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Global optimization

• Zero-th order minimization

min
x∈Ω

f(x)

– Ω ⊂ R
d simple compact subset (e.g., [−1, 1]d)

– f with some bounded derivatives

– access to function values
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Global optimization

• Zero-th order minimization

min
x∈Ω

f(x)

– Ω ⊂ R
d simple compact subset (e.g., [−1, 1]d)

– f with some bounded derivatives

– access to function values

• No convexity assumption

• Many applications

– e.g., hyperparameter optimization in machine learning



Optimal algorithms

• Goal: Find x̂ ∈ Ω such that f(x̂)−min
x∈Ω

f(x) 6 ε

– Lowest number of function calls

– Worst-case guarantees over all functions f in some convex set F

sup
f∈F

{

f(x̂)−min
x∈Ω

f(x)
}

6 ε
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• Goal: Find x̂ ∈ Ω such that f(x̂)−min
x∈Ω

f(x) 6 ε

– Lowest number of function calls

– Worst-case guarantees over all functions f in some convex set F

sup
f∈F

{

f(x̂)−min
x∈Ω

f(x)
}

6 ε

• Equivalence to uniform function approximation (Novak, 2006)

– Simplest algorithm: approximate f by f̂ and minimize f̂

x

f(x)

f(x)− ε

f(x) + ε

f̂(x)



Optimal rates

• Optimal worst-case performance over F (Novak, 2006)

– n = number of function evaluations

– F = Lipschitz-continuous functions: n ∝ ε−d

– F = m bounded derivatives: n ∝ ε−d/m

• Smoothness to circumvent the curse of dimensionality

– NB: constants may depend (exponentially) in d
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Optimal rates

• Optimal worst-case performance over F (Novak, 2006)

– n = number of function evaluations

– F = Lipschitz-continuous functions: n ∝ ε−d

– F = m bounded derivatives: n ∝ ε−d/m

• Smoothness to circumvent the curse of dimensionality

– NB: constants may depend (exponentially) in d

• Algorithms have exponential running-time complexity

– “Approximate then optimize”

• Algorithms with polynomial-time complexity in n?

– “Approximate and optimize”



Reformulations

• Equivalent convex problem

min
x∈Ω

f(x) = sup
c∈R

c such that ∀x ∈ Ω, f(x)− c > 0

f (x)

x

c

– All optimization problems are convex!



Reformulations

• Equivalent convex problem

min
x∈Ω

f(x) = sup
c∈R

c such that ∀x ∈ Ω, f(x)− c > 0

f (x)

x

c

– All optimization problems are convex!

• Need to represent non-negative functions (such as f(x)− c)



Representing non-negative functions

• Generic representation in a PSD cone

• The case of polynomials

• Infinite-dimensional representations using RKHS



Representing non-negative functions

• Assumption: g(x) can be represented as g(x) = 〈φ(x), Gφ(x)〉 with

G symmetric operator

• Example: set of polynomials of degree 2r

with φ(x) composed of monomials of degree r, of dimension
(

d+r
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Representing non-negative functions

• Assumption: g(x) can be represented as g(x) = 〈φ(x), Gφ(x)〉 with

G symmetric operator

• Example: set of polynomials of degree 2r

with φ(x) composed of monomials of degree r, of dimension
(

d+r
r

)

φ(x) = (1, x1, ..., xd, x1x2, ..., x
r
1, ..., x

r
d)

• Non-negativity through “sums-of-squares”

– If G < 0, then ∀x ∈ Ω, g(x) = 〈φ(x), Gφ(x)〉 > 0

– Sum of squares : eigen-decomposition G =
∑

i∈I

λi hi ⊗ hi,

g(x) =
∑

i∈I

λi〈φ(x), (hi ⊗ hi)φ(x)〉 =
∑

i∈I

λi〈φ(x), hi〉
2



Global optimization with sums of square polynomials

• Replace f − c > 0 by f − c = 〈φ(x), Aφ(x)〉 with A < 0

• Sum-of-squares optimization (Lasserre, 2001)

sup
c∈R, A<0

c such that ∀x ∈ R
d, f − c = 〈φ(x), Aφ(x)〉 (P)

– Equivalent to original problem if f − f∗ is SoS

– Polynomial constraints can be added (and help !)

– If not sum of squares : hierarchies (Pi) of degree i → ∞

• Guarantees

– the hierarchy converges to the optimum value

– Lower bound when solving Pi : fi ≤ f∗.

– Solve a finite dimensional SDP



Global optimization with sums of square polynomials

• Replace f − c > 0 by f − c = 〈φ(x), Aφ(x)〉 with A < 0

• Sum-of-squares optimization (Lasserre, 2001)

sup
c∈R, A<0

c such that ∀x ∈ R
d, f − c = 〈φ(x), Aφ(x)〉 (P)

– Equivalent to original problem if f − f∗ is SoS

– Polynomial constraints can be added (and help !)

– If not sum of squares : hierarchies (Pi) of degree i → ∞

• Drawbacks

– Not all non-negative polynomials are SoS if d ≥ 1

– No guarantee a priori on the degree i needed for a given precision

– Only for polynomials



Representing more general functions with RKHS

• Reproducing Kernel Hilbert Space (RKHS) :

– Hilbert space of functions g ∈ H, g : Rd → R

– Reproducing property : g(x) = 〈g, φ(x)〉H
– Kernel : k(x, x′) = 〈φ(x), φ(x′)〉H (computable)
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• Example : Sobolev spaces (Berlinet and Thomas-Agnan, 2011)

– Sobolev spaces Hs(Ω) with Ω ⊂ R
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〈f, g〉Hs(Ω) =
∑

|α|≤s

∫

Ω

∂αf ∂αg

– s = d/2 + 1/2 : k(x, y) = exp(−‖x− y‖)



Representing more general functions with RKHS

• Reproducing Kernel Hilbert Space (RKHS) :

– Hilbert space of functions g ∈ H, g : Rd → R

– Reproducing property : g(x) = 〈g, φ(x)〉H
– Kernel : k(x, x′) = 〈φ(x), φ(x′)〉H (computable)

• Everything can be expressed using only the kernel function k

– k is known for all Sobolev spaces with s > d/2.

– s = d/2 + 1/2 : k(x, y) = exp(−‖x− y‖)



Non-negative functions with RKHS

• RKHS H :

– Feature map φ(x) ∈ H (g(x) = 〈g, φ(x)〉H)

– Kernel : k(x, x′) = 〈φ(x), φ(x′)〉H (computable)

• RKHS Sum of Squares : (Marteau-Ferey et al., 2020)

– gA(x) = 〈φ(x), Aφ(x)〉, A � 0

– Eigendecomposition A =
∑

i∈I λi hi ⊗ hi

SoS : gA(x) =
∑

i∈I λi hi(x)
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Non-negative functions with RKHS

• RKHS H :

– Feature map φ(x) ∈ H (g(x) = 〈g, φ(x)〉H)

– Kernel : k(x, x′) = 〈φ(x), φ(x′)〉H (computable)

• RKHS Sum of Squares : (Marteau-Ferey et al., 2020)

– gA(x) = 〈φ(x), Aφ(x)〉, A � 0

– Eigendecomposition A =
∑

i∈I λi hi ⊗ hi

SoS : gA(x) =
∑

i∈I λi hi(x)
2, hi ∈ H

• Everything can be expressed using the kernel k

– Sum of squares of sobolev functions.



Global optimization through sampling

• Global optimization : formulation and theoretical result in the RKHS

• Controlled approximation through sampling

• Algorithms and illustrations



Going infinite-dimensional

(Rudi, Marteau-Ferey, and Bach, 2020)

sup
c∈R, A<0

c such that ∀x ∈ Ω, f(x)− c = 〈φ(x), Aφ(x)〉

• Sobolev space H:

– s > d/2 squared-integrable derivative

– RKHS with feature map φ(x) and kernel k(x, x′)

– RKHS SoS : gA(x) = 〈φ(x), Aφ(x)〉H, A � 0
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• Sobolev space H

– s > d/2 squared-integrable derivative

– RKHS with feature map φ(x) and kernel k(x, x′)
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◦

Ω, and f is (s+3)-
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Going infinite-dimensional

(Rudi, Marteau-Ferey, and Bach, 2020)

sup
c∈R, A<0

c such that ∀x ∈ Ω, f(x) = c+ 〈φ(x), Aφ(x)〉

• Sobolev space H

– s > d/2 squared-integrable derivative

– RKHS with feature map φ(x) and kernel k(x, x′)

– RKHS SoS : gA(x) = 〈φ(x), Aφ(x)〉H, A � 0

• Theorem: ∃A∗ < 0 such that ∀x ∈ Ω, f(x) = f∗ + 〈φ(x), A∗φ(x)〉

– If f has isolated strict-second order minima in
◦

Ω, and f is (s+3)-

times differentiable

⇒ Equivalent to original problem, but infinite-dimensional



Controlled approximation through sampling

• Subsample n points x1, . . . , xn ∈ Ω and solve

sup
c∈R, A<0

c−λ tr(A) such that ∀i ∈ {1, . . . , n}, f(xi) = c+〈φ(xi), Aφ(xi)〉



Controlled approximation through sampling

• Subsample n points x1, . . . , xn ∈ Ω and solve

sup
c∈R, A<0

c−λ tr(A) such that ∀i ∈ {1, . . . , n}, f(xi) = c+〈φ(xi), Aφ(xi)〉

• Finite-dimensional formulation through representer theorem

(kernels !)

– Marteau-Ferey, Bach, and Rudi (2020)

– SDP of dimension n :

sup
c∈R, B<0,B∈Rn×n

c−λ tr(B) st ∀i ∈ {1, . . . , n}, f(xi) = c+ Φ⊤
i BΦi

• Solvable in polynomial time with precision ǫ in O(n3.5 log 1
ǫ)



Controlled approximation through sampling

• Subsample n points x1, . . . , xn ∈ Ω and solve

sup
c∈R, A<0

c−λ tr(A) such that ∀i ∈ {1, . . . , n}, f(xi) = c+〈φ(xi), Aφ(xi)〉

• Theorem (Rudi, Marteau-Ferey, and Bach, 2020) Let ĉ, Â be the

result of the algorithm. Up to logarithmic terms :

– if n = Ω
(

ε−d/(m−d/2−3)
)

and the samples (x1, ..., xn) are taken

randomly from Ω, and if λ = ε, then it holds with probability at

least 1− δ:

|ĉ− f∗| ≤ ε log 1
δ

– in that case, the complexity is Ω
(

ε−3d/(m−d/2−3) log 1
ǫ

)

• Extension: possible to find the minimizer x̂.
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– To be compared to optimal rate n ≈ ε−d/(m−d/2)

– Constraint m >
d
2 + 3 can be lifted



Controlled approximation through sampling

• Subsample n points x1, . . . , xn ∈ Ω and solve

sup
c∈R, A<0

c−λ tr(A) such that ∀i ∈ {1, . . . , n}, f(xi) = c+〈φ(xi), Aφ(xi)〉

• Approximation guarantees (Rudi, Marteau-Ferey, and Bach, 2020)

– With random samples, n ≈ ε−d/(m−d/2−3)

(up to logarithmic terms)

– To be compared to optimal rate n ≈ ε−d/(m−d/2)

– Constraint m >
d
2 + 3 can be lifted

• Subsampling inequalities as f(xi) > c directly?

– cannot improve on n ≈ ε−d



Final algorithm

• Input: f : Rd → R, Ω ⊂ R
d, n > 0, λ > 0, s > d/2

1. Sampling: {x1, . . . , xn} sampled i.i.d. uniformly on Ω

2. Feature computation

– Set fj = f(xj), ∀j ∈ {1, . . . , n}

– Compute Kij = k(xi, xj) for k Sobolev kernel of smoothness s

– Set Φj ∈ R
n computed using a cholesky decomposition of K

∀j ∈ {1, . . . , n}.

3. Solve max
c∈R,B<0

c− λ tr(B) s. t. ∀j ∈ {1, . . . , n}, fj − c = Φ⊤
j BΦj

• Output: c proxy for f∗

• One can extend the algorithm in order to compute a proxy of the

minimizer



Opposite properties from Polynomial SoS !

• ”Always” possible to write a non-negative function as a RKHS SoS

• Bounds on the number of samples needed for a given precision

• Finite dimensional SDP with bounded complexity O(n3.5 log 1
ǫ)

• Breaks the curse of dimensionality (needs ǫ−d/m samples) for smooth

enough functions

• For the moment, no certificate bound on the result of the

algorithm



Illustration

• Minimization of two-dimensional function
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Illustration

• Minimization of eight-dimensional function
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Duality

• Primal problem

min
x∈Ω

f(x) = sup
c∈R

c such that ∀x ∈ Ω, f(x)− c > 0

• Dual problem on probability measures

inf
µ∈RΩ

∫

Ω

µ(x)f(x)dx such that

∫

Ω

µ(x)dx = 1, ∀x ∈ Ω, µ(x) > 0

f (x)

x

µ(x)



Duality with sums-of-squares

• Primal problem

min
x∈Ω

f(x) = sup
c∈R, A<0

c such that ∀x ∈ Ω, f(x)−c = 〈φ(x), Aφ(x)〉

• Dual problem on signed measures

inf
µ∈RΩ

∫

Ω

µ(x)f(x)dx s. t.

∫

Ω

µ(x)dx = 1,

∫

Ω

µ(x)φ(x)⊗φ(x) < 0

– Extension of results on polynomials (Lasserre, 2020)
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Extension - I

• Generic constrained optimization problem

inf
θ∈Θ

F (θ) such that ∀x ∈ Ω, g(θ, x) > 0

• Sums-of-squares reformulation

inf
θ∈Θ, A<0

F (θ) such that ∀x ∈ Ω, g(θ, x) = 〈φ(x), Aφ(x)〉

– Requires penalization by tr(A) and subsampling

– Need representation as sums-of-squares to benefit from smoothness

– Can be done in the primal or the dual



Extension - I

• Generic constrained optimization problem

inf
θ∈Θ

F (θ) such that ∀x ∈ Ω, g(θ, x) > 0

• Sums-of-squares reformulation

inf
θ∈Θ, A<0

F (θ) such that ∀x ∈ Ω, g(θ, x) = 〈φ(x), Aφ(x)〉

– Requires penalization by tr(A) and subsampling

– Need representation as sums-of-squares to benefit from smoothness

– Can be done in the primal or the dual

• Application to optimal transport (Vacher, Muzellec, Bach, Rudi,

Vialard, 2021)



Extension - II

• Constrained optimization problem

inf
x∈Rd

f(x) such that ∀x ∈ Ω, g(x) > 0



Extension - II

• Constrained optimization problem

inf
x∈Rd

f(x) such that ∀x ∈ Ω, g(x) > 0

• Sums-of-squares reformulation

sup
c∈R, A<0, B<0

c

such that ∀x ∈ Ω, f(x) = c+ 〈φ(x), Aφ(x)〉+ g(x)〈φ(x), Bφ(x)〉

– Extension of results on polynomials (Lasserre, 2001)
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– Controlled subsampling with guarantees
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Conclusion

• Global optimization through kernel approximations

– Joint optimization and approximation

– infinite-dimensional sums-of-squares representation

– Controlled subsampling with guarantees

• Further extensions

– Efficient algorithms below O(n3) complexity

– Other infinite-dimensional convex optimization problems

• See arxiv.org/abs/2012.11978 and francisbach.com/
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