Finding Global Minima via Kernel Approximations

Ulysse Marteau-Ferey

INRIA - Ecole Normale Supérieure, Paris, France

ÉCOLE NORMALE

Joint work with Alessandro Rudi and Francis Bach LAAS - February 16, 2020

Outline

- Global optimization using function values
- Representing non-negative functions
- Global optimization through sampling
- Conclusions and extensions

Global optimization using function values

- Global optimization
- Optimal algorithms
- Optimal rates
- Convex reformulation

Global optimization

- Zero-th order minimization

$$
\min _{x \in \Omega} f(x)
$$

$-\Omega \subset \mathbb{R}^{d}$ simple compact subset (e.g., $[-1,1]^{d}$)

- f with some bounded derivatives
- access to function values

Global optimization

- Zero-th order minimization

$$
\min _{x \in \Omega} f(x)
$$

$-\Omega \subset \mathbb{R}^{d}$ simple compact subset (e.g., $[-1,1]^{d}$)

- f with some bounded derivatives
- access to function values
- No convexity assumption

Global optimization

- Zero-th order minimization

$$
\min _{x \in \Omega} f(x)
$$

$-\Omega \subset \mathbb{R}^{d}$ simple compact subset (e.g., $[-1,1]^{d}$)

- f with some bounded derivatives
- access to function values
- No convexity assumption
- Many applications
- e.g., hyperparameter optimization in machine learning

Optimal algorithms

- Goal: Find $\hat{x} \in \Omega$ such that $f(\hat{x})-\min _{x \in \Omega} f(x) \leqslant \varepsilon$
- Lowest number of function calls
- Worst-case guarantees over all functions f in some convex set \mathcal{F}

$$
\sup _{f \in \mathcal{F}}\left\{f(\hat{x})-\min _{x \in \Omega} f(x)\right\} \leqslant \varepsilon
$$

Optimal algorithms

- Goal: Find $\hat{x} \in \Omega$ such that $f(\hat{x})-\min _{x \in \Omega} f(x) \leqslant \varepsilon$
- Lowest number of function calls
- Worst-case guarantees over all functions f in some convex set \mathcal{F}

$$
\sup _{f \in \mathcal{F}}\left\{f(\hat{x})-\min _{x \in \Omega} f(x)\right\} \leqslant \varepsilon
$$

- Equivalence to uniform function approximation (Novak, 2006)
- Simplest algorithm: approximate f by \hat{f} and minimize \hat{f}

Optimal rates

- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
$-n=$ number of function evaluations
$-\mathcal{F}=$ Lipschitz-continuous functions: $n \propto \varepsilon^{-d}$
$-\mathcal{F}=m$ bounded derivatives:
$n \propto \varepsilon^{-d / m}$
- Smoothness to circumvent the curse of dimensionality
- NB: constants may depend (exponentially) in d

Optimal rates

- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
$-n=$ number of function evaluations
$-\mathcal{F}=$ Lipschitz-continuous functions: $n \propto \varepsilon^{-d}$
$-\mathcal{F}=m$ bounded derivatives:
$n \propto \varepsilon^{-d / m}$
- Smoothness to circumvent the curse of dimensionality
- NB: constants may depend (exponentially) in d
- Algorithms have exponential running-time complexity
- "Approximate then optimize"

Optimal rates

- Optimal worst-case performance over \mathcal{F} (Novak, 2006)
$-n=$ number of function evaluations
$-\mathcal{F}=$ Lipschitz-continuous functions: $n \propto \varepsilon^{-d}$
$-\mathcal{F}=m$ bounded derivatives:
$n \propto \varepsilon^{-d / m}$
- Smoothness to circumvent the curse of dimensionality
- NB: constants may depend (exponentially) in d
- Algorithms have exponential running-time complexity
- "Approximate then optimize"
- Algorithms with polynomial-time complexity in n ?
- "Approximate and optimize"

Reformulations

- Equivalent convex problem

$$
\min _{x \in \Omega} f(x)=\sup _{c \in \mathbb{R}} c \quad \text { such that } \quad \forall x \in \Omega, f(x)-c \geqslant 0
$$

- All optimization problems are convex!

Reformulations

- Equivalent convex problem

$$
\min _{x \in \Omega} f(x)=\sup _{c \in \mathbb{R}} c \quad \text { such that } \quad \forall x \in \Omega, f(x)-c \geqslant 0
$$

- All optimization problems are convex!
- Need to represent non-negative functions (such as $f(x)-c$)

Representing non-negative functions

- Generic representation in a PSD cone
- The case of polynomials
- Infinite-dimensional representations using RKHS

Representing non-negative functions

- Assumption: $g(x)$ can be represented as $g(x)=\langle\phi(x), G \phi(x)\rangle$ with G symmetric operator
- Example: set of polynomials of degree $2 r$ with $\phi(x)$ composed of monomials of degree r, of dimension $\binom{d+r}{r}$

$$
\phi(x)=\left(1, x_{1}, \ldots, x_{d}, x 1 x 2, \ldots, x_{1}^{r}, \ldots, x_{d}^{r}\right)
$$

Representing non-negative functions

- Assumption: $g(x)$ can be represented as $g(x)=\langle\phi(x), G \phi(x)\rangle$ with G symmetric operator
- Example: set of polynomials of degree $2 r$
with $\phi(x)$ composed of monomials of degree r, of dimension $\binom{d+r}{r}$

$$
\phi(x)=\left(1, x_{1}, \ldots, x_{d}, x 1 x 2, \ldots, x_{1}^{r}, \ldots, x_{d}^{r}\right)
$$

- Non-negativity through "sums-of-squares"
- If $G \succcurlyeq 0$, then $\forall x \in \Omega, g(x)=\langle\phi(x), G \phi(x)\rangle \geqslant 0$
- Sum of squares: eigen-decomposition $G=\sum_{i \in I} \lambda_{i} h_{i} \otimes h_{i}$,

$$
g(x)=\sum_{i \in I} \lambda_{i}\left\langle\phi(x),\left(h_{i} \otimes h_{i}\right) \phi(x)\right\rangle=\sum_{i \in I} \lambda_{i}\left\langle\phi(x), h_{i}\right\rangle^{2}
$$

Global optimization with sums of square polynomials

- Replace $f-c \geqslant 0$ by $f-c=\langle\phi(x), A \phi(x)\rangle$ with $A \succcurlyeq 0$
- Sum-of-squares optimization (Lasserre, 2001)

$$
\begin{equation*}
\sup _{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text { such that } \quad \forall x \in \mathbb{R}^{d}, f-c=\langle\phi(x), A \phi(x)\rangle \tag{P}
\end{equation*}
$$

- Equivalent to original problem if $f-f_{*}$ is SoS
- Polynomial constraints can be added (and help !)
- If not sum of squares : hierarchies $\left(P_{i}\right)$ of degree $i \rightarrow \infty$
- Guarantees
- the hierarchy converges to the optimum value
- Lower bound when solving $P_{i}: f_{i} \leq f_{*}$.
- Solve a finite dimensional SDP

Global optimization with sums of square polynomials

- Replace $f-c \geqslant 0$ by $f-c=\langle\phi(x), A \phi(x)\rangle$ with $A \succcurlyeq 0$
- Sum-of-squares optimization (Lasserre, 2001)

$$
\begin{equation*}
\sup _{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text { such that } \quad \forall x \in \mathbb{R}^{d}, f-c=\langle\phi(x), A \phi(x)\rangle \tag{P}
\end{equation*}
$$

- Equivalent to original problem if $f-f_{*}$ is SoS
- Polynomial constraints can be added (and help !)
- If not sum of squares : hierarchies $\left(P_{i}\right)$ of degree $i \rightarrow \infty$
- Drawbacks
- Not all non-negative polynomials are SoS if $d \geq 1$
- No guarantee a priori on the degree i needed for a given precision
- Only for polynomials

Representing more general functions with RKHS

- Reproducing Kernel Hilbert Space (RKHS) :
- Hilbert space of functions $g \in \mathcal{H}, g: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- Reproducing property : $g(x)=\langle g, \phi(x)\rangle_{\mathcal{H}}$
- Kernel : $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$ (computable)

Representing more general functions with RKHS

- Reproducing Kernel Hilbert Space (RKHS) :
- Hilbert space of functions $g \in \mathcal{H}, g: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- Reproducing property : $g(x)=\langle g, \phi(x)\rangle_{\mathcal{H}}$
- Kernel : $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$ (computable)
- Example : Sobolev spaces (Berlinet and Thomas-Agnan, 2011)
- Sobolev spaces $H^{s}(\Omega)$ with $\Omega \subset \mathbb{R}^{d}, s>d / 2$

$$
\langle f, g\rangle_{H^{s}(\Omega)}=\sum_{|\alpha| \leq s} \int_{\Omega} \partial^{\alpha} f \partial^{\alpha} g
$$

$-s=d / 2+1 / 2: k(x, y)=\exp (-\|x-y\|)$

Representing more general functions with RKHS

- Reproducing Kernel Hilbert Space (RKHS) :
- Hilbert space of functions $g \in \mathcal{H}, g: \mathbb{R}^{d} \rightarrow \mathbb{R}$
- Reproducing property : $g(x)=\langle g, \phi(x)\rangle_{\mathcal{H}}$
- Kernel : $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$ (computable)
- Everything can be expressed using only the kernel function k
- k is known for all Sobolev spaces with $s>d / 2$.
$-s=d / 2+1 / 2: k(x, y)=\exp (-\|x-y\|)$

Non-negative functions with RKHS

- RKHS \mathcal{H} :
- Feature map $\phi(x) \in \mathcal{H}\left(g(x)=\langle g, \phi(x)\rangle_{\mathcal{H}}\right)$
- Kernel : $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$ (computable)
- RKHS Sum of Squares : (Marteau-Ferey et al., 2020)
- $g_{A}(x)=\langle\phi(x), A \phi(x)\rangle, \quad A \succeq 0$
- Eigendecomposition $A=\sum_{i \in I} \lambda_{i} h_{i} \otimes h_{i}$ SoS : $g_{A}(x)=\sum_{i \in I} \lambda_{i} h_{i}(x)^{2}, h_{i} \in \mathcal{H}$

Non-negative functions with RKHS

- RKHS \mathcal{H} :
- Feature map $\phi(x) \in \mathcal{H}\left(g(x)=\langle g, \phi(x)\rangle_{\mathcal{H}}\right)$
- Kernel : $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle_{\mathcal{H}}$ (computable)
- RKHS Sum of Squares : (Marteau-Ferey et al., 2020)
- $g_{A}(x)=\langle\phi(x), A \phi(x)\rangle, \quad A \succeq 0$
- Eigendecomposition $A=\sum_{i \in I} \lambda_{i} h_{i} \otimes h_{i}$ SoS : $g_{A}(x)=\sum_{i \in I} \lambda_{i} h_{i}(x)^{2}, h_{i} \in \mathcal{H}$
- Everything can be expressed using the kernel k
- Sum of squares of sobolev functions.

Global optimization through sampling

- Global optimization : formulation and theoretical result in the RKHS
- Controlled approximation through sampling
- Algorithms and illustrations

Going infinite-dimensional (Rudi, Marteau-Ferey, and Bach, 2020)

$$
\sup _{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text { such that } \quad \forall x \in \Omega, f(x)-c=\langle\phi(x), A \phi(x)\rangle
$$

- Sobolev space \mathcal{H} :
$-s>d / 2$ squared-integrable derivative
- RKHS with feature map $\phi(x)$ and kernel $k\left(x, x^{\prime}\right)$
- RKHS SoS : $g_{A}(x)=\langle\phi(x), A \phi(x)\rangle_{\mathcal{H}}, A \succeq 0$

Going infinite-dimensional (Rudi, Marteau-Ferey, and Bach, 2020)

$$
\sup _{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text { such that } \quad \forall x \in \Omega, f(x)=c+\langle\phi(x), A \phi(x)\rangle
$$

- Sobolev space \mathcal{H}
$-s>d / 2$ squared-integrable derivative
- RKHS with feature map $\phi(x)$ and kernel $k\left(x, x^{\prime}\right)$
- RKHS SoS : $g_{A}(x)=\langle\phi(x), A \phi(x)\rangle_{\mathcal{H}}, A \succeq 0$
- Theorem: $\exists A_{*} \succcurlyeq 0$ such that $\forall x \in \Omega, f(x)=f_{*}+\left\langle\phi(x), A_{*} \phi(x)\right\rangle$
- If f has isolated strict-second order minima in $\stackrel{\circ}{\Omega}$, and f is $(s+3)$ times differentiable

Going infinite-dimensional (Rudi, Marteau-Ferey, and Bach, 2020)

$$
\sup _{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text { such that } \quad \forall x \in \Omega, f(x)=c+\langle\phi(x), A \phi(x)\rangle
$$

- Sobolev space \mathcal{H}
$-s>d / 2$ squared-integrable derivative
- RKHS with feature map $\phi(x)$ and kernel $k\left(x, x^{\prime}\right)$
- RKHS SoS : $g_{A}(x)=\langle\phi(x), A \phi(x)\rangle_{\mathcal{H}}, A \succeq 0$
- Theorem: $\exists A_{*} \succcurlyeq 0$ such that $\forall x \in \Omega, f(x)=f_{*}+\left\langle\phi(x), A_{*} \phi(x)\right\rangle$
- If f has isolated strict-second order minima in $\stackrel{\circ}{\Omega}$, and f is $(s+3)$ times differentiable
\Rightarrow Equivalent to original problem, but infinite-dimensional

Controlled approximation through sampling

- Subsample n points $x_{1}, \ldots, x_{n} \in \Omega$ and solve

$$
\sup _{c \in \mathbb{R}, A \succcurlyeq 0} c-\lambda \operatorname{tr}(A) \text { such that } \forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)=c+\left\langle\phi\left(x_{i}\right), A \phi\left(x_{i}\right)\right\rangle
$$

Controlled approximation through sampling

- Subsample n points $x_{1}, \ldots, x_{n} \in \Omega$ and solve
$\sup c-\lambda \operatorname{tr}(A)$ such that $\forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)=c+\left\langle\phi\left(x_{i}\right), A \phi\left(x_{i}\right)\right\rangle$ $c \in \mathbb{R}, A \succcurlyeq 0$
- Finite-dimensional formulation through representer theorem (kernels!)
- Marteau-Ferey, Bach, and Rudi (2020)
- SDP of dimension n :
$\sup \quad c-\lambda \operatorname{tr}(B)$ st $\forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)=c+\Phi_{i}^{\top} B \Phi_{i}$
$c \in \mathbb{R}, B \succcurlyeq 0, B \in \mathbb{R}^{n \times n}$
- Solvable in polynomial time with precision ϵ in $O\left(n^{3.5} \log \frac{1}{\epsilon}\right)$

Controlled approximation through sampling

- Subsample n points $x_{1}, \ldots, x_{n} \in \Omega$ and solve
$\sup c-\lambda \operatorname{tr}(A)$ such that $\forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)=c+\left\langle\phi\left(x_{i}\right), A \phi\left(x_{i}\right)\right\rangle$ $c \in \mathbb{R}, \quad A \succcurlyeq 0$
- Theorem (Rudi, Marteau-Ferey, and Bach, 2020) Let \hat{c}, \hat{A} be the result of the algorithm. Up to logarithmic terms:
- if $n=\Omega\left(\varepsilon^{-d /(m-d / 2-3)}\right)$ and the samples $\left(x_{1}, \ldots, x_{n}\right)$ are taken randomly from Ω, and if $\lambda=\varepsilon$, then it holds with probability at least $1-\delta$:

$$
\left|\hat{c}-f_{*}\right| \leq \varepsilon \log \frac{1}{\delta}
$$

- in that case, the complexity is $\Omega\left(\varepsilon^{-3 d /(m-d / 2-3)} \log \frac{1}{\epsilon}\right)$
- Extension: possible to find the minimizer \hat{x}.

Controlled approximation through sampling

- Subsample n points $x_{1}, \ldots, x_{n} \in \Omega$ and solve
$\sup c-\lambda \operatorname{tr}(A)$ such that $\forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)=c+\left\langle\phi\left(x_{i}\right), A \phi\left(x_{i}\right)\right\rangle$ $c \in \mathbb{R}, \quad A \succcurlyeq 0$
- Approximation guarantees (Rudi, Marteau-Ferey, and Bach, 2020)
- With random samples, $n \approx \varepsilon^{-d /(m-d / 2-3)}$
(up to logarithmic terms)
- To be compared to optimal rate $n \approx \varepsilon^{-d /(m-d / 2)}$
- Constraint $m \geqslant \frac{d}{2}+3$ can be lifted

Controlled approximation through sampling

- Subsample n points $x_{1}, \ldots, x_{n} \in \Omega$ and solve
$\sup c-\lambda \operatorname{tr}(A)$ such that $\forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)=c+\left\langle\phi\left(x_{i}\right), A \phi\left(x_{i}\right)\right\rangle$ $c \in \mathbb{R}, \quad A \succcurlyeq 0$
- Approximation guarantees (Rudi, Marteau-Ferey, and Bach, 2020)
- With random samples, $n \approx \varepsilon^{-d /(m-d / 2-3)}$
(up to logarithmic terms)
- To be compared to optimal rate $n \approx \varepsilon^{-d /(m-d / 2)}$
- Constraint $m \geqslant \frac{d}{2}+3$ can be lifted
- Subsampling inequalities as $f\left(x_{i}\right) \geqslant c$ directly?
- cannot improve on $n \approx \varepsilon^{-d}$

Final algorithm

- Input: $f: \mathbb{R}^{d} \rightarrow \mathbb{R}, \Omega \subset \mathbb{R}^{d}, n \geqslant 0, \lambda>0, s>d / 2$

1. Sampling: $\left\{x_{1}, \ldots, x_{n}\right\}$ sampled i.i.d. uniformly on Ω
2. Feature computation

- Set $f_{j}=f\left(x_{j}\right), \forall j \in\{1, \ldots, n\}$
- Compute $K_{i j}=k\left(x_{i}, x_{j}\right)$ for k Sobolev kernel of smoothness s
- Set $\Phi_{j} \in \mathbb{R}^{n}$ computed using a cholesky decomposition of K $\forall j \in\{1, \ldots, n\}$.

3. Solve $\max _{c \in \mathbb{R}, B \succcurlyeq 0} c-\lambda \operatorname{tr}(B)$ s. t. $\forall j \in\{1, \ldots, n\}, f_{j}-c=\Phi_{j}^{\top} B \Phi_{j}$

- Output: c proxy for f_{*}
- One can extend the algorithm in order to compute a proxy of the minimizer

Opposite properties from Polynomial SoS !

- "Always" possible to write a non-negative function as a RKHS SoS
- Bounds on the number of samples needed for a given precision
- Finite dimensional SDP with bounded complexity $O\left(n^{3.5} \log \frac{1}{\epsilon}\right)$
- Breaks the curse of dimensionality (needs $\epsilon^{-d / m}$ samples) for smooth enough functions
- For the moment, no certificate bound on the result of the algorithm

Illustration

- Minimization of two-dimensional function

Illustration

Illustration

randomized gradient descent

randomized gradient descent

Illustration

- Minimization of eight-dimensional function

Extensions

- Duality
- Extionsions
- Conclusion

Duality

- Primal problem

$$
\min _{x \in \Omega} f(x)=\sup _{c \in \mathbb{R}} c \quad \text { such that } \quad \forall x \in \Omega, f(x)-c \geqslant 0
$$

Duality

- Primal problem

$$
\min _{x \in \Omega} f(x)=\sup _{c \in \mathbb{R}} c \quad \text { such that } \quad \forall x \in \Omega, f(x)-c \geqslant 0
$$

- Dual problem on probability measures
$\inf _{\mu \in \mathbb{R}^{\Omega}} \int_{\Omega} \mu(x) f(x) d x$ such that $\int_{\Omega} \mu(x) d x=1, \forall x \in \Omega, \mu(x) \geqslant 0$

Duality with sums-of-squares

- Primal problem
$\min _{x \in \Omega} f(x)=\sup _{c \in \mathbb{R}, A \succcurlyeq 0} c$ such that $\forall x \in \Omega, f(x)-c=\langle\phi(x), A \phi(x)\rangle$
- Dual problem on signed measures
$\inf _{\mu \in \mathbb{R}^{\Omega}} \int_{\Omega} \mu(x) f(x) d x \quad$ s. t. $\quad \int_{\Omega} \mu(x) d x=1, \int_{\Omega} \mu(x) \phi(x) \otimes \phi(x) \succcurlyeq 0$
- Extension of results on polynomials (Lasserre, 2020)

Extension - I

- Generic constrained optimization problem

$$
\inf _{\theta \in \Theta} F(\theta) \text { such that } \forall x \in \Omega, g(\theta, x) \geqslant 0
$$

Extension - I

- Generic constrained optimization problem

$$
\inf _{\theta \in \Theta} F(\theta) \text { such that } \quad \forall x \in \Omega, g(\theta, x) \geqslant 0
$$

- Sums-of-squares reformulation

$$
\inf _{\theta \in \Theta, A \succcurlyeq 0} F(\theta) \quad \text { such that } \quad \forall x \in \Omega, g(\theta, x)=\langle\phi(x), A \phi(x)\rangle
$$

- Requires penalization by $\operatorname{tr}(A)$ and subsampling
- Need representation as sums-of-squares to benefit from smoothness
- Can be done in the primal or the dual

Extension - I

- Generic constrained optimization problem

$$
\inf _{\theta \in \Theta} F(\theta) \text { such that } \quad \forall x \in \Omega, g(\theta, x) \geqslant 0
$$

- Sums-of-squares reformulation

$$
\inf _{\theta \in \Theta, A \succcurlyeq 0} F(\theta) \quad \text { such that } \quad \forall x \in \Omega, g(\theta, x)=\langle\phi(x), A \phi(x)\rangle
$$

- Requires penalization by $\operatorname{tr}(A)$ and subsampling
- Need representation as sums-of-squares to benefit from smoothness
- Can be done in the primal or the dual
- Application to optimal transport (Vacher, Muzellec, Bach, Rudi, Vialard, 2021)

Extension - II

- Constrained optimization problem

$$
\inf _{x \in \mathbb{R}^{d}} f(x) \text { such that } \forall x \in \Omega, g(x) \geqslant 0
$$

Extension - II

- Constrained optimization problem

$$
\inf _{x \in \mathbb{R}^{d}} f(x) \quad \text { such that } \quad \forall x \in \Omega, g(x) \geqslant 0
$$

- Sums-of-squares reformulation
$\sup _{c \in \mathbb{R},} \neq 0, B \succcurlyeq 0<$
such that $\forall x \in \Omega, f(x)=c+\langle\phi(x), A \phi(x)\rangle+g(x)\langle\phi(x), B \phi(x)\rangle$
- Extension of results on polynomials (Lasserre, 2001)

Conclusion

- Global optimization through kernel approximations
- Joint optimization and approximation
- infinite-dimensional sums-of-squares representation
- Controlled subsampling with guarantees

Conclusion

- Global optimization through kernel approximations
- Joint optimization and approximation
- infinite-dimensional sums-of-squares representation
- Controlled subsampling with guarantees
- Further extensions
- Efficient algorithms below $O\left(n^{3}\right)$ complexity
- Other infinite-dimensional convex optimization problems

Conclusion

- Global optimization through kernel approximations
- Joint optimization and approximation
- infinite-dimensional sums-of-squares representation
- Controlled subsampling with guarantees
- Further extensions
- Efficient algorithms below $O\left(n^{3}\right)$ complexity
- Other infinite-dimensional convex optimization problems
- See arxiv.org/abs/2012.11978 and francisbach.com/

References

Alain Berlinet and Christine Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer Science \& Business Media, 2011.
Jean-Bernard Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796-817, 2001.
Jean-Bernard Lasserre. The moment-SOS hierarchy and the Christoffel-Darboux kernel. Technical Report 2011.08566, arXiv, 2020.

Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric models for non-negative functions. Advances in Neural Information Processing Systems, 33, 2020.

Erich Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis, volume 1349. Springer, 2006.

Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel approximations. Technical Report 2012.11978, arXiv, 2020.

