without the need of trusted device

Covariance Bell inequalities [Pozsgay et al. 17]

Device-independent cryptography protocols: guaranteed by quantum mechanics laws without the need of trusted device

Binary random variables A_{1}, A_{2}, A_{3} and B_{1}, B_{2}, B_{3}

Covariance Bell inequalities [Pozsgay et al. 17]

Device-independent cryptography protocols: guaranteed by quantum mechanics laws without the need of trusted device

Binary random variables A_{1}, A_{2}, A_{3} and B_{1}, B_{2}, B_{3}
Covariance in the classical model
$\operatorname{cov}(A, B)=\int A B \mathrm{~d} \mu-\int A \mathrm{~d} \mu \cdot \int B \mathrm{~d} \mu=E(A B)-E(A) E(B)$

Covariance Bell inequalities [Pozsgay et al. 17]

Device-independent cryptography protocols: guaranteed by quantum mechanics laws without the need of trusted device

Binary random variables A_{1}, A_{2}, A_{3} and B_{1}, B_{2}, B_{3}
Covariance in the classical model
$\operatorname{cov}(A, B)=\int A B \mathrm{~d} \mu-\int A \mathrm{~d} \mu \cdot \int B \mathrm{~d} \mu=E(A B)-E(A) E(B)$
\hookrightarrow max over all probas $\mu=$ classical bound

Covariance Bell inequalities [Pozsgay et al. 17]

Device-independent cryptography protocols: guaranteed by quantum mechanics laws without the need of trusted device

Binary random variables A_{1}, A_{2}, A_{3} and B_{1}, B_{2}, B_{3}
Covariance in the classical model
$\operatorname{cov}(A, B)=\int A B \mathrm{~d} \mu-\int A \mathrm{~d} \mu \cdot \int B \mathrm{~d} \mu=E(A B)-E(A) E(B)$
\hookrightarrow max over all probas $\mu=$ classical bound
Covariance in the quantum (commuting) model $\operatorname{cov}(A, B)=\lambda(A B)-\lambda(A) \lambda(B)$ where λ is a state
\hookrightarrow max over all states $\lambda=$ quantum violation

Covariance Bell inequalities [Pozsgay et al. 17]

Classical model $=A_{i}, B_{j}$ commute \& satisfy a ball constraint \hookrightarrow classical moment problem

Covariance Bell inequalities [Pozsgay et al. 17]

Classical model $=A_{i}, B_{j}$ commute \& satisfy a ball constraint \hookrightarrow classical moment problem
\because Spectral theorem: there exists a spectral measure $E=E_{\left\{A_{i}\right\},\left\{B_{j}\right\}}$ such that

$$
A_{i}=\int_{\mathbb{R}^{n}} t_{i} \mathrm{~d} E\left(t_{1}, \ldots, t_{n}\right)
$$

Covariance Bell inequalities [Pozsgay et al. 17]

Classical model $=A_{i}, B_{j}$ commute \& satisfy a ball constraint \hookrightarrow classical moment problem

- Spectral theorem: there exists a spectral measure $E=E_{\left\{A_{i}\right\},\left\{B_{j}\right\}}$ such that

$$
A_{i}=\int_{\mathbb{R}^{n}} t_{i} \mathrm{~d} E\left(t_{1}, \ldots, t_{n}\right)
$$

The state λ is given by the integration w.r.t. a proba μ built from E [Schmüdgen 12]

$$
\lambda(f)=\int_{\mathbb{R}^{n}} f \mathrm{~d} \mu
$$

Covariance Bell inequalities [Pozsgay et al. 17]

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

What is the max of $\operatorname{cov}_{3322}$?

Covariance Bell inequalities [Pozsgay et al. 17]

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

What is the max of $\operatorname{cov}_{3322}$?
$\ddot{\theta}$ Concrete μ yields $\operatorname{cov}_{3322}=4.5$

Covariance Bell inequalities [Pozsgay et al. 17]

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

What is the max of $\operatorname{cov}_{3322}$?
$\ddot{\theta}$ Concrete μ yields $\operatorname{cov}_{3322}=4.5$

$$
\mu=\frac{3}{8}(+++/+++)+\frac{3}{8}(--+/--+)+\frac{1}{4}(-+-/-+-)
$$

$\left(A_{1} A_{2} A_{3} / B_{1} B_{2} B_{3}\right)$: strategy where Alice and Bob deterministically output A_{x} and B_{y} for inputs x and y

Covariance Bell inequalities [Pozsgay et al. 17]

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

What is the max of $\operatorname{cov}_{3322}$?
$\ddot{\theta}$ Concrete μ yields $\operatorname{cov}_{3322}=4.5$

$$
\mu=\frac{3}{8}(+++/+++)+\frac{3}{8}(--+/--+)+\frac{1}{4}(-+-/-+-)
$$

$\left(A_{1} A_{2} A_{3} / B_{1} B_{2} B_{3}\right)$: strategy where Alice and Bob deterministically output A_{x} and B_{y} for inputs x and y
'丷.' Concrete λ yields $\operatorname{cov}_{3322}=5$

Covariance Bell inequalities [Pozsgay et al. 17]

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

What is the max of $\operatorname{cov}_{3322}$?
" $\ddot{\theta}$ - Concrete μ yields $\operatorname{cov}_{3322}=4.5$

$$
\mu=\frac{3}{8}(+++/+++)+\frac{3}{8}(--+/--+)+\frac{1}{4}(-+-/-+-)
$$

$\left(A_{1} A_{2} A_{3} / B_{1} B_{2} B_{3}\right)$: strategy where Alice and Bob deterministically output A_{x} and B_{y} for inputs x and y

Concrete λ yields $\operatorname{cov}_{3322}=5$
What are the classical bound and the maximal quantum violation?

Bilocal Bell inequality [Tavakoli et al. 21-22]

Alice \rightsquigarrow Source $1 \rightsquigarrow$ Bob \rightsquigarrow Source $2 \rightsquigarrow$ Charlie
Observers hold particles from different sources and therefore a priori share no correlations

Bilocal Bell inequality [Tavakoli et al. 21-22]

Alice \rightsquigarrow Source $1 \rightsquigarrow$ Bob \rightsquigarrow Source $2 \rightsquigarrow$ Charlie
Observers hold particles from different sources and therefore a priori share no correlations
A party that holds multiple shares originating from different sources can perform entangled measurements to a posteriori distribute entanglement between [...] systems in the network

Bilocal Bell inequality [Tavakoli et al. 21-22]

Binary random variables A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

Bilocal Bell inequality [Tavakoli et al. 21-22]

Binary random variables A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

bilocality constraints $E\left(A_{1} A_{2} A_{3} C_{1} C_{2} C_{3}\right)=E\left(A_{1} A_{2} A_{3}\right) E\left(C_{1} C_{2} C_{3}\right)$ + similar factorization constraints

Bilocal Bell inequality [Tavakoli et al. 21-22]

Binary random variables A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

bilocality constraints $E\left(A_{1} A_{2} A_{3} C_{1} C_{2} C_{3}\right)=E\left(A_{1} A_{2} A_{3}\right) E\left(C_{1} C_{2} C_{3}\right)$ + similar factorization constraints \& vanishing constraints

$$
\begin{aligned}
& E\left(A_{i}\right)=E\left(B_{i}\right)=E\left(C_{i}\right)=0 \text { for } i \in\{1,2,3\} \\
& E\left(A_{i} B_{j}\right)=E\left(B_{i} C_{j}\right)=0 \text { for } i \neq j \\
& E\left(A_{i} B_{j} C_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

Bilocal Bell inequality [Tavakoli et al. 21-22]

Binary random variables A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

bilocality constraints $E\left(A_{1} A_{2} A_{3} C_{1} C_{2} C_{3}\right)=E\left(A_{1} A_{2} A_{3}\right) E\left(C_{1} C_{2} C_{3}\right)$ + similar factorization constraints \& vanishing constraints

$$
\begin{aligned}
& E\left(A_{i}\right)=E\left(B_{i}\right)=E\left(C_{i}\right)=0 \text { for } i \in\{1,2,3\} \\
& E\left(A_{i} B_{j}\right)=E\left(B_{i} C_{j}\right)=0 \text { for } i \neq j \\
& E\left(A_{i} B_{j} C_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

Concrete proba μ yields 3

Bilocal Bell inequality [Tavakoli et al. 21-22]

Binary random variables A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

bilocality constraints $E\left(A_{1} A_{2} A_{3} C_{1} C_{2} C_{3}\right)=E\left(A_{1} A_{2} A_{3}\right) E\left(C_{1} C_{2} C_{3}\right)$ + similar factorization constraints \& vanishing constraints

$$
\begin{aligned}
& E\left(A_{i}\right)=E\left(B_{i}\right)=E\left(C_{i}\right)=0 \text { for } i \in\{1,2,3\} \\
& E\left(A_{i} B_{j}\right)=E\left(B_{i} C_{j}\right)=0 \text { for } i \neq j \\
& E\left(A_{i} B_{j} C_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

Concrete proba μ yields 3
What is the classical max?

Bilocal Bell inequality [Tavakoli et al. 21-22]

Binary random variables A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

bilocality constraints $E\left(A_{1} A_{2} A_{3} C_{1} C_{2} C_{3}\right)=E\left(A_{1} A_{2} A_{3}\right) E\left(C_{1} C_{2} C_{3}\right)$ + similar factorization constraints \& vanishing constraints

$$
\begin{aligned}
& E\left(A_{i}\right)=E\left(B_{i}\right)=E\left(C_{i}\right)=0 \text { for } i \in\{1,2,3\} \\
& E\left(A_{i} B_{j}\right)=E\left(B_{i} C_{j}\right)=0 \text { for } i \neq j \\
& E\left(A_{i} B_{j} C_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

Concrete proba μ yields 3
What is the classical max?
Concrete state λ yields 4

Bilocal Bell inequality [Tavakoli et al. 21-22]

Binary random variables A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

bilocality constraints $E\left(A_{1} A_{2} A_{3} C_{1} C_{2} C_{3}\right)=E\left(A_{1} A_{2} A_{3}\right) E\left(C_{1} C_{2} C_{3}\right)$ + similar factorization constraints \& vanishing constraints

$$
\begin{aligned}
& E\left(A_{i}\right)=E\left(B_{i}\right)=E\left(C_{i}\right)=0 \text { for } i \in\{1,2,3\} \\
& E\left(A_{i} B_{j}\right)=E\left(B_{i} C_{j}\right)=0 \text { for } i \neq j \\
& E\left(A_{i} B_{j} C_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

Concrete proba μ yields 3
What is the classical max?

Concrete state λ yields 4
What is the quantum violation?

Motivation: Bell inequalities

State polynomials

NPA hierarchy for state polynomials

Back to Bell inequalities

Moment polynomials

Elements of $\mathscr{M}[x]$

Moment polynomials

Elements of $\mathscr{M}[x]$
real vars $x=\left(x_{1}, \ldots, x_{n}\right)$

Moment polynomials

Elements of $\mathscr{M}[x]$
real vars $x=\left(x_{1}, \ldots, x_{n}\right)$
formal moment $\mathrm{m}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)$

Moment polynomials

Elements of $\mathscr{M}[x]$
real vars $x=\left(x_{1}, \ldots, x_{n}\right) \quad$ formal moment $\mathrm{m}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)$
Evaluates at a proba μ on \mathbb{R}^{n} as $\int x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mathrm{~d} \mu$

Moment polynomials

Elements of $\mathscr{M}[x]$
real vars $x=\left(x_{1}, \ldots, x_{n}\right) \quad$ formal moment $\mathrm{m}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)$
Evaluates at a proba μ on \mathbb{R}^{n} as $\int x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mathrm{~d} \mu$
$\mathscr{M}=$ sums of moment products $=$ "pure" moment polynomials

Moment polynomials

Elements of $\mathscr{M}[x]$

real vars $x=\left(x_{1}, \ldots, x_{n}\right) \quad$ formal moment $\mathrm{m}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)$
Evaluates at a proba μ on \mathbb{R}^{n} as $\int x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mathrm{~d} \mu$
$\mathscr{M}=$ sums of moment products $=$ "pure" moment polynomials

$$
\mathrm{m}\left(x_{1}^{2} x_{2}^{2}\right)-\mathrm{m}\left(x_{1}\right)^{4}+\mathrm{m}\left(x_{1}\right) \mathrm{m}\left(x_{2}\right) \mathrm{m}\left(x_{1} x_{2}\right) \in \mathscr{M}
$$

Moment polynomials

Elements of $\mathscr{M}[x]$

real vars $x=\left(x_{1}, \ldots, x_{n}\right)$ formal moment $\mathrm{m}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)$
Evaluates at a proba μ on \mathbb{R}^{n} as $\int x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mathrm{~d} \mu$
$\mathscr{M}=$ sums of moment products $=$ "pure" moment polynomials

$$
\begin{aligned}
& \mathrm{m}\left(x_{1}^{2} x_{2}^{2}\right)-\mathrm{m}\left(x_{1}\right)^{4}+\mathrm{m}\left(x_{1}\right) \mathrm{m}\left(x_{2}\right) \mathrm{m}\left(x_{1} x_{2}\right) \in \mathscr{M} \\
& f=\mathrm{m}\left(x_{1} x_{2}^{3}\right) x_{1} x_{2}-\mathrm{m}\left(x_{1}^{2}\right)^{3} x_{2}^{2}+x_{2}-2 \in \mathscr{M}[x]
\end{aligned}
$$

Moment polynomials

Elements of $\mathscr{M}[x]$
real vars $x=\left(x_{1}, \ldots, x_{n}\right)$ formal moment $\mathrm{m}\left(x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}\right)$
Evaluates at a proba μ on \mathbb{R}^{n} as $\int x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}} \mathrm{~d} \mu$
$\mathscr{M}=$ sums of moment products $=$ "pure" moment polynomials

$$
\begin{aligned}
& \mathrm{m}\left(x_{1}^{2} x_{2}^{2}\right)-\mathrm{m}\left(x_{1}\right)^{4}+\mathrm{m}\left(x_{1}\right) \mathrm{m}\left(x_{2}\right) \mathrm{m}\left(x_{1} x_{2}\right) \in \mathscr{M} \\
& f=\mathrm{m}\left(x_{1} x_{2}^{3}\right) x_{1} x_{2}-\mathrm{m}\left(x_{1}^{2}\right)^{3} x_{2}^{2}+x_{2}-2 \in \mathscr{M}[x]
\end{aligned}
$$

at a proba μ on \mathbb{R}^{2} with fourth order moments and a pair $X=\left(X_{1}, X_{2}\right) \in \mathbb{R}^{2}, f$ evaluates as

$$
f(\mu, X)=X_{1} X_{2} \int x_{1} x_{2}^{3} \mathrm{~d} \mu-X_{2}^{2}\left(\int x_{1}^{2} \mathrm{~d} \mu\right)^{3}+X_{2}-2
$$

State polynomials

Elements of $\mathscr{S}\langle x\rangle$

State polynomials

Elements of $\mathscr{S}\langle x\rangle$
nc vars $x=\left(x_{1}, \ldots, x_{n}\right) \quad\langle x\rangle=$ words in x

State polynomials

Elements of $\mathscr{S}\langle x\rangle$
nc vars $x=\left(x_{1}, \ldots, x_{n}\right) \quad\langle x\rangle=$ words in x
symbol $\tau(w)$ with $\tau(w)=\tau\left(w^{\star}\right)$

State polynomials

Elements of $\mathscr{S}\langle x\rangle$
nc vars $x=\left(x_{1}, \ldots, x_{n}\right) \quad\langle x\rangle=$ words in x
symbol $\tau(w)$ with $\tau(w)=\tau\left(w^{\star}\right) \quad \mathscr{S}=\mathbb{R}[\tau(w): w \in\langle x\rangle \backslash\{1\}]$

State polynomials

Elements of $\mathscr{S}\langle x\rangle$
nc vars $x=\left(x_{1}, \ldots, x_{n}\right) \quad\langle x\rangle=$ words in x
symbol $\tau(w)$ with $\tau(w)=\tau\left(w^{\star}\right) \quad \mathscr{S}=\mathbb{R}[\tau(w): w \in\langle x\rangle \backslash\{1\}]$

$$
\tau\left(x_{1}^{2} x_{2}^{2}\right)-\tau\left(x_{1}\right)^{4}+\tau\left(x_{1}\right) \tau\left(x_{2}\right) \tau\left(x_{1} x_{2}\right) \in \mathscr{S}
$$

State polynomials

Elements of $\mathscr{S}\langle x\rangle$
nc vars $x=\left(x_{1}, \ldots, x_{n}\right) \quad\langle x\rangle=$ words in x
symbol $\tau(w)$ with $\tau(w)=\tau\left(w^{\star}\right) \quad \mathscr{S}=\mathbb{R}[\tau(w): w \in\langle x\rangle \backslash\{1\}]$

$$
\begin{aligned}
& \tau\left(x_{1}^{2} x_{2}^{2}\right)-\tau\left(x_{1}\right)^{4}+\tau\left(x_{1}\right) \tau\left(x_{2}\right) \tau\left(x_{1} x_{2}\right) \in \mathscr{S} \\
& f=\tau\left(x_{1} x_{2}^{3}\right) x_{1} x_{2}-\tau\left(x_{1}^{2}\right)^{3} x_{2}^{2}+x_{2}-2 \in \mathscr{S}
\end{aligned}
$$

State polynomials

Elements of $\mathscr{S}\langle x\rangle$
nc vars $x=\left(x_{1}, \ldots, x_{n}\right) \quad\langle x\rangle=$ words in x
symbol $\tau(w)$ with $\tau(w)=\tau\left(w^{\star}\right) \quad \mathscr{S}=\mathbb{R}[\tau(w): w \in\langle x\rangle \backslash\{1\}]$

$$
\begin{aligned}
& \tau\left(x_{1}^{2} x_{2}^{2}\right)-\tau\left(x_{1}\right)^{4}+\tau\left(x_{1}\right) \tau\left(x_{2}\right) \tau\left(x_{1} x_{2}\right) \in \mathscr{S} \\
& f=\tau\left(x_{1} x_{2}^{3}\right) x_{1} x_{2}-\tau\left(x_{1}^{2}\right)^{3} x_{2}^{2}+x_{2}-2 \in \mathscr{S}
\end{aligned}
$$

at a state $\lambda: \mathcal{B}(\mathcal{H}) \rightarrow \mathbb{R}$ and a pair $X=\left(X_{1}, X_{2}\right) \in \mathcal{B}(\mathcal{H})^{2}, f$ evaluates as

$$
f(\lambda, X)=X_{1} X_{2} \lambda\left(X_{1} X_{2}^{3}\right)-X_{2}^{2}\left(\lambda\left(X_{1}^{2}\right)\right)^{3}+X_{2}-2
$$

Related business

Trace polynomials

$$
\operatorname{tr}\left(x_{1}^{2}\right) \operatorname{tr}\left(x_{2}\right)+\operatorname{tr}\left(x_{2}\right) \text { with } \operatorname{tr}(u v)=\operatorname{tr}(v u)
$$

Related business

Trace polynomials
$\operatorname{tr}\left(x_{1}^{2}\right) \operatorname{tr}\left(x_{2}\right)+\operatorname{tr}\left(x_{2}\right)$ with $\operatorname{tr}(u v)=\operatorname{tr}(v u)$ entanglement detection in multipartite Werner states [Huber et al. 22]

Related business

Trace polynomials

$$
\operatorname{tr}\left(x_{1}^{2}\right) \operatorname{tr}\left(x_{2}\right)+\operatorname{tr}\left(x_{2}\right) \text { with } \operatorname{tr}(u v)=\operatorname{tr}(v u)
$$

entanglement detection in multipartite Werner states [Huber et al. 22]
quantum violations for maximal entangled states [Klep et al. 21]

Related business

Trace polynomials

$$
\operatorname{tr}\left(x_{1}^{2}\right) \operatorname{tr}\left(x_{2}\right)+\operatorname{tr}\left(x_{2}\right) \text { with } \operatorname{tr}(u v)=\operatorname{tr}(v u)
$$

entanglement detection in multipartite Werner states [Huber et al. 22]
quantum violations for maximal entangled states [Klep et al. 21]

State polynomials

$$
\tau\left(x_{1}^{2}\right) \tau\left(x_{2}\right)+\tau\left(x_{2}\right) \text { with } \tau(w)=\tau\left(w^{\dagger}\right)
$$

Related business

Trace polynomials

$$
\operatorname{tr}\left(x_{1}^{2}\right) \operatorname{tr}\left(x_{2}\right)+\operatorname{tr}\left(x_{2}\right) \text { with } \operatorname{tr}(u v)=\operatorname{tr}(v u)
$$

entanglement detection in multipartite Werner states [Huber et al. 22]
quantum violations for maximal entangled states [Klep et al. 21]

State polynomials

$$
\tau\left(x_{1}^{2}\right) \tau\left(x_{2}\right)+\tau\left(x_{2}\right) \text { with } \tau(w)=\tau\left(w^{\dagger}\right)
$$

scalar extension [Pozas-Kerstjens et al. 19]

Related business

Trace polynomials

$$
\operatorname{tr}\left(x_{1}^{2}\right) \operatorname{tr}\left(x_{2}\right)+\operatorname{tr}\left(x_{2}\right) \text { with } \operatorname{tr}(u v)=\operatorname{tr}(v u)
$$

entanglement detection in multipartite Werner states [Huber et al. 22]
quantum violations for maximal entangled states [Klep et al. 21]

State polynomials

$$
\tau\left(x_{1}^{2}\right) \tau\left(x_{2}\right)+\tau\left(x_{2}\right) \text { with } \tau(w)=\tau\left(w^{\dagger}\right)
$$

scalar extension [Pozas-Kerstjens et al. 19]
inflation/polarization hierarchies [Ligthart et al., Wolfe et al. 21]

Related business

Trace polynomials

$$
\operatorname{tr}\left(x_{1}^{2}\right) \operatorname{tr}\left(x_{2}\right)+\operatorname{tr}\left(x_{2}\right) \text { with } \operatorname{tr}(u v)=\operatorname{tr}(v u)
$$

entanglement detection in multipartite Werner states [Huber et al. 22]
quantum violations for maximal entangled states [Klep et al. 21]

State polynomials

$$
\tau\left(x_{1}^{2}\right) \tau\left(x_{2}\right)+\tau\left(x_{2}\right) \text { with } \tau(w)=\tau\left(w^{\dagger}\right)
$$

scalar extension [Pozas-Kerstjens et al. 19]
inflation/polarization hierarchies [Ligthart et al., Wolfe et al. 21]
quantum violations for entangled states [Klep et al. 23]

Related business

Trace polynomials

$$
\operatorname{tr}\left(x_{1}^{2}\right) \operatorname{tr}\left(x_{2}\right)+\operatorname{tr}\left(x_{2}\right) \text { with } \operatorname{tr}(u v)=\operatorname{tr}(v u)
$$

entanglement detection in multipartite Werner states [Huber et al. 22]
quantum violations for maximal entangled states [Klep et al. 21]

State polynomials

$$
\tau\left(x_{1}^{2}\right) \tau\left(x_{2}\right)+\tau\left(x_{2}\right) \text { with } \tau(w)=\tau\left(w^{\dagger}\right)
$$

scalar extension [Pozas-Kerstjens et al. 19]
inflation/polarization hierarchies [Ligthart et al., Wolfe et al. 21]
quantum violations for entangled states [Klep et al. 23]
\because Proba is a state \Rightarrow moment polynomials are state polynomials

Moment polynomial optimization

Objective function $f \in \mathscr{M}[x]$

Moment polynomial optimization

Objective function $f \in \mathscr{M}[x]$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}$

Moment polynomial optimization

Objective function $f \in \mathscr{M}[x]$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}[x]$

Moment polynomial optimization

Objective function $f \in \mathscr{M}[x]$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}[x]$

$$
X \in K\left(S_{1}\right)
$$

Moment polynomial optimization

Objective function $f \in \mathscr{M}[x]$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}[x]$

$$
\begin{array}{r}
X \in K\left(S_{1}\right) \\
\text { for Bell } a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1
\end{array}
$$

Moment polynomial optimization

Objective function $f \in \mathscr{M}[x]$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}[x]$

$$
\begin{array}{r}
X \in K\left(S_{1}\right) \\
\text { for Bell } a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1
\end{array}
$$

- $s_{2}(\mu) \geqslant 0$ with $s_{2} \in \mathscr{M} \quad \mu$ proba on $K\left(S_{1}\right)$

Moment polynomial optimization

Objective function $f \in \mathscr{M}[x]$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}[x]$

$$
X \in K\left(S_{1}\right)
$$

for Bell $a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1$

- $s_{2}(\mu) \geqslant 0$ with $s_{2} \in \mathscr{M} \quad \mu$ proba on $K\left(S_{1}\right)$

$$
\mu \in \mathcal{K}\left(S_{1}, S_{2}\right)
$$

Moment polynomial optimization

Objective function $f \in \mathscr{M}[x]$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}[x]$

$$
X \in K\left(S_{1}\right)
$$

for Bell $a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1$

- $s_{2}(\mu) \geqslant 0$ with $s_{2} \in \mathscr{M} \quad \mu$ proba on $K\left(S_{1}\right)$

$$
\mu \in \mathcal{K}\left(S_{1}, S_{2}\right)
$$

$$
\text { for Bell } \mathrm{m}\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\mathrm{m}\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right)
$$

Moment polynomial optimization

Objective function $f \in \mathscr{M}[x]$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}[x]$

$$
X \in K\left(S_{1}\right)
$$

for Bell $a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1$

- $s_{2}(\mu) \geqslant 0$ with $s_{2} \in \mathscr{M} \quad \mu$ proba on $K\left(S_{1}\right)$

$$
\mu \in \mathcal{K}\left(S_{1}, S_{2}\right)
$$

$$
\text { for Bell } \mathrm{m}\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\mathrm{m}\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right)
$$

光 NPA hierarchy to optimize over $\mathscr{M}[x]$

State polynomial optimization

Objective function $f \in \mathscr{S}$

State polynomial optimization

Objective function $f \in \mathscr{S}$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right) \in \mathscr{S}$

State polynomial optimization

Objective function $f \in \mathscr{S}$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right) \in \mathscr{S}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}\langle x\rangle \quad X \in \mathcal{B}(\mathcal{H})^{n}$

State polynomial optimization

Objective function $f \in \mathscr{S}$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right) \in \mathscr{S}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}\langle x\rangle \quad X \in \mathcal{B}(\mathcal{H})^{n}$ for Bell $a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1$

State polynomial optimization

Objective function $f \in \mathscr{S}$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right) \in \mathscr{S}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}\langle x\rangle \quad X \in \mathcal{B}(\mathcal{H})^{n}$ for Bell $a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1$

■ $s_{2}(\lambda) \geqslant 0$ with $s_{2} \in \mathscr{S} \quad \lambda \in \mathcal{S}(\mathcal{H})$

State polynomial optimization

Objective function $f \in \mathscr{S}$

$$
\text { for Bell } f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right) \in \mathscr{S}
$$

Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}\langle x\rangle \quad X \in \mathcal{B}(\mathcal{H})^{n}$ for Bell $a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1$

■ $s_{2}(\lambda) \geqslant 0$ with $s_{2} \in \mathscr{S} \quad \lambda \in \mathcal{S}(\mathcal{H})$ for Bell $\tau\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\tau\left(a_{1} a_{2} a_{3}\right) \tau\left(c_{1} c_{2} c_{3}\right)$

State polynomial optimization

Objective function $f \in \mathscr{S}$

$$
\text { for Bell } f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right) \in \mathscr{S}
$$

Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}\langle x\rangle \quad X \in \mathcal{B}(\mathcal{H})^{n}$ for Bell $a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1$

■ $s_{2}(\lambda) \geqslant 0$ with $s_{2} \in \mathscr{S} \quad \lambda \in \mathcal{S}(\mathcal{H})$ for Bell $\tau\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\tau\left(a_{1} a_{2} a_{3}\right) \tau\left(c_{1} c_{2} c_{3}\right)$

$$
(\lambda, X) \in K(S)
$$

State polynomial optimization

Objective function $f \in \mathscr{S}$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right) \in \mathscr{S}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}\langle x\rangle \quad X \in \mathcal{B}(\mathcal{H})^{n}$ for Bell $a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1$
- $s_{2}(\lambda) \geqslant 0$ with $s_{2} \in \mathscr{S} \quad \lambda \in \mathcal{S}(\mathcal{H})$ for Bell $\tau\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\tau\left(a_{1} a_{2} a_{3}\right) \tau\left(c_{1} c_{2} c_{3}\right)$

$$
(\lambda, X) \in K(S)
$$

$\ddot{\theta}$ NPA hierarchy to optimize over $\mathscr{S}\langle x\rangle$

Hierarchies for polynomial optimization

NP-hard NON CONVEX problem $f_{\min }=\inf f(X)$

Theory

$$
\begin{gathered}
\text { (Primal) } \\
\inf \int f d \mu \\
\text { with } \mu \text { proba } \Rightarrow \quad \begin{array}{c}
\text { sup } \lambda
\end{array} \\
\Leftarrow \text { with } f-\lambda \geqslant 0
\end{gathered}
$$

Hierarchies for polynomial optimization

$$
\text { NP-hard NON CONVEX problem } f_{\min }=\inf f(X)
$$

Practice

(Primal Relaxation)

(Dual Strengthening)
$f-\lambda=$ sum of squares
finite number $\Rightarrow \quad$ SDP $\quad \Leftarrow$ fixed degree

Lasserre's Hierarchy of CONVEX Problems $\uparrow f_{\text {min }}$ [Lasserre '01]
degree r \& n vars $\Longrightarrow\binom{n+2 r}{n}$ SDP VARIABLES

A simple example

$f_{\text {min }}=\min f(X)$ over $K(S)$
Semialgebraic set $K(S)=\left\{X \in \mathbb{R}^{n}: s(X) \geqslant 0, \quad s \in S\right\}$

A simple example

$f_{\text {min }}=\min f(X)$ over $K(S)$
Semialgebraic set $K(S)=\left\{X \in \mathbb{R}^{n}: s(X) \geqslant 0, \quad s \in S\right\}$ $K(S)=[0,1]^{2}=\left\{X \in \mathbb{R}^{2}: X_{1}\left(1-X_{1}\right) \geqslant 0, \quad X_{2}\left(1-X_{2}\right) \geqslant 0\right\}$

A simple example

$f_{\text {min }}=\min f(X)$ over $K(S)$
Semialgebraic set $K(S)=\left\{X \in \mathbb{R}^{n}: s(X) \geqslant 0, \quad s \in S\right\}$ $K(S)=[0,1]^{2}=\left\{X \in \mathbb{R}^{2}: X_{1}\left(1-X_{1}\right) \geqslant 0, \quad X_{2}\left(1-X_{2}\right) \geqslant 0\right\}$

$-\frac{1}{8}+\overbrace{\frac{1}{2}\left(X_{1}+X_{2}-\frac{1}{2}\right)^{2}}^{\sigma_{0}}+\overbrace{\frac{1}{2}}^{\sigma_{1}} \overbrace{X_{1}\left(1-X_{1}\right)}^{s_{1}}+\overbrace{\frac{1}{2}}^{\sigma_{2}} \overbrace{X_{2}\left(1-X_{2}\right)}^{s_{2}}$

A simple example

$f_{\text {min }}=\min f(X)$ over $K(S)$
Semialgebraic set $K(S)=\left\{X \in \mathbb{R}^{n}: s(X) \geqslant 0, \quad s \in S\right\}$ $K(S)=[0,1]^{2}=\left\{X \in \mathbb{R}^{2}: X_{1}\left(1-X_{1}\right) \geqslant 0, \quad X_{2}\left(1-X_{2}\right) \geqslant 0\right\}$

$-\frac{1}{8}+\overbrace{\frac{1}{2}\left(X_{1}+X_{2}-\frac{1}{2}\right)^{2}}^{\sigma_{0}}+\overbrace{\frac{1}{2}}^{\sigma_{1}} \overbrace{X_{1}\left(1-X_{1}\right)}^{s_{1}}+\overbrace{\frac{1}{2}}^{\sigma_{2}} \overbrace{X_{2}\left(1-X_{2}\right)}^{s_{2}}$
Sums of squares (SOS) σ_{j}

A simple example

$f_{\text {min }}=\min f(X)$ over $K(S)$
Semialgebraic set $K(S)=\left\{X \in \mathbb{R}^{n}: s(X) \geqslant 0, \quad s \in S\right\}$ $K(S)=[0,1]^{2}=\left\{X \in \mathbb{R}^{2}: X_{1}\left(1-X_{1}\right) \geqslant 0, \quad X_{2}\left(1-X_{2}\right) \geqslant 0\right\}$

$-\frac{1}{8}+\overbrace{\frac{1}{2}\left(X_{1}+X_{2}-\frac{1}{2}\right)^{2}}^{\sigma_{0}}+\overbrace{\frac{1}{2}}^{\sigma_{1}} \overbrace{X_{1}\left(1-X_{1}\right)}^{s_{1}}+\overbrace{\frac{1}{2}}^{\sigma_{2}} \overbrace{X_{2}\left(1-X_{2}\right)}^{s_{2}}$
Sums of squares (SOS) σ_{j}
Quadratic module: $\mathrm{QM}(S)_{r}=\left\{\sigma_{0}+\sum_{j} \sigma_{j} s_{j}, \operatorname{deg} \sigma_{j} s_{j} \leqslant 2 r\right\}$

Hierarchies for polynomial optimization

$$
f_{\min }=\min _{X \in K(S)} f(X)
$$

- $\mathcal{P}(K(S))$: proba on $K(S)$

■ quadratic module $\operatorname{QM}(S)=\left\{\sigma_{0}+\sum_{j} \sigma_{j} s_{j}\right.$, with σ_{j} SOS $\}$

Infinite-dimensional linear programs (LP)

(Primal)
$\inf \int_{K(S)} f d \mu=\sup \lambda$
s.t. $\quad \mu \in \mathcal{P}(K(S))$
(Dual)
s.t. $\lambda \in \mathbb{R}$
$f-\lambda \in \mathrm{QM}(S)$

Hierarchies for polynomial optimization

$$
f_{\min }=\min _{X \in K(S)} f(X)
$$

- Pseudo-moment sequences y up to order r
- Truncated quadratic module $\mathrm{QM}(S)_{r}$

Finite-dimensional semidefinite programs (SDP)

\[

\]

Hierarchies for polynomial optimization

Moment matrices are indexed by monomials

$$
\mathbf{M}_{1}(\mathbf{y})=\begin{gathered}
\\
1 \\
x_{1} \\
x_{2}
\end{gathered}\left(\begin{array}{cccc}
1 & & x_{1} & x_{2} \\
1 & \mid & y_{10} & y_{01} \\
& - & - & - \\
y_{10} & \mid & y_{20} & y_{11} \\
y_{01} & \mid & y_{11} & y_{02}
\end{array}\right)
$$

Hierarchies for polynomial optimization

Theorem [Putinar 93, Lasserre 01]: positive polynomials
For $f \in \mathbb{R}[x], S \subseteq \mathbb{R}[x]$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}(S)$ then

$$
f>0 \text { on } K(S) \Rightarrow f \in \mathrm{QM}(S)
$$

Hierarchies for polynomial optimization

Theorem [Putinar 93, Lasserre 01]: positive polynomials
For $f \in \mathbb{R}[x], S \subseteq \mathbb{R}[x]$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}(S)$ then

$$
f>0 \text { on } K(S) \Rightarrow f \in \mathrm{QM}(S)
$$

Consequence: $f_{r} \uparrow f_{\text {min }}$

Hierarchies for polynomial optimization

Theorem [Putinar 93, Lasserre 01]: positive polynomials
For $f \in \mathbb{R}[x], S \subseteq \mathbb{R}[x]$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}(S)$ then

$$
f>0 \text { on } K(S) \Rightarrow f \in \mathrm{QM}(S)
$$

Consequence: $f_{r} \uparrow f_{\text {min }}$

- \quad - Positivity certificates \rightsquigarrow complete hierarchy

Hierarchies for polynomial optimization

Theorem [Putinar 93, Lasserre 01]: positive polynomials
For $f \in \mathbb{R}[x], S \subseteq \mathbb{R}[x]$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}(S)$ then

$$
f>0 \text { on } K(S) \Rightarrow f \in \mathrm{QM}(S)
$$

Consequence: $f_{r} \uparrow f_{\text {min }}$

- Positivity certificates \rightsquigarrow complete hierarchy
\checkmark Can be computed with SDP solvers (CSDP, SDPA, MOSEK)

NPA hierarchy for moment polynomials

Objective function $f \in \mathscr{M}[x]$

$$
\text { for Bell } f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}
$$

Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}[x]$

$$
\begin{array}{r}
X \in K\left(S_{1}\right) \\
\text { for Bell } a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1
\end{array}
$$

- $s_{2}(\mu) \geqslant 0$ with $s_{2} \in \mathscr{M} \quad \mu$ proba on $K\left(S_{1}\right)$

$$
\mu \in \mathcal{K}\left(S_{1}, S_{2}\right)
$$

for Bell $\mathrm{m}\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\mathrm{m}\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right)$

NPA hierarchy for moment polynomials

Objective function $f \in \mathscr{M}[x]$ for Bell $f=\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right) \in \mathscr{M}$
Two types of constraints:

- $s_{1}(X) \geqslant 0$ with $s_{1} \in \mathbb{R}[x]$

$$
\begin{array}{r}
X \in K\left(S_{1}\right) \\
\text { for Bell } a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1
\end{array}
$$

- $s_{2}(\mu) \geqslant 0$ with $s_{2} \in \mathscr{M} \quad \mu$ proba on $K\left(S_{1}\right)$

$$
\mu \in \mathcal{K}\left(S_{1}, S_{2}\right)
$$

for Bell $\mathrm{m}\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\mathrm{m}\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right)$
moment matrices \& quadratic modules

NPA hierarchy for moment polynomials

$$
f_{\min }=\min _{X \in K\left(S_{1}\right), \mu \in \mathcal{K}\left(S_{1}, S_{2}\right)} f(\mu)
$$

- Pseudo-moment sequences y up to order r
- Truncated quadratic module $\mathrm{QM}\left(S_{1}, S_{2}\right)_{r}$

Finite-dimensional semidefinite programs (SDP)

(Moment)

$$
\begin{array}{rlll}
f_{r}=\inf & \sum_{\alpha} f_{\alpha} y_{\alpha}=\sup & \lambda \\
\text { s.t. } & \mathbf{M}_{r-r_{j}}\left(s_{j} \mathbf{y}\right) \succcurlyeq 0 \\
& y_{0}=1 & \text { s.t. } & \lambda \in \mathbb{R} \\
& & f-\lambda \in \mathrm{QM}\left(S_{1}, S_{2}\right)_{r}
\end{array}
$$

NPA hierarchy for moment polynomials

Moment matrices are (slightly) more complicated than in $\mathbb{R}[x]$

		1	x_{1}	x_{2}	m_{10}	m_{01}
	1	${ }^{1}$	y_{1000}	y_{0100} -	Y_{0010} -	y_{0001} -
$\mathbf{M}_{1}(\mathbf{y})=$	x_{1}	y_{1000}	y_{2000}	y_{1100}	y_{1010}	y_{1001}
	x_{2}	y_{0100}	y_{1100}	y_{0200}	y_{0110}	y_{0101}
	m_{10}	Y0010	y_{1010}	Y0110	Y0020	Y0011
	m_{01}	y_{0001}	y_{1001}	y_{0101}	y_{0011}	y_{0002}

NPA hierarchy for moment polynomials

Moment matrices are (slightly) more complicated than in $\mathbb{R}[x]$

NPA hierarchy for moment polynomials

Moment matrices are (slightly) more complicated than in $\mathbb{R}[x]$

NPA hierarchy for moment polynomials

Moment matrices are (slightly) more complicated than in $\mathbb{R}[x]$

NPA hierarchy for moment polynomials

Quadratic module $\mathrm{QM}\left(S_{1}, S_{2}\right)$ is also more complicated

$$
\begin{aligned}
\sum p^{2} \mathrm{~m}\left(q^{2} s\right): & s \in\{1\} \cup S_{1} \quad p, q \in \mathscr{M}[x] \\
\sum p^{2} s: & s \in S_{1} \cup S_{2} \quad p \in \mathscr{M}[x]
\end{aligned}
$$

NPA hierarchy for moment polynomials

Quadratic module $\mathrm{QM}\left(S_{1}, S_{2}\right)$ is also more complicated

$$
\begin{aligned}
\sum p^{2} \mathrm{~m}\left(q^{2} s\right): & s \in\{1\} \cup S_{1} \quad p, q \in \mathscr{M}[x] \\
\sum p^{2} s: & s \in S_{1} \cup S_{2} \quad p \in \mathscr{M}[x]
\end{aligned}
$$

Theorem [Klep-M.-Volčič 23]: positive moment polynomials
For $f \in \mathscr{M}, S_{1} \subseteq \mathbb{R}[x], S_{2} \subseteq \mathscr{M}$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}\left(S_{1}\right)$ then

$$
f>0 \text { on } \mathcal{K}\left(S_{1}, S_{2}\right) \Rightarrow f \in \operatorname{QM}\left(S_{1}, S_{2}\right)
$$

NPA hierarchy for moment polynomials

Quadratic module $\mathrm{QM}\left(S_{1}, S_{2}\right)$ is also more complicated

$$
\begin{aligned}
\sum p^{2} \mathrm{~m}\left(q^{2} s\right): & s \in\{1\} \cup S_{1} \quad p, q \in \mathscr{M}[x] \\
\sum p^{2} s: & s \in S_{1} \cup S_{2} \quad p \in \mathscr{M}[x]
\end{aligned}
$$

Theorem [Klep-M.-Volčič 23]: positive moment polynomials

For $f \in \mathscr{M}, S_{1} \subseteq \mathbb{R}[x], S_{2} \subseteq \mathscr{M}$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}\left(S_{1}\right)$ then

$$
f>0 \text { on } \mathcal{K}\left(S_{1}, S_{2}\right) \Rightarrow f \in \operatorname{QM}\left(S_{1}, S_{2}\right)
$$

Consequence: $f_{r} \uparrow f_{\text {min }}$

NPA hierarchy for moment polynomials

Quadratic module $\mathrm{QM}\left(S_{1}, S_{2}\right)$ is also more complicated

$$
\begin{aligned}
\sum p^{2} \mathrm{~m}\left(q^{2} s\right): & s \in\{1\} \cup S_{1} \quad p, q \in \mathscr{M}[x] \\
\sum p^{2} s: & s \in S_{1} \cup S_{2} \quad p \in \mathscr{M}[x]
\end{aligned}
$$

Theorem [Klep-M.-Volčič 23]: positive moment polynomials

For $f \in \mathscr{M}, S_{1} \subseteq \mathbb{R}[x], S_{2} \subseteq \mathscr{M}$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}\left(S_{1}\right)$ then

$$
f>0 \text { on } \mathcal{K}\left(S_{1}, S_{2}\right) \Rightarrow f \in \operatorname{QM}\left(S_{1}, S_{2}\right)
$$

Consequence: $f_{r} \uparrow f_{\text {min }}$

- Positivity certificates \rightsquigarrow complete hierarchy

NPA hierarchy for state polynomials

$$
f_{\min }=\min _{(\lambda, X) \in K(S)} f(\lambda)
$$

- Pseudo-moment sequences y up to order r
- Truncated quadratic module $\mathrm{QM}(S)_{r}$

Finite-dimensional semidefinite programs (SDP)

\[

\]

NPA hierarchy for state polynomials

Moment matrices are more complicated than in $\mathbb{R}[x]$ and $\mathscr{M}[x]$

NPA hierarchy for state polynomials

Moment matrices are more complicated than in $\mathbb{R}[x]$ and $\mathscr{M}[x]$
At order $r=1$ same as for $\mathscr{M}[x]$

NPA hierarchy for state polynomials

Moment matrices are more complicated than in $\mathbb{R}[x]$ and $\mathscr{M}[x]$
At order $r=1$ same as for $\mathscr{M}[x]$
At order $r=2, x_{1} x_{2}$ and $x_{2} x_{1}$ are needed

NPA hierarchy for state polynomials

Moment matrices are more complicated than in $\mathbb{R}[x]$ and $\mathscr{M}[x]$
At order $r=1$ same as for $\mathscr{M}[x]$
At order $r=2, x_{1} x_{2}$ and $x_{2} x_{1}$ are needed
$\tau\left(x_{1} x_{2}\right)=\tau\left(x_{2} x_{1}\right)$ but $\tau\left(x_{1}^{2} x_{2}\right) \neq \tau\left(x_{1} x_{2} x_{1}\right)$ in general

NPA hierarchy for state polynomials

Quadratic module $\mathrm{QM}(S)$ is also more complicated

$$
\sum \tau\left(p s p^{\star}\right): \quad s \in\{1\} \cup S \quad p \in \mathscr{S}\langle x\rangle
$$

NPA hierarchy for state polynomials

Quadratic module $\mathrm{QM}(S)$ is also more complicated

$$
\sum \tau\left(p s p^{\star}\right): \quad s \in\{1\} \cup S \quad p \in \mathscr{S}\langle x\rangle
$$

Theorem [Klep-M.-Volčič-Wang 23]: positive state polynomials
For $f \in \mathscr{S}, S \subseteq \mathscr{S}\langle x\rangle$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}(S \cap \mathbb{R}\langle\underline{x}\rangle)$ then

$$
f>0 \text { on } K(S) \Rightarrow f \in \mathrm{QM}(S)
$$

NPA hierarchy for state polynomials

Quadratic module $\mathrm{QM}(S)$ is also more complicated

$$
\sum \tau\left(p s p^{\star}\right): \quad s \in\{1\} \cup S \quad p \in \mathscr{S}\langle x\rangle
$$

Theorem [Klep-M.-Volčič-Wang 23]: positive state polynomials
For $f \in \mathscr{S}, S \subseteq \mathscr{S}\langle x\rangle$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}(S \cap \mathbb{R}\langle\underline{x}\rangle)$ then

$$
f>0 \text { on } K(S) \Rightarrow f \in \mathrm{QM}(S)
$$

Consequence: $f_{r} \uparrow f_{\text {min }}$

NPA hierarchy for state polynomials

Quadratic module $\mathrm{QM}(S)$ is also more complicated

$$
\sum \tau\left(p s p^{\star}\right): \quad s \in\{1\} \cup S \quad p \in \mathscr{S}\langle x\rangle
$$

Theorem [Klep-M.-Volčič-Wang 23]: positive state polynomials
For $f \in \mathscr{S}, S \subseteq \mathscr{S}\langle x\rangle$, if $\underbrace{N}_{>0}-\sum_{i} x_{i}^{2} \in \mathrm{QM}(S \cap \mathbb{R}\langle\underline{x}\rangle)$ then

$$
f>0 \text { on } K(S) \Rightarrow f \in \mathrm{QM}(S)
$$

Consequence: $f_{r} \uparrow f_{\text {min }}$
$\stackrel{\because}{\square}$ Positivity certificates \rightsquigarrow complete hierarchy

More efficient NPA hierarchies

"SPARSE" cost f and constraints

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f
$\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$
1-2-3
99

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f
$\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f
$\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$
Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Universal algebras of binary observables:

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Universal algebras of binary observables:

\rightsquigarrow group G of constraints $x_{i}^{2}=1 \quad x_{i} x_{j}=x_{j} x_{i}$

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Universal algebras of binary observables:

\rightsquigarrow group G of constraints $x_{i}^{2}=1 \quad x_{i} x_{j}=x_{j} x_{i}$
" Index SDP matrices by $H \subseteq G$ generated by the support of f

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Universal algebras of binary observables:

\rightsquigarrow group G of constraints $x_{i}^{2}=1 \quad x_{i} x_{j}=x_{j} x_{i}$
㑇 Index SDP matrices by $H \subseteq G$ generated by the support of f

Performance

VS

Accuracy

More efficient NPA hierarchies

"SPARSE" cost f and constraints
Correlative sparsity: few variable products in f $\rightsquigarrow f=x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{99} x_{100}$
$1-2-3$
$1-2$

Term sparsity: few terms in f
$\rightsquigarrow f=x_{1}^{99} x_{2}+x_{1} x_{2}^{100}$
Universal algebras of binary observables:
\rightsquigarrow group G of constraints $x_{i}^{2}=1 \quad x_{i} x_{j}=x_{j} x_{i}$
ت丷 Index SDP matrices by $H \subseteq G$ generated by the support of f

Performance

vs

Accuracy

Tons of applications: computer arithmetic, deep learning, entanglement, optimal power-flow, analysis of dynamical systems, matrix ranks

Back to Bell inequalities

Binary A_{i}, B_{j}

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

Back to Bell inequalities

Binary A_{i}, B_{j}

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

NPA hierarchy for \mathscr{M} and $r=2$: SDP with 4146 variables

$$
f_{2}=4.5
$$

Back to Bell inequalities

Binary A_{i}, B_{j}

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

NPA hierarchy for \mathscr{M} and $r=2$: SDP with 4146 variables $\quad f_{2}=4.5$
same local bound as [Pozsgay et al. 17] classical bound $=f_{\max }=4.5$

Back to Bell inequalities

Binary A_{i}, B_{j}

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

NPA hierarchy for \mathscr{M} and $r=2$: SDP with 4146 variables $\quad f_{2}=4.5$
same local bound as [Pozsgay et al. 17] classical bound $=f_{\max }=4.5$
NPA hierarchy for \mathscr{S} and $r=2$:
$f_{2}=5$

Back to Bell inequalities

Binary A_{i}, B_{j}

$$
\begin{aligned}
\operatorname{cov}_{3322} & =\operatorname{cov}\left(A_{1}, B_{1}\right)+\operatorname{cov}\left(A_{1}, B_{2}\right)+\operatorname{cov}\left(A_{1}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{2}, B_{1}\right)+\operatorname{cov}\left(A_{2}, B_{2}\right)-\operatorname{cov}\left(A_{2}, B_{3}\right) \\
& +\operatorname{cov}\left(A_{3}, B_{1}\right)-\operatorname{cov}\left(A_{3}, B_{2}\right)
\end{aligned}
$$

NPA hierarchy for \mathscr{M} and $r=2$: SDP with 4146 variables $\quad f_{2}=4.5$
same local bound as [Pozsgay et al. 17] classical bound $=f_{\max }=4.5$
NPA hierarchy for \mathscr{S} and $r=2$:

$$
f_{2}=5
$$

same local bound as [Pozsgay et al. 17] quantum bound $=f_{\max }=5$

Back to Bell inequalities

Binary A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

Back to Bell inequalities

Binary A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

satisfying bilocality constraints

$$
E\left(A_{1} A_{2} A_{3} C_{1} C_{2} C_{3}\right)=E\left(A_{1} A_{2} A_{3}\right) E\left(C_{1} C_{2} C_{3}\right)
$$

+ similar factorization constraints

Back to Bell inequalities

Binary A_{i}, B_{j}, C_{k}

$$
\frac{1}{3} \sum_{i \in\{1,2,3\}}\left(E\left(B_{i} C_{i}\right)-E\left(A_{i} B_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} E\left(A_{i} B_{j} C_{k}\right)
$$

satisfying bilocality constraints

$$
E\left(A_{1} A_{2} A_{3} C_{1} C_{2} C_{3}\right)=E\left(A_{1} A_{2} A_{3}\right) E\left(C_{1} C_{2} C_{3}\right)
$$

+ similar factorization constraints \& vanishing constraints

$$
\begin{aligned}
& E\left(A_{i}\right)=E\left(B_{i}\right)=E\left(C_{i}\right)=0 \text { for } i \in\{1,2,3\} \\
& E\left(A_{i} B_{j}\right)=E\left(B_{i} C_{j}\right)=0 \text { for } i \neq j \\
& E\left(A_{i} B_{j} C_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

Back to Bell inequalities

[Tavakoli et al. 21-22] local classical bound of 3

Back to Bell inequalities

[Tavakoli et al. 21-22] local classical bound of 3

$$
\sup \frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right)
$$

s.t.

$$
\begin{aligned}
& \mathrm{m}\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\mathrm{m}\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right) \\
& a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1 \text { and } \mathrm{m}\left(a_{i}\right)=\mathrm{m}\left(b_{j}\right)=\mathrm{m}\left(c_{k}\right)=0 \\
& \mathrm{~m}\left(a_{i} b_{j}\right)=\mathrm{m}\left(b_{j} c_{k}\right)=0 \\
& \mathrm{~m}\left(a_{i} b_{j} c_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

Back to Bell inequalities

[Tavakoli et al. 21-22] local classical bound of 3

$$
\sup \frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right)
$$

s.t.

$$
\begin{aligned}
& \mathrm{m}\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\mathrm{m}\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right) \\
& a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1 \text { and } \mathrm{m}\left(a_{i}\right)=\mathrm{m}\left(b_{j}\right)=\mathrm{m}\left(c_{k}\right)=0 \\
& \mathrm{~m}\left(a_{i} b_{j}\right)=\mathrm{m}\left(b_{j} c_{k}\right)=0 \\
& \mathrm{~m}\left(a_{i} b_{j} c_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

$r=3$: SDP with 31017 variables

Back to Bell inequalities

[Tavakoli et al. 21-22] local classical bound of 3

$$
\sup \frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\mathrm{m}\left(b_{i} c_{i}\right)-\mathrm{m}\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \mathrm{m}\left(a_{i} b_{j} c_{k}\right)
$$

s.t.

$$
\begin{aligned}
& \mathrm{m}\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\mathrm{m}\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right) \\
& a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1 \text { and } \mathrm{m}\left(a_{i}\right)=\mathrm{m}\left(b_{j}\right)=\mathrm{m}\left(c_{k}\right)=0 \\
& \mathrm{~m}\left(a_{i} b_{j}\right)=\mathrm{m}\left(b_{j} c_{k}\right)=0 \\
& \mathrm{~m}\left(a_{i} b_{j} c_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

$r=3$: SDP with 31017 variables
We extracted a local classical bound of 4 classical bound $=f_{\max }=4$

Back to Bell inequalities

[Tavakoli et al. 21-22] local quantum bound of 4

Back to Bell inequalities

[Tavakoli et al. 21-22] local quantum bound of 4

$$
\sup \frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right)
$$

s.t.

$$
\begin{aligned}
& \tau\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\tau\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right) \\
& a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1 \text { and } \tau\left(a_{i}\right)=\tau\left(b_{j}\right)=\tau\left(c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j}\right)=\tau\left(b_{j} c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j} c_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

Back to Bell inequalities

[Tavakoli et al. 21-22] local quantum bound of 4

$$
\sup \frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right)
$$

s.t.

$$
\begin{aligned}
& \tau\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\tau\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right) \\
& a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1 \text { and } \tau\left(a_{i}\right)=\tau\left(b_{j}\right)=\tau\left(c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j}\right)=\tau\left(b_{j} c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j} c_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

$r=3$: SDP with 3018 constraints (few seconds)

Back to Bell inequalities

[Tavakoli et al. 21-22] local quantum bound of 4

$$
\sup \frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right)
$$

s.t.

$$
\begin{aligned}
& \tau\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\tau\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right) \\
& a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1 \text { and } \tau\left(a_{i}\right)=\tau\left(b_{j}\right)=\tau\left(c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j}\right)=\tau\left(b_{j} c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j} c_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

$r=3$: SDP with 3018 constraints (few seconds)

$$
\begin{aligned}
& f_{3}=4.46 \\
& f_{4}=4.38
\end{aligned}
$$

$r=4$: SDP with 64878 constraints (few hours)

Back to Bell inequalities

[Tavakoli et al. 21-22] local quantum bound of 4

$$
\sup \frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right)
$$

s.t.

$$
\begin{aligned}
& \tau\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\tau\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right) \\
& a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1 \text { and } \tau\left(a_{i}\right)=\tau\left(b_{j}\right)=\tau\left(c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j}\right)=\tau\left(b_{j} c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j} c_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

$r=3$: SDP with 3018 constraints (few seconds)

$$
f_{3}=4.46
$$

$r=4$: SDP with 64878 constraints (few hours)
$f_{4}=4.38$
$r=5$: SDP with 1352093 constraints (one week)

$$
f_{5}=4.37
$$

Back to Bell inequalities

[Tavakoli et al. 21-22] local quantum bound of 4

$$
\sup \frac{1}{3} \sum_{i \in\{1,2,3\}}\left(\tau\left(b_{i} c_{i}\right)-\tau\left(a_{i} b_{i}\right)\right)-\sum_{\{i, j, k\}=\{1,2,3\}} \tau\left(a_{i} b_{j} c_{k}\right)
$$

s.t.

$$
\begin{aligned}
& \tau\left(a_{1} a_{2} a_{3} c_{1} c_{2} c_{3}\right)=\tau\left(a_{1} a_{2} a_{3}\right) \mathrm{m}\left(c_{1} c_{2} c_{3}\right) \\
& a_{i}^{2}=b_{j}^{2}=c_{k}^{2}=1 \text { and } \tau\left(a_{i}\right)=\tau\left(b_{j}\right)=\tau\left(c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j}\right)=\tau\left(b_{j} c_{k}\right)=0 \\
& \tau\left(a_{i} b_{j} c_{k}\right)=0 \text { for }|\{i, j, k\}| \leq 2
\end{aligned}
$$

$r=3$: SDP with 3018 constraints (few seconds)
$r=4$: SDP with 64878 constraints (few hours)
$f_{4}=4.38$
$r=5$: SDP with 1352093 constraints (one week)

$$
f_{5}=4.37
$$

We still don't know the quantum bound $f_{\text {max }}$!

Conclusion

Conclusion

Positivity certificates for moment and state polynomials under compact polynomial inequality constraints

Conclusion

Positivity certificates for moment and state polynomials under compact polynomial inequality constraints

NPA hierarchies to certify classical and quantum bounds of nonlinear Bell inequalities

Conclusion

Positivity certificates for moment and state polynomials under compact polynomial inequality constraints

NPA hierarchies to certify classical and quantum bounds of nonlinear Bell inequalities

Hilbert-Artin analogues (theoretical results not explained in this talk):

Conclusion

Positivity certificates for moment and state polynomials under compact polynomial inequality constraints

NPA hierarchies to certify classical and quantum bounds of nonlinear Bell inequalities

Hilbert-Artin analogues (theoretical results not explained in this talk):
State polynomials, positive over all matrices and matricial states, are sums of squares with denominators

Conclusion

Positivity certificates for moment and state polynomials under compact polynomial inequality constraints

NPA hierarchies to certify classical and quantum bounds of nonlinear Bell inequalities

Hilbert-Artin analogues (theoretical results not explained in this talk):
State polynomials, positive over all matrices and matricial states, are sums of squares with denominators

- Moment polynomials positive on measures are sums of squares, up to arbitrarily small perturbation (generalization of [Lasserre 06])

Open EU PhD/Postdoc positions

TENORS
 Tensor modEliNg, geOmetRy and optimiSation Marie Skłodowska-Curie Doctoral Network
 2024-2027

Partners:
(1) Inria, Sophia Antipolis, France (B. Mourrain, A. Mantzaflaris)
(2) CNRS, LAAS, Toulouse, France (D. Henrion, V. Magron, M. Skomra)

3 NWO-I/CWI, Amsterdam, the Netherlands (M. Laurent)
(4) Univ. Konstanz, Germany (M. Schweighofer, S. Kuhlmann, M. Michatek)
\bigcirc
MPI, Leipzig, Germany (B. Sturmfels, S. Telen)
(6) Univ. Tromsoe, Norway (C. Riener, C. Bordin, H. Munthe-Kaas)
(7) Univ. degli Studi di Firenze, Italy (G. Ottaviani)
(8) Univ, degli Studi di Trento, Italy (A. Bernardi, A. Oneto, I. Carusotto)

0
CTU, Prague, Czech Republic (J. Marecek)
ICFO, Barcelona, Spain (A. Acin)
(1i) Artelys SA, Paris, France (M. Gabay) industrial actors facing real-life tensor-based problems.

Tensors are nowadays ubiquitous in many domains of applied mathematics, computer science, signal processing, data processing, machine learning and in the emerging area of quantum computing. TENORS aims at fostering cutting-edge research in tensor sciences, stimulating interdisciplinary and intersectoriality knowledge developments between algebraists, geometers, computer scientists, numerical analysts, data analysts, physicists, quantum scientists, and

```
Associate partners:
```


(1) Quandela, France

```
(2) Cambridge Quantum Computing. UK.
(3) Bluetensor, Italy.
(4) Arva AS, Norway.
(5) HSBC Lab., London, UK.
```


15 PhD positions (2024-2027)

(recruitment expected around Oct. 2024)
Scientific coord: B. Mourrain Adm. manager: Linh Nguyen

Thank you for listening！

差落
Klep，M．\＆Volčič．Sums of squares certificates for polynomial moment inequalities．arXiv：2306．05761Klep，M．，Volčič \＆Wang．State polynomials：positivity，optimization and nonlinear Bell inequalities．Math．Programming，arXiv：2301．12513
五 Tavakoli，Pozas－Kerstjens，Luo \＆Renou．Bell nonlocality in networks． Reports on Progress in Physics，arXiv：2104．10700
圊 Tavakoli，Gisin \＆Branciard．Bilocal Bell inequalities violated by the quantum elegant joint measurement．PRL，arXiv：2006．16694
\square Klep，M．\＆Volčič．Optimization over trace polynomials．Annales Henri Poincaré，arXiv：2101．05167
R－Pozsgay，Hirsch，Branciard \＆Brunner．Covariance Bell inequalities． Phys．Rev．A，arXiv：1710．02445Navascués，Pironio \＆Acín．A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations．New Journal of Physics， 2008

Thank you for listening!

茥
Huber, Klep, M. \& Volčič. Dimension-free entanglement detection in multipartite Werner states. Communications in Math. Physics, arXiv:2108.08720

M \& Wang. Sparse polynomial optimization: theory and practice. Series on Optimization and Its Applications, World Scientific Press, 2022
T- Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1964
國
Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 1989Klep \& Schweighofer. Connes' embedding conjecture and sums of hermitian squares. Advances in Mathematics, 2008

Cafuta, Klep \& Povh. NCSOStools: a computer algebra system for symbolic and numerical computation with noncommutative polynomials. Optimization methods and Software, 2011

Burgdorf, Cafuta, Klep \& Povh. The tracial moment problem and trace-optimization of polynomials. Math. programming, 2013
E Burgdorf, Klep \& Povh. Optimization of polynomials in non-commuting variables. Springer, 2016

Thank you for listening!

显
Klep, Spenko \& Volčič. Positive trace polynomials and the universal Procesi-Schacher conjecture. Proceedings of the London Mathematical Society, 2018

TKlep, Pascoe \& Volčič. Positive univariate trace polynomials. Journal of Algebra, 2021
Huber. Positive maps and trace polynomials from the symmetric group. Journal of Mathematical Physics, 2021

Klep, Magron \& Povh. Sparse Noncommutative Polynomial Optimization. Mathematical programming, 2021 NCSOStools NCTSSOS
國 Beckermann, Putinar, Saff \& Stylianopoulos. Perturbations of Christoffel-Darboux Kernels: Detection of Outliers. Foundations of Computational Mathematics, 2021
 Huber, Klep, Magron \& Volčič. Dimension-free entanglement detection in multipartite Werner states, arxiv:2108.08720

Klep \& Magron \& Volčič. Optimization over trace polynomials. Annales Institut Henri Poincaré, 2022Belinschi, Magron \& Vinnikov. Noncommutative Christoffel-Darboux Kernels, Transactions of the AMS, 2022

