Finding Global Minima via Kernel Approximations

Ulysse Marteau-Ferey

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with Alessandro Rudi and Francis Bach LAAS - February 16, 2020

Outline

- Global optimization using function values
- Representing non-negative functions
- Global optimization through sampling
- Conclusions and extensions

Global optimization using function values

- Global optimization
- Optimal algorithms
- Optimal rates
- Convex reformulation

Global optimization

• Zero-th order minimization

 $\min_{x \in \Omega} f(x)$

- $\Omega \subset \mathbb{R}^d$ simple compact subset (e.g., $[-1,1]^d$)
- -f with some bounded derivatives
- access to function values

Global optimization

• Zero-th order minimization

 $\min_{x \in \Omega} f(x)$

- $\Omega \subset \mathbb{R}^d$ simple compact subset (e.g., $[-1,1]^d$)
- -f with some bounded derivatives
- access to function values
- No convexity assumption

Global optimization

• Zero-th order minimization

 $\min_{x \in \Omega} f(x)$

- $\Omega \subset \mathbb{R}^d$ simple compact subset (e.g., $[-1,1]^d$)
- -f with some bounded derivatives
- access to function values
- No convexity assumption
- Many applications
 - e.g., hyperparameter optimization in machine learning

Optimal algorithms

- Goal: Find $\hat{x} \in \Omega$ such that $f(\hat{x}) \min_{x \in \Omega} f(x) \leqslant \varepsilon$
 - Lowest number of function calls
 - Worst-case guarantees over all functions f in some convex set ${\mathcal F}$

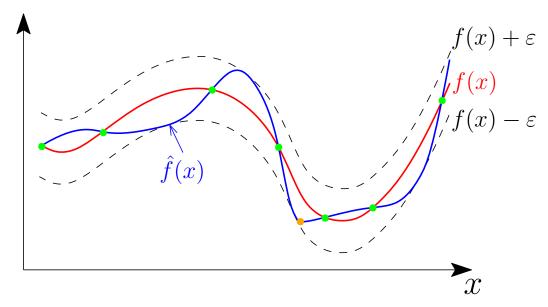
$$\sup_{f \in \mathcal{F}} \left\{ f(\hat{x}) - \min_{x \in \Omega} f(x) \right\} \leqslant \varepsilon$$

Optimal algorithms

- Goal: Find $\hat{x} \in \Omega$ such that $f(\hat{x}) \min_{x \in \Omega} f(x) \leqslant \varepsilon$
 - Lowest number of function calls
 - Worst-case guarantees over all functions f in some convex set ${\mathcal F}$

$$\sup_{f \in \mathcal{F}} \left\{ f(\hat{x}) - \min_{x \in \Omega} f(x) \right\} \leqslant \varepsilon$$

- Equivalence to uniform function approximation (Novak, 2006)
 - Simplest algorithm: approximate f by \hat{f} and minimize \hat{f}



Optimal rates

- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
 - -n = number of function evaluations
 - $\mathcal{F} = \text{Lipschitz-continuous functions:} n \propto \varepsilon^{-d}$
 - $\mathcal{F} = m$ bounded derivatives: $n \propto \varepsilon^{-d/m}$
- Smoothness to circumvent the curse of dimensionality
 - NB: constants may depend (exponentially) in d

Optimal rates

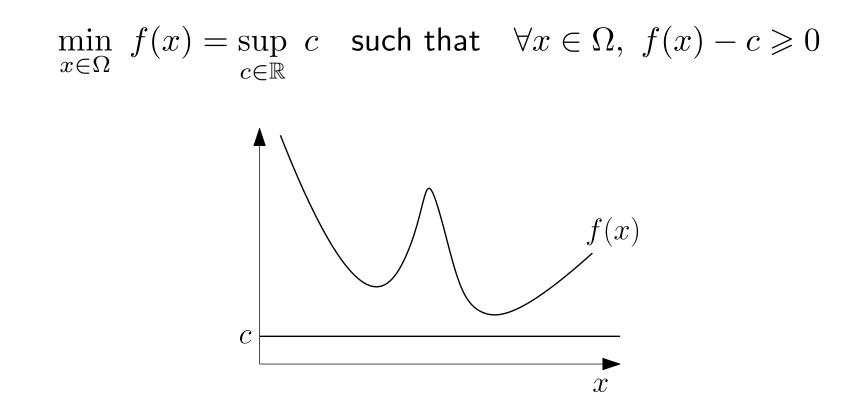
- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
 - -n = number of function evaluations
 - $\mathcal{F}=\mbox{Lipschitz-continuous functions:}~n\propto \varepsilon^{-d}$
 - $-\mathcal{F}=m$ bounded derivatives: $n\propto \varepsilon^{-d/m}$
- Smoothness to circumvent the curse of dimensionality
 - NB: constants may depend (exponentially) in d
- Algorithms have exponential running-time complexity
 - "Approximate then optimize"

Optimal rates

- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
 - -n = number of function evaluations
 - $\mathcal{F}=\mbox{Lipschitz-continuous functions:}~n\propto\varepsilon^{-d}$
 - $-\mathcal{F}=m$ bounded derivatives: $n\propto \varepsilon^{-d/m}$
- Smoothness to circumvent the curse of dimensionality
 - NB: constants may depend (exponentially) in d
- Algorithms have exponential running-time complexity
 - "Approximate then optimize"
- Algorithms with polynomial-time complexity in n?
 - "Approximate and optimize"

Reformulations

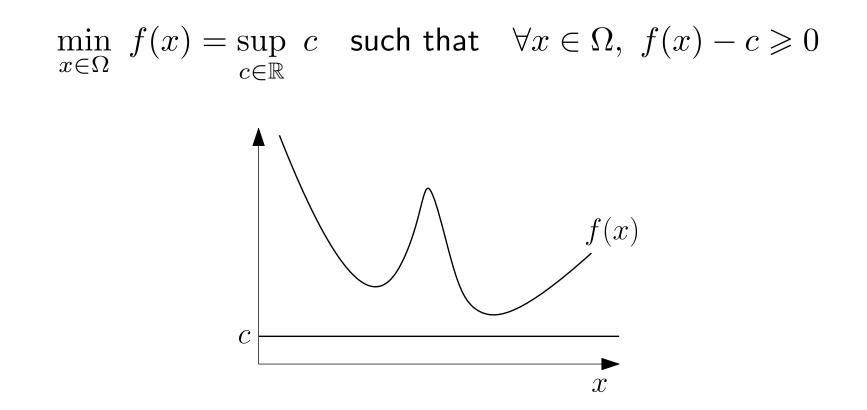
• Equivalent convex problem



- All optimization problems are convex!

Reformulations

• Equivalent convex problem



- All optimization problems are convex!
- Need to represent non-negative functions (such as f(x) c)

Representing non-negative functions

- Generic representation in a PSD cone
- The case of polynomials
- Infinite-dimensional representations using RKHS

Representing non-negative functions

- Assumption: g(x) can be represented as $g(x) = \langle \phi(x), G\phi(x) \rangle$ with G symmetric operator
- **Example**: set of polynomials of degree 2rwith $\phi(x)$ composed of monomials of degree r, of dimension $\binom{d+r}{r}$

$$\phi(x) = (1, x_1, \dots, x_d, x_1 x_2, \dots, x_1^r, \dots, x_d^r)$$

Representing non-negative functions

- Assumption: g(x) can be represented as $g(x) = \langle \phi(x), G\phi(x) \rangle$ with G symmetric operator
- **Example**: set of polynomials of degree 2rwith $\phi(x)$ composed of monomials of degree r, of dimension $\binom{d+r}{r}$

$$\phi(x) = (1, x_1, \dots, x_d, x_1 x_2, \dots, x_1^r, \dots, x_d^r)$$

- Non-negativity through "sums-of-squares"
 - If $G \succcurlyeq 0$, then $\forall x \in \Omega, \ g(x) = \langle \phi(x), G \phi(x) \rangle \ge 0$
 - Sum of squares : eigen-decomposition $G = \sum_{i \in I} \lambda_i \ h_i \otimes h_i$,

$$g(x) = \sum_{i \in I} \lambda_i \langle \phi(x), (h_i \otimes h_i) \phi(x) \rangle = \sum_{i \in I} \lambda_i \langle \phi(x), h_i \rangle^2$$

Global optimization with sums of square polynomials

- Replace $f c \ge 0$ by $f c = \langle \phi(x), A \phi(x) \rangle$ with $A \succcurlyeq 0$
- **Sum-of-squares optimization** (Lasserre, 2001)

 $\sup_{c \in \mathbb{R}, A \succeq 0} c \quad \text{such that} \quad \forall x \in \mathbb{R}^d, \ f - c = \langle \phi(x), A \phi(x) \rangle \quad (\mathsf{P})$

- Equivalent to original problem if $f f_*$ is SoS
- Polynomial constraints can be added (and help !)
- If not sum of squares : **hierarchies** (P_i) of degree $i \to \infty$

• Guarantees

- the hierarchy converges to the optimum value
- Lower bound when solving P_i : $f_i \leq f_*$.
- Solve a finite dimensional SDP

Global optimization with sums of square polynomials

- Replace $f c \ge 0$ by $f c = \langle \phi(x), A \phi(x) \rangle$ with $A \succcurlyeq 0$
- **Sum-of-squares optimization** (Lasserre, 2001)

 $\sup_{c \in \mathbb{R}, A \succeq 0} c \text{ such that } \forall x \in \mathbb{R}^d, \ f - c = \langle \phi(x), A \phi(x) \rangle$ (P)

- Equivalent to original problem if $f f_*$ is SoS
- Polynomial constraints can be added (and help !)
- If not sum of squares : **hierarchies** (P_i) of degree $i \to \infty$

• Drawbacks

- Not all non-negative polynomials are SoS if $d\geq 1$
- No guarantee a priori on the degree i needed for a given precision
- Only for polynomials

Representing more general functions with RKHS

- Reproducing Kernel Hilbert Space (RKHS) :
 - Hilbert space of functions $g\in\mathcal{H},\ g:\mathbb{R}^d\rightarrow\mathbb{R}$
 - Reproducing property : $g(x) = \langle g, \phi(x) \rangle_{\mathcal{H}}$
 - Kernel : $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$ (computable)

Representing more general functions with RKHS

- Reproducing Kernel Hilbert Space (RKHS) :
 - Hilbert space of functions $g \in \mathcal{H}, \ g : \mathbb{R}^d \to \mathbb{R}$
 - Reproducing property : $g(x) = \langle g, \phi(x) \rangle_{\mathcal{H}}$
 - Kernel : $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$ (computable)
- Example : Sobolev spaces (Berlinet and Thomas-Agnan, 2011)
 - Sobolev spaces $H^s(\Omega)$ with $\Omega \subset \mathbb{R}^d$, s > d/2

$$\langle f,g\rangle_{H^s(\Omega)} = \sum_{|\alpha| \leq s} \int_{\Omega} \partial^{\alpha} f \ \partial^{\alpha} g$$

$$-s = d/2 + 1/2 : k(x, y) = \exp(-\|x - y\|)$$

Representing more general functions with RKHS

- Reproducing Kernel Hilbert Space (RKHS) :
 - Hilbert space of functions $g \in \mathcal{H}, \ g : \mathbb{R}^d \to \mathbb{R}$
 - Reproducing property : $g(x) = \langle g, \phi(x) \rangle_{\mathcal{H}}$
 - Kernel : $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$ (computable)

\bullet Everything can be expressed using only the kernel function k

- k is known for all Sobolev spaces with s > d/2.
- $-s = d/2 + 1/2 : k(x, y) = \exp(-\|x y\|)$

Non-negative functions with RKHS

- **RKHS** *H* :
 - Feature map $\phi(x) \in \mathcal{H}$ $(g(x) = \langle g, \phi(x) \rangle_{\mathcal{H}})$
 - Kernel : $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$ (computable)
- RKHS Sum of Squares : (Marteau-Ferey et al., 2020)
 - $-g_A(x) = \langle \phi(x), A\phi(x) \rangle, \quad A \succeq 0$
 - Eigendecomposition $A = \sum_{i \in I} \lambda_i h_i \otimes h_i$ SoS : $g_A(x) = \sum_{i \in I} \lambda_i h_i(x)^2, h_i \in \mathcal{H}$

Non-negative functions with RKHS

- **RKHS** *H* :
 - Feature map $\phi(x) \in \mathcal{H}$ $(g(x) = \langle g, \phi(x) \rangle_{\mathcal{H}})$
 - Kernel : $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}$ (computable)
- RKHS Sum of Squares : (Marteau-Ferey et al., 2020)
 - $-g_A(x) = \langle \phi(x), A\phi(x) \rangle, \quad A \succeq 0$
 - Eigendecomposition $A = \sum_{i \in I} \lambda_i h_i \otimes h_i$ SoS : $g_A(x) = \sum_{i \in I} \lambda_i h_i(x)^2, h_i \in \mathcal{H}$
- \bullet Everything can be expressed using the kernel k
 - Sum of squares of sobolev functions.

Global optimization through sampling

- Global optimization : formulation and theoretical result in the RKHS
- Controlled approximation through sampling
- Algorithms and illustrations

Going infinite-dimensional (Rudi, Marteau-Ferey, and Bach, 2020)

 $\sup_{c\in\mathbb{R},\ A\succcurlyeq 0} c \quad \text{such that} \quad \forall x\in\Omega,\ f(x)-c=\langle \phi(x),A\phi(x)\rangle$

- Sobolev space \mathcal{H} :
 - -s > d/2 squared-integrable derivative
 - RKHS with feature map $\phi(x)$ and kernel k(x, x')
 - RKHS SoS : $g_A(x) = \langle \phi(x), A\phi(x) \rangle_{\mathcal{H}}, \ A \succeq 0$

Going infinite-dimensional (Rudi, Marteau-Ferey, and Bach, 2020)

 $\sup_{c\in\mathbb{R},\ A\succcurlyeq 0} c \quad \text{such that} \quad \forall x\in\Omega,\ f(x)=c+\langle \phi(x),A\phi(x)\rangle$

- Sobolev space ${\mathcal H}$
 - -s > d/2 squared-integrable derivative
 - RKHS with feature map $\phi(x)$ and kernel k(x, x')
 - RKHS SoS : $g_A(x) = \langle \phi(x), A\phi(x) \rangle_{\mathcal{H}}, A \succeq 0$
- Theorem: $\exists A_* \geq 0$ such that $\forall x \in \Omega$, $f(x) = f_* + \langle \phi(x), A_*\phi(x) \rangle$
 - If f has isolated strict-second order minima in $\check{\Omega},$ and f is (s+3)-times differentiable

Going infinite-dimensional (Rudi, Marteau-Ferey, and Bach, 2020)

 $\sup_{c\in\mathbb{R},\ A\succcurlyeq 0} c \quad \text{such that} \quad \forall x\in\Omega,\ f(x)=c+\langle \phi(x),A\phi(x)\rangle$

- Sobolev space ${\mathcal H}$
 - -s > d/2 squared-integrable derivative
 - RKHS with feature map $\phi(x)$ and kernel k(x, x')
 - RKHS SoS : $g_A(x) = \langle \phi(x), A\phi(x) \rangle_{\mathcal{H}}, \ A \succeq 0$
- Theorem: $\exists A_* \geq 0$ such that $\forall x \in \Omega$, $f(x) = f_* + \langle \phi(x), A_*\phi(x) \rangle$
 - If f has isolated strict-second order minima in $\check{\Omega},$ and f is (s+3)-times differentiable
 - \Rightarrow Equivalent to original problem, but infinite-dimensional

• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

 $\sup_{c \in \mathbb{R}, A \succeq 0} c - \lambda \operatorname{tr}(A) \text{ such that } \forall i \in \{1, \dots, n\}, f(x_i) = c + \langle \phi(x_i), A \phi(x_i) \rangle$

• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

 $\sup_{c \in \mathbb{R}, A \succeq 0} c - \lambda \operatorname{tr}(A) \text{ such that } \forall i \in \{1, \dots, n\}, f(x_i) = c + \langle \phi(x_i), A \phi(x_i) \rangle$

- Finite-dimensional formulation through representer theorem (kernels !)
 - Marteau-Ferey, Bach, and Rudi (2020)
 - SDP of dimension n :

 $\sup_{c \in \mathbb{R}, \ B \succeq 0, B \in \mathbb{R}^{n \times n}} c - \lambda \operatorname{tr}(B) \quad \text{st } \forall i \in \{1, \dots, n\}, \ f(x_i) = c + \Phi_i^\top B \Phi_i$

• Solvable in polynomial time with precision ϵ in $O(n^{3.5} \log \frac{1}{\epsilon})$

• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

 $\sup_{c \in \mathbb{R}, A \succeq 0} c - \lambda \operatorname{tr}(A) \text{ such that } \forall i \in \{1, \dots, n\}, f(x_i) = c + \langle \phi(x_i), A \phi(x_i) \rangle$

- **Theorem** (Rudi, Marteau-Ferey, and Bach, 2020) Let \hat{c}, \hat{A} be the result of the algorithm. Up to logarithmic terms :
 - if $n = \Omega(\varepsilon^{-d/(m-d/2-3)})$ and the samples $(x_1, ..., x_n)$ are taken randomly from Ω , and if $\lambda = \varepsilon$, then it holds with probability at least 1δ :

$$|\hat{c} - f_*| \le \varepsilon \log \frac{1}{\delta}$$

- in that case, the complexity is $\Omega(\varepsilon^{-3d/(m-d/2-3)}\log \frac{1}{\epsilon})$

• **Extension**: possible to find the minimizer \hat{x} .

• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

 $\sup_{c \in \mathbb{R}, A \succeq 0} c - \lambda \operatorname{tr}(A) \text{ such that } \forall i \in \{1, \dots, n\}, f(x_i) = c + \langle \phi(x_i), A \phi(x_i) \rangle$

- Approximation guarantees (Rudi, Marteau-Ferey, and Bach, 2020)
 - With random samples, $n \approx \varepsilon^{-d/(m-d/2-3)}$
 - (up to logarithmic terms)
 - To be compared to optimal rate $n\approx \varepsilon^{-d/(m-d/2)}$
 - Constraint $m \ge \frac{d}{2} + 3$ can be lifted

• Subsample n points $x_1, \ldots, x_n \in \Omega$ and solve

 $\sup_{c \in \mathbb{R}, A \succeq 0} c - \lambda \operatorname{tr}(A) \text{ such that } \forall i \in \{1, \dots, n\}, f(x_i) = c + \langle \phi(x_i), A \phi(x_i) \rangle$

- Approximation guarantees (Rudi, Marteau-Ferey, and Bach, 2020)
 - With random samples, $n \approx \varepsilon^{-d/(m-d/2-3)}$
 - (up to logarithmic terms)
 - To be compared to optimal rate $n \approx \varepsilon^{-d/(m-d/2)}$
 - Constraint $m \ge \frac{d}{2} + 3$ can be lifted
- Subsampling inequalities as $f(x_i) \ge c$ directly?
 - cannot improve on $n \approx \varepsilon^{-d}$

Final algorithm

- Input: $f: \mathbb{R}^d \to \mathbb{R}$, $\Omega \subset \mathbb{R}^d, n \ge 0, \lambda > 0, s > d/2$
- 1. Sampling: $\{x_1, \ldots, x_n\}$ sampled i.i.d. uniformly on Ω

2. Feature computation

- Set $f_j = f(x_j)$, $\forall j \in \{1, \ldots, n\}$

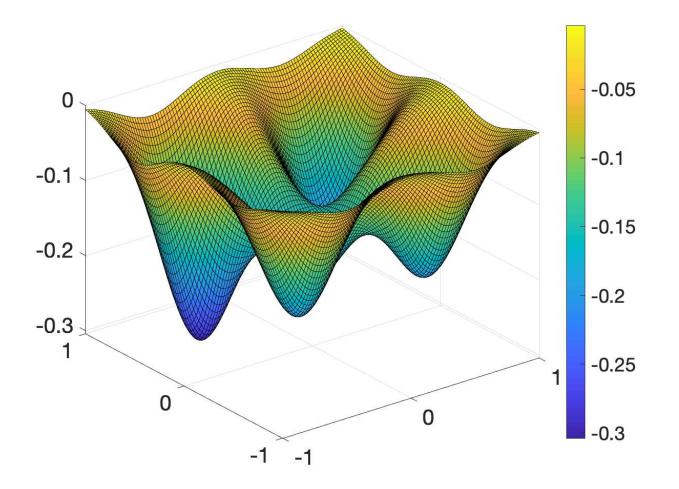
- Compute $K_{ij} = k(x_i, x_j)$ for k Sobolev kernel of smoothness s
- Set $\Phi_j \in \mathbb{R}^n$ computed using a cholesky decomposition of K $\forall j \in \{1, \dots, n\}.$
- 3. Solve $\max_{c \in \mathbb{R}, B \succeq 0} c \lambda \operatorname{tr}(B)$ s.t. $\forall j \in \{1, \dots, n\}, f_j c = \Phi_j^\top B \Phi_j$
- **Output:** c proxy for f_*
- One can extend the algorithm in order to compute a proxy of the minimizer

Opposite properties from Polynomial SoS !

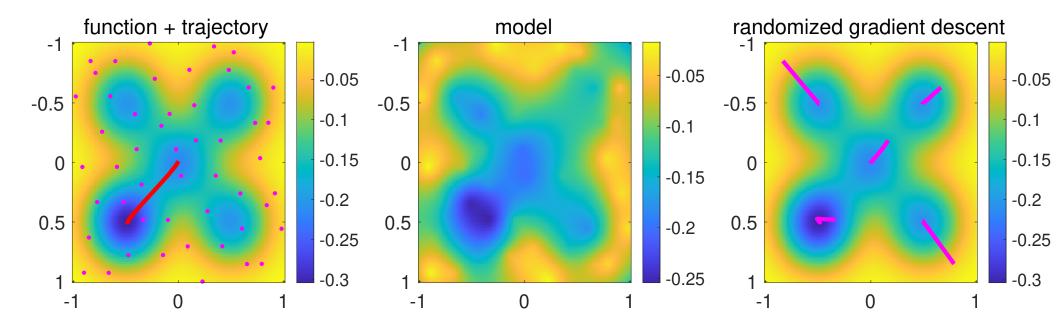
- "Always" possible to write a non-negative function as a RKHS SoS
- Bounds on the number of samples needed for a given precision
- Finite dimensional SDP with bounded complexity $O(n^{3.5} \log \frac{1}{\epsilon})$
- Breaks the curse of dimensionality (needs $\epsilon^{-d/m}$ samples) for smooth enough functions
- For the moment, no certificate bound on the result of the algorithm

Illustration

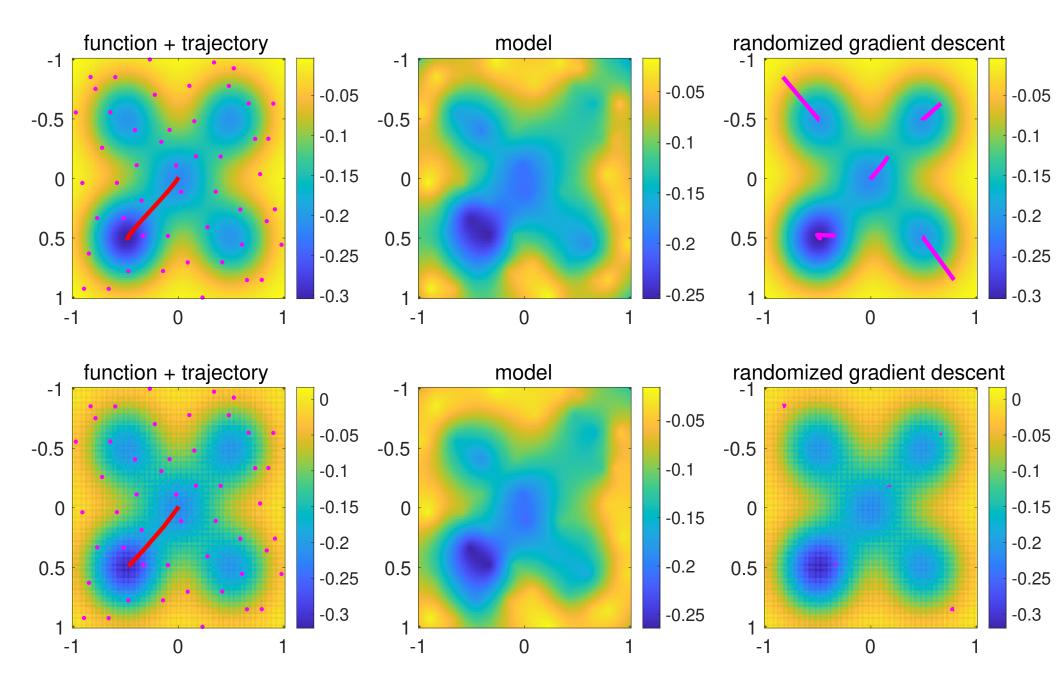
• Minimization of two-dimensional function



Illustration

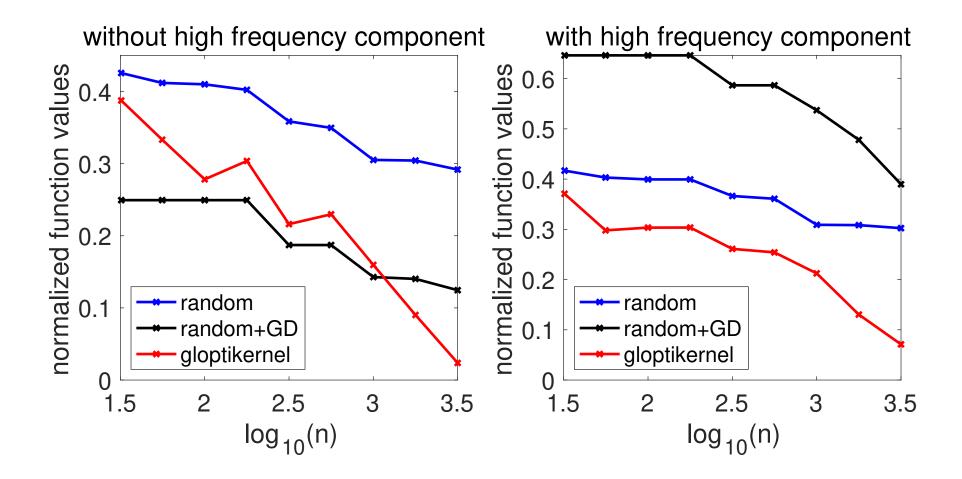


Illustration



Illustration

• Minimization of eight-dimensional function

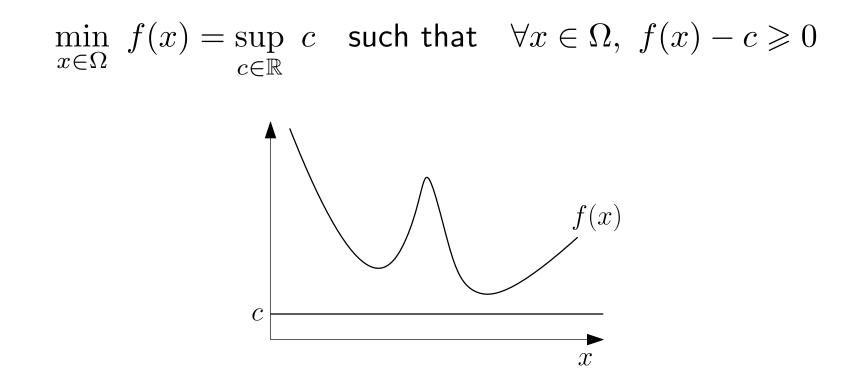


Extensions

- Duality
- Extionsions
- Conclusion

Duality

• Primal problem



Duality

• Primal problem

$$\min_{x\in\Omega} f(x) = \sup_{c\in\mathbb{R}} c \quad \text{such that} \quad \forall x\in\Omega, \ f(x) - c \ge 0$$

• Dual problem on probability measures

$$\inf_{\mu \in \mathbb{R}^{\Omega}} \int_{\Omega} \mu(x) f(x) dx \quad \text{such that} \quad \int_{\Omega} \mu(x) dx = 1, \ \forall x \in \Omega, \ \mu(x) \ge 0$$

Duality with sums-of-squares

• Primal problem

 $\min_{x\in\Omega} f(x) = \sup_{c\in\mathbb{R},\ A\succcurlyeq 0} c \quad \text{such that} \quad \forall x\in\Omega,\ f(x) - c = \langle \phi(x), A\phi(x) \rangle$

• Dual problem on signed measures

$$\inf_{\mu \in \mathbb{R}^{\Omega}} \int_{\Omega} \mu(x) f(x) dx \quad \text{s. t.} \quad \int_{\Omega} \mu(x) dx = 1, \ \int_{\Omega} \mu(x) \phi(x) \otimes \phi(x) \succcurlyeq 0$$

- Extension of results on polynomials (Lasserre, 2020)

Extension - I

• Generic constrained optimization problem

$$\inf_{\theta \in \Theta} F(\theta) \quad \text{such that} \quad \forall x \in \Omega, \ g(\theta, x) \ge 0$$

Extension - I

• Generic constrained optimization problem

$$\inf_{\theta\in\Theta}\ F(\theta) \quad \text{such that} \quad \forall x\in\Omega, \ g(\theta,x) \geqslant 0$$

• Sums-of-squares reformulation

 $\inf_{\theta\in\Theta,\ A\succcurlyeq0}F(\theta)\quad\text{such that}\quad\forall x\in\Omega,\ g(\theta,x)=\langle\phi(x),A\phi(x)\rangle$

- Requires penalization by tr(A) and subsampling
- Need representation as sums-of-squares to benefit from smoothness
- Can be done in the primal or the dual

Extension - I

• Generic constrained optimization problem

$$\inf_{\theta\in\Theta}\ F(\theta) \quad \text{such that} \quad \forall x\in\Omega, \ g(\theta,x) \geqslant 0$$

• Sums-of-squares reformulation

 $\inf_{\theta\in\Theta,\ A\succcurlyeq0}F(\theta)\quad\text{such that}\quad\forall x\in\Omega,\ g(\theta,x)=\langle\phi(x),A\phi(x)\rangle$

- Requires penalization by $\mathrm{tr}(A)$ and subsampling
- Need representation as sums-of-squares to benefit from smoothness
- Can be done in the primal or the dual
- Application to optimal transport (Vacher, Muzellec, Bach, Rudi, Vialard, 2021)

Extension - II

• Constrained optimization problem

$$\inf_{x\in \mathbb{R}^d} f(x) \quad \text{such that} \quad \forall x\in \Omega, \ g(x) \geqslant 0$$

Extension - II

• Constrained optimization problem

$$\inf_{x\in\mathbb{R}^d} f(x) \quad \text{such that} \quad \forall x\in\Omega, \ g(x) \geqslant 0$$

• Sums-of-squares reformulation

$$\sup_{c \in \mathbb{R}, A \succcurlyeq 0, B \succcurlyeq 0} c$$

such that $\forall x \in \Omega, \ f(x) = c + \langle \phi(x), A\phi(x) \rangle + g(x) \langle \phi(x), B\phi(x) \rangle$

- Extension of results on polynomials (Lasserre, 2001)

Conclusion

• Global optimization through kernel approximations

- Joint optimization and approximation
- infinite-dimensional sums-of-squares representation
- Controlled subsampling with guarantees

Conclusion

• Global optimization through kernel approximations

- Joint optimization and approximation
- infinite-dimensional sums-of-squares representation
- Controlled subsampling with guarantees

• Further extensions

- Efficient algorithms below $O(n^3)$ complexity
- Other infinite-dimensional convex optimization problems

Conclusion

• Global optimization through kernel approximations

- Joint optimization and approximation
- infinite-dimensional sums-of-squares representation
- Controlled subsampling with guarantees

• Further extensions

- Efficient algorithms below $O(n^3)$ complexity
- Other infinite-dimensional convex optimization problems
- See arxiv.org/abs/2012.11978 and francisbach.com/

References

- Alain Berlinet and Christine Thomas-Agnan. *Reproducing Kernel Hilbert Spaces in Probability and Statistics*. Springer Science & Business Media, 2011.
- Jean-Bernard Lasserre. Global optimization with polynomials and the problem of moments. *SIAM Journal on Optimization*, 11(3):796–817, 2001.
- Jean-Bernard Lasserre. The moment-SOS hierarchy and the Christoffel-Darboux kernel. Technical Report 2011.08566, arXiv, 2020.
- Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric models for non-negative functions. *Advances in Neural Information Processing Systems*, 33, 2020.
- Erich Novak. *Deterministic and Stochastic Error Bounds in Numerical Analysis*, volume 1349. Springer, 2006.
- Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel approximations. Technical Report 2012.11978, arXiv, 2020.