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Global optimization using function values

e Global optimization
e Optimal algorithms
e Optimal rates

e Convex reformulation



Global optimization

e Zero-th order minimization

min f(z)
— Q C R? simple compact subset (e.g., [—1,1]%)
— f with some bounded derivatives
— access to function values
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Global optimization

e Zero-th order minimization

min f(z)

— Q C R? simple compact subset (e.g., [—1,1]%)
— f with some bounded derivatives
— access to function values

e No convexity assumption

e Many applications

— e.g., hyperparameter optimization in machine learning



Optimal algorithms

e Goal: Find Z € () such that f(z) — 111618 f(x) <e

— Lowest number of function calls
— Worst-case guarantees over all functions f in some convex set &

sup { (&) —min f(w) | <

fesd



Optimal algorithms

e Goal: Find Z € () such that f(z) — 111618 f(x) <e

— Lowest number of function calls
— Worst-case guarantees over all functions f in some convex set &

sup { (&) —min f(w) | <

fesd

e Equivalence to uniform function approximation (Novak, 2006)

— Simplest algorithm: approximate f by f and minimize f
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Optimal rates

e Optimal worst-case performance over F (Novak, 2006)

— n = number of function evaluations

— F = Lipschitz-continuous functions: n o< £ =4

— F = m bounded derivatives: n oc e~ a/m

e Smoothness to circumvent the curse of dimensionality

— NB: constants may depend (exponentially) in d
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Optimal rates

e Optimal worst-case performance over F (Novak, 2006)

— n = number of function evaluations

— F = Lipschitz-continuous functions: n o< £ =4

— F = m bounded derivatives: n oc e~ a/m

e Smoothness to circumvent the curse of dimensionality

— NB: constants may depend (exponentially) in d

e Algorithms have exponential running-time complexity

— “Approximate then optimize”

e Algorithms with polynomial-time complexity in n?

— “"Approximate and optimize”



Reformulations

e Equivalent convex problem

min f(x) =sup ¢ suchthat VxeQ, f(r)—c>0
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Reformulations

e Equivalent convex problem

min f(x) =sup ¢ suchthat VxeQ, f(r)—c>0

z el ceR
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f(x)
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-
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— All optimization problems are convex!

e Need to represent non-negative functions (such as f(x) — ¢)



Representing non-negative functions

e Generic representation in a PSD cone
e The case of polynomials

e Infinite-dimensional representations using RKHS



Representing non-negative functions

e Assumption: g(x) can be represented as g(z) = (¢(z), Gp(x)) with
GG symmetric operator

e Example: set of polynomials of degree 2r
with ¢(x) composed of monomials of degree r, of dimension (d:fr)
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Representing non-negative functions

e Assumption: g(x) can be represented as g(x) = (¢(x), Go(x)) with
G symmetric operator

e Example: set of polynomials of degree 2r
with ¢(x) composed of monomials of degree r, of dimension (d:fr)

o(x) = (1,21, ..., xq, xlx2, . 0 2], .00y )

e Non-negativity through “sums-of-squares”

— If G =0, then Vz € Q, g(x) = (¢(x),Go(x)) > 0

— Sum of squares : eigen-decomposition G = ZM hi @ h;,
icl

=) Xilp(x), (hi @ hi)p(x)) = > Nild(x), hi)?

=y 1€1



Global optimization with sums of square polynomials

e Replace f —c>0by f—c=(¢(x), Ap(x)) with A =0
e Sum-of-squares optimization (Lasserre, 2001)

sup ¢ such that Vz e R% f—c={(¢(z),Ap(z)) (P)
ceR, A>=0

— Equivalent to original problem if f — f, is SoS
— Polynomial constraints can be added (and help !)
— If not sum of squares : hierarchies (P;) of degree i — o

e Guarantees

— the hierarchy converges to the optimum value
— Lower bound when solving P; : f; < ..
— Solve a finite dimensional SDP



Global optimization with sums of square polynomials

e Replace f —c>0by f—c=(¢(x), Ap(x)) with A =0
e Sum-of-squares optimization (Lasserre, 2001)

sup ¢ such that Vz e R% f—c={(¢(z),Ap(z)) (P)
ceR, A>=0

— Equivalent to original problem if f — f, is SoS
— Polynomial constraints can be added (and help !)
— If not sum of squares : hierarchies (P;) of degree i — o

e Drawbacks

— Not all non-negative polynomials are SoS if d > 1
— No guarantee a priori on the degree 7 needed for a given precision
— Only for polynomials



Representing more general functions with RKHS

e Reproducing Kernel Hilbert Space (RKHS) :

— Hilbert space of functions g € H, g: RY - R

— Reproducing property : g(x) = (g, ¢(x))
— Kernel : k(x,z") = (¢p(x), p(2"))3c (computable)
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e Reproducing Kernel Hilbert Space (RKHS) :

— Hilbert space of functions g € H, g: RY - R

— Reproducing property : g(x) = (g, ¢(x))
— Kernel : k(x,z") = (¢p(x), p(2"))3c (computable)

e Example : Sobolev spaces (Berlinet and Thomas-Agnan, 2011)
— Sobolev spaces H*(2) with Q C RY, s > d/2
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Representing more general functions with RKHS

e Reproducing Kernel Hilbert Space (RKHS) :

— Hilbert space of functions g € H, g: RY - R
— Reproducing property : g(x) = (g, ¢(x))

— Kernel : k(z,2') = (¢(x), d(z"))5 (computable)
e Everything can be expressed using only the kernel function &

— k is known for all Sobolev spaces with s > d/2.
—s=d/2+1/2: k(z,y) = exp(—[lz — y|)



Non-negative functions with RKHS

e RKHS IJ{ :

— Feature map ¢(z) € H (g(x) = (g, ¢(x))%)
— Kernel : k(x,2") = (¢p(x), p(2"))sc (computable)

¢ RKHS Sum of Squares : (Marteau-Ferey et al., 2020)

— ga(z) = (¢(x), Ad(x)), A=0
— Eigendecomposition A=) ., \; h; ® h;
SoS : gA(x) — Zig[ >‘z hi(x)27 hz cH



Non-negative functions with RKHS

e RKHS 7 :
— Feature map ¢(z) € H (g(z) = (g, ¢(x))a0)
— Kernel : k(z,2') = (¢(x), d(z"))5 (computable)
¢ RKHS Sum of Squares : (Marteau-Ferey et al., 2020)
— ga(z) = (¢(z), Ad(z)), A =0
— Eigendecomposition A=) ., \; h; ® h;
SoS : gA(CU) — Zig[ >‘7, hi(x)27 hz cH
e Everything can be expressed using the kernel £

— Sum of squares of sobolev functions.



Global optimization through sampling

e Global optimization : formulation and theoretical result in the RKHS
e Controlled approximation through sampling

e Algorithms and illustrations



Going infinite-dimensional
(Rudi, Marteau-Ferey, and Bach, 2020)

sup ¢ suchthat Vx €, f(z)—c= (d(z), Ap(x))

ceR, A>=0

e Sobolev space H:

— s > d/2 squared-integrable derivative
— RKHS with feature map ¢(x) and kernel k(z, x’)
— RKHS SoS : ga(z) = (¢(x), Ad(x))g, A =0
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Going infinite-dimensional
(Rudi, Marteau-Ferey, and Bach, 2020)

sup ¢ suchthat Vx €, f(z)=c+ (¢(z), Ap(x))
ceR, A>=0

e Sobolev space H

— s > d/2 squared-integrable derivative
— RKHS with feature map ¢(x) and kernel k(z, x’)
— RKHS SoS : ga(z) = (¢(x), Ad(x))g, A =0

e Theorem: JA, = 0 such that Vx € Q, f(x) = fi« + (¢(x), Axd(x))

— If f has isolated strict-second order minima in 2, and f is (s + 3)-
times differentiable

= Equivalent to original problem, but infinite-dimensional



Controlled approximation through sampling

e Subsample n points z4,...,z, € (2 and solve

sup c—Atr(A) such that Vi € {1,...,n}, f(x;) = c+{(d(x;), Ap(x;))

ceR, A>=0



Controlled approximation through sampling

e Subsample n points z4,...,z, € (2 and solve

sup c—Atr(A) such that Vi € {1,...,n}, f(x;) = c+{(d(x;), Ap(x;))

ceR, A>=0

e Finite-dimensional formulation through representer theorem
(kernels !)

— Marteau-Ferey, Bach, and Rudi (2020)
— SDP of dimension n :

sup c—Atr(B) stVie{l,....n}, f(z;) =c+ @ BP,
cER, B=0,BERMXn

e Solvable in polynomial time with precision € in O(n*®log2)



Controlled approximation through sampling

e Subsample n points z4,...,z, € (2 and solve

sup c—Atr(A) such that Vi € {1,...,n}, f(x;) = c+{(d(x;), Ap(x;))

ceR, A>=0

e Theorem (Rudi, Marteau-Ferey, and Bach, 2020) Let ¢, A be the
result of the algorithm. Up to logarithmic terms :

— if n = Q(e~¥/(m=4/273)) and the samples (z1,...,x,) are taken
randomly from €2, and if A = ¢, then it holds with probability at
least 1 — o:

€ — f+] < 610%%

— in that case, the complexity is Q(e_gd/(m_d/2_3) log %)

e Extension: possible to find the minimizer .
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Controlled approximation through sampling

e Subsample n points z4,...,z, € (2 and solve

sup c—Atr(A) such that Vi € {1,...,n}, f(x;) = c+{(d(x;), Ap(x;))

ceR, A>=0

e Approximation guarantees (Rudi, Marteau-Ferey, and Bach, 2020)

— With random samples, n /2 ¢~/ (m=d/2=3)

(up to logarithmic terms)
— To be compared to optimal rate n ~ ¢~/ (m=d/2)

— Constraint m > %Jr 3 can be lifted

e Subsampling inequalities as f(z;) > c directly?

— cannot improve on n ~ ¢~ ¢



Final algorithm
olnput: f:RY =R QCRYn>0,\>0,5>d/2

1. Sampling: {z1,...,x,} sampled i.i.d. uniformly on Q

2. Feature computation

— Set fj = f(il?j), \V/] - {1, - ,n}
— Compute K;; = k(z;, ;) for k Sobolev kernel of smoothness s
— Set ®; € R" computed using a cholesky decomposition of K

Vjed{l,...,n}.

_ ' R — .
3. Solve Jhax ¢ Atr(B) s.t. Vje{l,...,n}, fj —c=®,;, B,

e Output: c proxy for f,

e One can extend the algorithm in order to compute a proxy of the
minimizer



Opposite properties from Polynomial SoS !

" Always” possible to write a non-negative function as a RKHS SoS
Bounds on the number of samples needed for a given precision

Finite dimensional SDP with bounded complexity O(n?-°log %)

—d/m

Breaks the curse of dimensionality (needs € samples) for smooth

enough functions

For the moment, no certificate bound on the result of the
algorithm



lllustration

Minimization of two-dimensional function
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function + trajectory

lllustration

ra1ndomized gradient descent
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function + trajectory

lllustration

model
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lllustration

¢ Minimization of eight-dimensional function

without high frequency component with high frequency component
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Extensions

e Duality
e Extionsions

e Conclusion



Duality
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Duality

e Primal problem

min f(x) =sup ¢ suchthat VxeQ, f(r)—c>0

e Dual problem on probability measures

inf / u(x) f(x)dr such that /,u(:c)d:c =1, Ve € Q, u(z) >0
Q

pERS? Q




Duality with sums-of-squares

e Primal problem

min f(x) = sup ¢ such that Vax € Q, f(z)—c = (¢(x), Ap(x))

r e cER, A0

e Dual problem on signed measures

inf /Q,u(a;)f(x)dx s. t. /Q,u(x)dle, /Q,u(az)gb(x)@gb(x) =0

pERS?

— Extension of results on polynomials (Lasserre, 2020)
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— Requires penalization by tr(A) and subsampling
— Need representation as sums-of-squares to benefit from smoothness
— Can be done in the primal or the dual



Extension - |

e Generic constrained optimization problem

ein(fa F(0) suchthat Vx e, g(0,z) >0
€

e Sums-of-squares reformulation

9651{;’4%017(9) such that  Vz € Q, g(0,2) = (¢(z), Ap(x))

— Requires penalization by tr(A) and subsampling
— Need representation as sums-of-squares to benefit from smoothness
— Can be done in the primal or the dual

e Application to optimal transport (Vacher, Muzellec, Bach, Rudi,
Vialard, 2021)
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Extension - 1l

e Constrained optimization problem

inf f(x) suchthat VreQ, g(x) >0

R4

e Sums-of-squares reformulation

sup C
cER, A0, B0

such that Vx € Q, f(z) =c+ (¢(x), Ad(x)) + g(x){(d(x), Bo(x))

— Extension of results on polynomials (Lasserre, 2001)
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Conclusion

e Global optimization through kernel approximations

— Joint optimization and approximation
— infinite-dimensional sums-of-squares representation
— Controlled subsampling with guarantees
e Further extensions
— Efficient algorithms below O(n?) complexity

— Other infinite-dimensional convex optimization problems

e See arxiv.org/abs/2012.11978 and francisbach.com/
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