On the exactness of Lasserre’s relaxation for polynomial optimization with equality constraints

Zheng Qu

University of Hong Kong

BrainPoP seminar, Nov. 30, 2021

joint work with Z. Hua (HKU)
Polynomial Optimization with Equality Constraints

Consider

\[f_\ast = \min_{x \in \mathbb{R}^n} f(x) \]

s.t. \(g_1(x) = g_2(x) = \ldots = g_n(x) = 0, \]

where \(f, g_1, \ldots, g_n \) are polynomial functions of \(n \) variables. Lasserre’s SOS relaxation of order \(d \) corresponds to solving:

\[f_d = \max_{c \in \mathbb{R}} c \]

s.t. \(f - c \in \langle g \rangle_{2d} + \sum_{\mathbb{R}[x_1, \ldots, x_n]_{\leq 2d}} \]

where

\[\langle g \rangle_{2d} := \left\{ \sum_{i=1}^{n} \lambda_i g_i : \deg(\lambda_i) \leq 2d - \deg(g_i) \quad \text{for } i = 1, \ldots, n \right\}, \]

and \(\sum_{\mathbb{R}[x_1, \ldots, x_n]_{\leq 2d}} \) is the set of SOS polynomials of degree at most \(2d \).
The \(d\)-SDP Exactness

Lasserre’s relaxation of order \(d\):

\[
 f_d = \max_{c \in \mathbb{R}} \quad c \\
\text{s.t.} \quad f - c \in \langle g \rangle_{2d} + \Sigma \mathbb{R}[x_1, \ldots, x_n]_{\leq 2d}^2
\]

(3)

- Problem (3) can be formulated as a convex SDP problem.
- If for some \(d\), we have

\[
 f - f_* \in \langle g \rangle_{2d} + \Sigma \mathbb{R}[x_1, \ldots, x_n]_{\leq 2d}^2 .
\]

then

\[
 f_d = f_* .
\]

- We say that (1) is \(d\)-SDP exact if (4) holds.
Complete Intersection Assumption

Assumption

We have \(\dim_{\mathbb{R}} (\mathbb{R}[x_1, \ldots, x_n]/\langle g \rangle) = \prod_{i=1}^{n} \deg(g_i) \), where the \(\dim_{\mathbb{R}}(A) \) is the dimension of \(A \) as an \(\mathbb{R} \)-vector space.

It implies:

- The complex variety
 \[V(g) := \{ x \in \mathbb{C}^n : g_1(x) = g_2(x) = \ldots = g_n(x) = 0 \}, \]
 is finite.
- There is no solution at infinity:
 \[
 \{ x = [x_0 : x_1 : \cdots : x_n] \in \mathbb{P}^n : \bar{g}_1(x_0, x_1, \ldots, x_n) = \cdots = \bar{g}_n(x_0, x_1, \ldots, x_n) = 0 \} \\
 \subset \{ x \in \mathbb{P}^n : x_0 = 1 \}
 \]
Examples

Example (Binary polynomial programming)

\[
\min_{x \in \mathbb{R}^n} f(x) \\
\text{s.t. } g_i(x) := x_i^2 - 1 = 0, \quad \forall i \in \{1, \ldots, n\}
\]

Example (Grid polynomial programming)

\[
\min_{x \in \mathbb{R}^n} f(x) \\
\text{s.t. } g_i(x) := \prod_{j=1}^{d_i} (x_i - a_{ij}) = 0, \quad \forall i \in \{1, \ldots, n\}
\]
Examples

Example

\[
g_1(x_1, x_2) = x_2(a(x_2 - 1) - x_1(b - 1)), \\
g_2(x_1, x_2) = x_1(x_2(a - 1) - b(x_1 - 1)).
\]

Example

\[
g_1(x_1, x_2) = x_2(a(x_2 - 1) - x_1(b - 1)), \\
g_2(x_1, x_2) = x_1(x_1 + x_2 - 1).
\]

Every algebraic set in affine \(n\)-space is the intersection of \(n\) hypersurfaces [Eisenbud and Evans 1973].

For any finite set \(V \subset \mathbb{R}^n\), there are polynomials \(g_1, \ldots, g_n \in \mathbb{R}[x_1, \ldots, x_n]\) satisfying the complete intersection assumption such that

\[
V = \{x \in \mathbb{C}^n : g_1(x) = \ldots = g_n(x) = 0\}
\]
Complete Intersection Assumption

If \(\dim \mathbb{R}[x_1, \ldots, x_n]/\langle g \rangle = \prod_{i=1}^{n} \deg(g_i) \) and
\(\dim \mathbb{R}[y_1, \ldots, y_m]/\langle h \rangle = \prod_{i=1}^{m} \deg(h_i) \), then
\(\dim \mathbb{R}[x_1, \ldots, x_n, y_1, \ldots, y_m]/\langle g, h \rangle = \left(\prod_{i=1}^{n} \deg(g_i)\right) \left(\prod_{i=1}^{m} \deg(h_i)\right) \). Ex:

\[
\begin{align*}
g_1(x) &= x_2(a(x_2 - 1) - x_1(b - 1)) \\
g_2(x) &= x_1(x_2(a - 1) - b(x_1 - 1)) \\
g_3(x) &= x_4(c(x_4 - 1) - x_3(d - 1)) \\
g_4(x) &= x_3(x_4(c - 1) - d(x_3 - 1))
\end{align*}
\]
Related Work

Lasserre’s SOS relaxation was introduced for more general optimization problem model:

\[
 f_\ast = \min_{x \in \mathbb{R}^n} f(x) \\
 \text{s.t.} \quad g_1(x) = g_2(x) = \ldots = g_m(x) = 0, g_{m+1} \leq 0, \ldots g_{m+k} \leq 0
\]

For the more general model:

- Parrilo [Parrilo 2002]: \(d \)-SDP exactness holds for some integer \(d \) when the ideal generated by \((g_1, \ldots, g_m)\) is radical.
- Laurent [Laurent 2007]: \(f_d = f_\ast \) for some \(d \leq \max(d_B + d_+, \max(\deg(g_1), \ldots, \deg(g_m))/2) \) if \(\{g_1, \ldots, g_m\} \) forms a Gröbner basis. Here \(d_B \) is the maximum degree of a polynomial in a basis of \(\mathbb{R}[x_1, \ldots, x_n]/(g_1, \ldots, g_m) \).

\(d \)-SDP exactness holds for optimization over grid:

- Lasserre [Lasserre 2002]: \(d \leq \sum_{i=1}^n \deg(g_i) - n + \max(\deg(g_1), \ldots, \deg(g_n))/2 \).
- Laurent [Laurent 2007]:
 \(d \leq \max \left(\sum_{i=1}^n \deg(g_i) - n, \max(\deg(g_1), \ldots, \deg(g_n))/2 \right) \).

\(d \)-SDP exactness holds for binary optimization:

- Fawzi et al [Fawzi et al. 2016]: \(d \leq \lceil n/2 \rceil \) if \(f \) is a quadratic homogeneous.
- Sakaue et al. [Sakaue et al. 2017]: \(d \leq \lceil (n + \deg(f) - 1)/2 \rceil \).
- Sakaue et al. [Sakaue et al. 2017]: \(d \leq \lceil (n + \deg(f) - 2)/2 \rceil \) if \(f \) only contains monomials of even degree.
Taking Square Root in the Quotient Ring

- Denote:

$$V(g) = \{ x \in \mathbb{C}^n : g_1(x) = g_2(x) = \ldots = g_n(x) = 0 \},$$

and $$V_{\mathbb{R}}(g) = V(g) \cap \mathbb{R}^n.$$

- $$x \in V(g)$$ is **singular** if its multiplicity is $$> 1.$$

- Denote by $$\phi$$ the standard ring homomorphism from $$\mathbb{R}[x_1, \ldots, x_n]$$ to the quotient ring $$\mathbb{R}[x_1, \ldots, x_n]/\langle g \rangle.$$

Proposition

Let $$p \in \mathbb{R}[x_1, \ldots, x_n]$$ be a polynomial such that $$p(x) \geq 0$$ for any $$x \in V_{\mathbb{R}}(g)$$ and $$p(x) \neq 0$$ for any singular point $$x \in V(g).$$ Then there is $$q \in \mathbb{R}[x_1, \ldots, x_n]/\langle g \rangle$$ such that

$$\phi(p) = q^2.$$
Proof Outline

The complete intersection assumption implies that the quotient ring

$$A := \mathbb{R}[x_1, \ldots, x_n]/\langle g \rangle$$

is an Artin ring.

- Structure theorem for Artin rings.

$$A \simeq \prod_{i=1}^{s} A_{m_i}.$$

Here m_1, \ldots, m_s are the maximal ideals of A.

- Existence of square root on each Artinian local ring A_m.

Given $p \in A_m$, there is $q \in A_m$ such that $p = q^2$ if

1. if $A/m = \mathbb{R}$ then $\rho_m(p) \geq 0$ and $\rho_m(p) > 0$ when $\dim_{\mathbb{R}} A_m > 1$,

2. if $A/m = \mathbb{C}$ and $\dim_{\mathbb{C}} A_m > 1$ then $\rho_m(p) \neq 0$.

Exactness of Lasserre's relaxation
Two Surjectivity Results

Define

\[n := \sum_{i=1}^{n} \deg(g_i) - n. \]

Proposition

For any \(q \in \mathbb{R}[x_1, \ldots, x_n]/\langle g \rangle \), there is \(h \in \mathbb{R}[x_1, \ldots, x_n] \) with \(\deg(h) \leq n \) such that

\[\phi(h) = q. \]

Proposition

Let \(d \geq \max(\deg(g_1), \ldots, \deg(g_n)) \). For any \(h \in \langle g \rangle \) with \(\deg(h) \leq d \), there are \(\lambda_1, \ldots, \lambda_n \in \mathbb{R}[x_1, \ldots, x_n] \) with \(\deg(\lambda_i) \leq d - \deg(g_i), \; i = 1, \ldots, n \) such that

\[h = \lambda_1 g_1 + \ldots + \lambda_n g_n. \]
Degree Bound on the d-SDP Exactness

Suppose that $2n \geq \max(\deg(g_1), \ldots, \deg(g_n))$. If $\deg(f) \leq 2n$ and $f(x) \neq f_*$ for any singular point $x \in V(g)$, then there are $h, \lambda_1, \ldots, \lambda_n \in \mathbb{R}[x_1, \ldots, x_n]$ with $\deg(h) \leq n$, $\deg(\lambda_i) \leq 2n - \deg(g_i)$, $\forall i = 1, \ldots, n$ such that

$$f - f_* = h^2 + \sum_{i=1}^{n} \lambda_i g_i$$

Theorem

If $f(x) \neq f_*$ for any singular point $x \in V(g)$, then the problem (1) is d-SDP exact for $d \geq \max(n, \max(\deg(g_1), \ldots, \deg(g_n)) / 2, \deg(f)/2)$.

Corollary

We have $f_d = f_*$ for any $d \geq \max(n, \max(\deg(g_1), \ldots, \deg(g_n)) / 2, \deg(f)/2)$.

Exactness of Lasserre’s relaxation
Sheaf Cohomology

- Projective space: \mathbb{P}^n
- Graded ring: $S = \mathbb{R}[x_0, x_1, \ldots, x_n] = \bigoplus_{d \geq 0} S_d. \ (S_d \cong \mathbb{R}[x_1, \ldots, x_n]_{\leq d})$
- Homogenization of g_1, \ldots, g_n: $\bar{g}_1, \ldots, \bar{g}_n \in S$
- Graded ideal: $I = (\bar{g}_1, \ldots, \bar{g}_n) = \bigoplus_{d \geq 0} I_d$
- Sheaf associated to $S(d)$: $\mathcal{O}(d)$
- Ideal sheaf associated to $I(d)$: $\mathcal{I}(d)$
- Spectrum of $\mathbb{R}[x_1, \ldots, x_n]/\langle g \rangle$: K

The short exact sequence of sheaves

\[0 \rightarrow \mathcal{I}(d) \rightarrow \mathcal{O}(d) \rightarrow \mathcal{O}_K \rightarrow 0 \]

induces a long exact sequence of cohomology groups

\[0 \rightarrow H^0(\mathbb{P}^n, \mathcal{I}(d)) \rightarrow H^0(\mathbb{P}^n, \mathcal{O}(d)) \rightarrow H^0(\mathbb{P}^n, \mathcal{O}_K) \rightarrow H^1(\mathbb{P}^n, \mathcal{I}(d)) \rightarrow H^1(\mathbb{P}^n, \mathcal{O}(d)) \]
Koszul Resolution of Ideal Sheaf

If \(\dim \mathbb{R}[x_1, \ldots, x_n]/\langle g \rangle = \prod_{i=1}^{n} \deg(g_i) \), then

\[
\{ x = [x_0 : x_1 : \cdots : x_n] \in \mathbb{P}^n : \bar{g}_1(x_0, x_1, \ldots, x_n) = \cdots = \bar{g}_n(x_0, x_1, \ldots, x_n) = 0 \} \\
\subset \{ x \in \mathbb{P}^n : x_0 = 1 \}
\]

\[\text{Spec}(\mathbb{C}[x_1, \ldots, x_n]/\langle g \rangle_{\mathbb{C}})\] is a complete intersection in \(\mathbb{P}^n_{\mathbb{C}} \). There is a Koszul Resolution of the ideal sheaf \(I \) associated to \(I \) [Eisenbud 1995]:

\[
0 \rightarrow \bigwedge^n E \overset{\delta_n}{\rightarrow} \cdots \overset{\delta_i}{\rightarrow} \bigwedge^i E \overset{\delta_i}{\rightarrow} \cdots \overset{\delta_1}{\rightarrow} E \overset{\delta_1}{\rightarrow} I \rightarrow 0. \tag{5}
\]

where \(E := \mathcal{O}(-d_{g_1}) \oplus \cdots \oplus \mathcal{O}(-d_{g_n}) \) and \(\bigwedge^i E \) denotes the \(i \)th exterior power of \(E \).

Based on (5) we deduce

\[H^1(\mathbb{P}^n, I(d)) = 0, \quad \forall d \geq n. \]
Dimension Counting from Koszul Resolution of Ideal

There is a Koszul Resolution of the graded ideal \(I \):

\[
0 \longrightarrow S(-d_{g_1} - \cdots - d_{g_n}) \overset{\delta_n}{\longrightarrow} \cdots \longrightarrow S(-d_{g_1}) \oplus \cdots \oplus S(-d_{g_n}) \overset{\delta_1}{\longrightarrow} I \longrightarrow 0
\]

where \(\delta_1(\lambda_1, \ldots, \lambda_n) = \lambda_1 \bar{g}_1 + \cdots + \lambda_n \bar{g}_n \).

Compute Hilbert series using the above graded resolution:

\[
\chi_{S/I}(t) = \sum_{i=0}^{n} (-1)^i \frac{t^{\sum_{j \in I} d_{g_j}}}{(1-t)^{n+1}} = \prod_{i=1}^{n} \left(\sum_{j=1}^{d_{g_i}} t^{j-1} \right) \frac{1}{1-t}.
\]

Let \(c_d = |\{(k_1, \ldots, k_n) \in \mathbb{N}^n : k_1 + \cdots + k_n = d, \; k_i \in [0, d_{g_i} - 1], \; \forall i \in \{1, \ldots, n\}\}| \)

We have:

\[
\dim \left(\phi \left(\mathbb{R}[x_1, \ldots, x_n]_{\leq d} \right) \right) = \sum_{i=0}^{d} c_d.
\]
Obstruction Map

\[\cdots \longrightarrow H^0(\mathbb{P}^n, \mathcal{O}(d)) \longrightarrow H^0(\mathbb{P}^n, \mathcal{O}_K) \xrightarrow{\Phi_d} H^1(\mathbb{P}^n, \mathcal{I}(d)) \longrightarrow 0 \]

\[\ker(\Phi_d) = \phi(\mathbb{R}[x_1, \ldots, x_n]_{\leq d}) \]

- I.e., \(\ker(\Phi_d) \) is isomorphic to the set of polynomials in \(\mathbb{R}[x_1, \ldots, x_n]/\langle g \rangle \) which can be lifted to a polynomial of degree at most \(d \).
- If \(V(g) = V_\mathbb{R}(g) \) and all the solutions are of multiplicity one, then \(H^0(\mathbb{P}^n, \mathcal{O}_K) \) corresponds to the space of functions on \(V_\mathbb{R}(g) \).

Example

Consider \(\mathbb{R}[x] \) and \(g(x) = x^2 - 1 \). Then \(n = 1, \ n = 1 \) and the vanishing locus is \(V = \{1, -1\} \). Take \(\{\frac{x+1}{2}|_V, \frac{1-x}{2}|_V\} \) as a basis of \(H^0(\mathbb{P}^1, \mathcal{O}_K) \). Then

\[\ker(\Phi_0) = \phi(\mathbb{R}[x]_{\leq 0}) = \{(f_1; f_2) \in \mathbb{R}^2 : f_1 - f_2 = 0\} \]
Example

Consider $\mathbb{R}[x_1, x_2]$, $g_1(x) = x_1^2 - 1$ and $g_2(x) = x_2^2 - 1$. Then $n = 2$, $n = 2$ and the vanishing locus is

$$V = \{(1; 1), (1; -1), (-1; 1), (-1; -1)\}.$$

Take

$$\{(1 - x_1)(1 - x_2)|_V, (1 - x_1)(1 + x_2)|_V, (1 + x_1)(1 - x_2)|_V, (1 + x_1)(1 + x_2)|_V\}$$

as a basis of $H^0(\mathbb{P}^2, \mathcal{O}_K)$. Then

$$\ker (\Phi_0) = \phi(\mathbb{R}[x]_{\leq 0}) = \{f \in \mathbb{R}^4 : f_1 = f_2 = f_3 = f_4\}.$$

and

$$\ker (\Phi_1) = \phi(\mathbb{R}[x]_{\leq 1}) = \{f \in \mathbb{R}^4 : f_1 + f_4 = f_2 + f_3\}.$$
Example

Consider $\mathbb{R}[x_1, \ldots, x_n]$ and $g_i(x) = x_i^2 - 1$, for $i \in \{1, \ldots, n\}$. Then $n = n$ and the vanishing locus is

$$V = \{\pm 1\}^n.$$

Take

$$\left\{ \prod_{r \in J} (1 - x_r) \prod_{r \notin J} (1 + x_r) \right\}_{V: J \subset [n]}$$

as a basis of $H^0(\mathbb{P}^n, \mathcal{O}_K)$. Then

$$\ker (\Phi_d) = \bigcap_{J \subset [n], |J| \geq d + 1} \left\{ f \in \mathbb{R}^{2^n} : \sum_{\tilde{J} \subset J} (-1)^{|\tilde{J}|} f_{\tilde{J}} = 0 \right\}.$$
Characterization of the d-SDP Exactness

Assumption

The number of distinct real solutions $|V_\mathbb{R}(g)|$ is equal to $\prod_{i=1}^{n} \deg(g_i)$.

This assumption implies that all the solutions are real and of multiplicity one. Let

$$V = \{x^0, \ldots, x^s\} \subset \mathbb{R}^n$$

be the solution set. Note that $s = \prod_{i=1}^{n} \deg(g_i) - 1$.

Theorem

The program (1) is d-SDP exact if and only if $\deg(f) \leq 2d$ and

$$(f - f_*)|_V \in \text{conv} \left(\mu \left(\ker (\Phi_d) \right) \right).$$

Here, the map μ is given by:

$$\mu : p|_V \rightarrow p^2|_V,$$

and $\mu \left(\ker (\Phi_d) \right) = \{p^2|_V : p \in \mathbb{R}[x_1, \ldots, x_n]_{\leq d}\}$.
Exact Region as Image of Quadratic Map

Denote by $p_i \in \mathbb{R}[x_1, \ldots, x_n]$ the interpolation polynomial at point x^i such that $p_i(x^i) = 1$ and $p_i(x^j) = 0$ for $j \neq i$. Take

$$\{p_0|\nu, \ldots, p_s|\nu\}$$

as a basis of $\phi(\mathbb{R}[x_1, \ldots, x_n]_{\leq d}) = \ker(\Phi_d)$. Then the map $\mu : p|\nu \to p^2|\nu$ can be written as:

$$\mu : (v_0, \ldots, v_s) \in \mathbb{R}^{s+1} \mapsto (v_0^2, \ldots, v_s^2) \in \mathbb{R}^{s+1}_+.$$

so that $\mu(\ker \Phi_d) = \{(q_0(w), \ldots, q_s(w)) : w \in \mathbb{R}^{pq}\}$. Based on a result due to [Barvinok 2013], we show that

Proposition

There is a universal constant $0 < \beta \leq 4.8$ such that for any $\nu \in \text{conv}(\mu(\ker(\Phi_d))) \cap \text{Int} \Delta^s$, there is $w \in \mu(\ker(\Phi_d)) \cap \text{Int} \Delta^s$ such that

$$KL(\nu\|w) \leq \beta.$$
Rank-2 Exact Region as Image of Moment map

If \(\deg(f) \leq 2d \) and \((f - f_*)|_V \in \mu(\ker(\Phi_d)) + \mu(\ker(\Phi_d)) \), then

\[
f - f_* = p^2 + q^2 + \sum_{i=1}^{n} \lambda_i g_i,
\]

The previous \(\mu \) map is the restriction of the moment map:

\[
\mu : (z_0, \ldots, z_s) \in \mathbb{C}^{s+1} \mapsto (|z_0|^2, \ldots, |z_s|^2) \in \mathbb{R}^{s+1}_{+}.
\]

and we can show that

\[
\mu(\ker(\Phi_d) \otimes \mathbb{C}) = \mu(\ker(\Phi_d)) + \mu(\ker(\Phi_d)).
\]

Corollary

The program (1) is \(d \)-SDP exact if and only if \(\deg(f) \leq 2d \) and

\[
(f - f_*)|_V \in \text{conv}(\mu(\ker(\Phi_d) \otimes \mathbb{C})).
\]
The \((n − 1)\)-SDP Exact Region

There are \(a_0, \ldots, a_s \in \mathbb{R}\) such that

\[
\ker(\Phi_{n-1}) \otimes \mathbb{C} = \{ (z_0, \ldots, z_s) \in \mathbb{C}^{s+1} : a_0z_0 + \ldots + a_sz_s = 0 \}.
\]

\(f\) is \((n − 1)\)-SDP exact if and only if

\[
(f - f_*)|_V \in \text{conv} \{ (|z_0|^2, \ldots, |z_s|^2) : a_0z_0 + \ldots + a_sz_s = 0 \}
\]

Definition (Gelfand et al. 1994)

Let \(\ell\) be a Laurent polynomial in \(s\) variables over \(\mathbb{C}\). The *amoeba* of \(\ell\), denoted by \(A_{\ell}\), is the image of the zero set

\[
Z_\ell := \{ (z_1, \ldots, z_s) \in (\mathbb{C}^*)^s : \ell(z_1, \ldots, z_s) = 0 \}
\]

under the logarithmic modulus map \(\text{Log}:\)

\[
\text{Log} : (z_1, \ldots, z_s) \mapsto (\log |z_1|, \ldots, \log |z_s|), \; \forall (z_1, \ldots, z_s) \in (\mathbb{C}^*)^s.
\]
The \((n - 1)\)-SDP Exact Region as Amoeba

W.l.o.g. we assume \(a_0 \neq 0\). Let \(\ell\) be the first-order polynomial defined by:

\[
\ell : (z_1, \ldots, z_s) \mapsto a_0 + a_1 z_1 + \ldots + a_s z_s.
\]

The amoeba \(A_\ell\) is known as hyperplane amoeba and was studied by Forsberg et al. [Forsberg et al. 2000]. Also,

\[
\mu \left(\ker(\Phi_{n-1}) \otimes \mathbb{C} \right) \cap \Delta^s \text{ is diffeomorphic to } \overline{\xi \left(A_\ell \right)} \text{ where}
\]

\[
\xi : (w_1, \ldots, w_s) \mapsto \left(\frac{e^{2w_1}}{1 + e^{2w_1} + \cdots + e^{2w_s}}, \ldots, \frac{e^{2w_s}}{1 + e^{2w_1} + \cdots + e^{2w_s}} \right).
\]
Convexity of the Rank-2 Region for $d = n - 1$

Proposition

\[
\mu(\ker(\Phi_{n-1}) \otimes \mathbb{C}) = \text{conv} \left(\mu(\ker(\Phi_{n-1}) \otimes \mathbb{C}) \right) = \left\{ (v_0, \ldots, v_s) \in \mathbb{R}_{+}^{s+1} : 2 \max (|a_0| \sqrt{v_0}, |a_1| \sqrt{v_1}, \ldots, |a_s| \sqrt{v_s}) \leq \sum_{i=0}^{s} |a_i| \sqrt{v_i} \right\}.
\]

Corollary

The program (1) is $(n - 1)$-SDP exact if and only if

\[
2 \max \left(|a_0| \sqrt{f(x^0) - f_*}, |a_1| \sqrt{f(x^1) - f_*}, \ldots, |a_s| \sqrt{f(x^s) - f_*} \right) \leq \sum_{i=0}^{s} |a_i| \sqrt{f(x^i) - f_*}.
\]
Ronkin Function and the Spine of Amoeba

Ronkin function associated with ℓ:

$$N_\ell(w) = \frac{1}{(2\pi i)^s} \int \log^{-1}(w) \frac{\log |\ell(z_1, \ldots, z_s)|}{z_1 \cdots z_s} \, dz_1 \cdots dz_s, \quad \forall w \in \mathbb{R}^s.$$

- N_ℓ is affine on each connected component of A_ℓ^c.

- Piecewise linear approximation of N_ℓ:

 $$S(w) = \max_{\alpha \in G} c_\alpha + \langle \alpha, w \rangle.$$

 We have

 $$N_\ell(w) = S(w), \quad \forall w \notin A_\ell.$$

- Spine: nondifferentiable points of S.

...
A Sufficient Condition for $(n - 1)$-SDP Exactness

Proposition

If the maximum in

$$
\left(|a_0| \sqrt{f(x^0) - f_*}, |a_1| \sqrt{f(x^1) - f_*}, \ldots, |a_s| \sqrt{f(x^s) - f_*} \right)
$$

is attained at least twice, then the program (1) is $(n - 1)$-SDP exact.
Estimation of f_{n-1}

We assume that
\[\sum_{j \neq i} |a_j| > |a_i|, \quad \forall i \in \{0, \ldots, s\}. \]

Theorem

If the maximum in
\[\left(|a_0| \sqrt{f(x^0) - f_*}, |a_1| \sqrt{f(x^1) - f_*}, \ldots, |a_s| \sqrt{f(x^s) - f_*} \right) \]

is attained uniquely at $|a_i| \sqrt{f(x^i)} - f_*$, *then*
\[
\begin{align*}
 f_* - \frac{a_i^2 \max \left(a_i^2 (f(x^i) - f_*) - \left(\sum_{j \neq i} |a_j| \sqrt{f(x^j) - f_*} \right)^2, 0 \right)}{\left(\sum_{j \neq i} |a_j| \right)^2 - a_i^2} & \leq f_{n-1} \leq f_*.
\end{align*}
\]
Applications

Apply the results to the special case when $|a_i| = 1$, $\forall i \in \{0, 1 \ldots, s\}$.

Corollary

Problem (1) is d-SDP exact for any $d \geq n - 1$ if one of the three conditions hold.

- $\deg(f) \leq n - 1$.
- The maximum of f on the feasible region V is attained at least twice.
- f is a polynomial without constant term and

$$f^* \leq \left(\frac{s + 1}{4} - 1\right)(-f^*),$$

Corollary

If the maximum value f^ is attained uniquely at x^i, then*

$$\max\left(\left(f^* - f_*\right) - \left(\sum_{j=0}^{s} \sqrt{f(x^j) - f_* - \sqrt{f^* - f_*}}\right)^2, 0\right) \leq \frac{f_{n-1}}{s^2 - 1} \leq f_*.$$
Conclusion

- Degree bound of Lasserre’s SOS relaxation under the complete intersection assumption
- Connection of the exact region with moment map image
- Description and approximation of the \((n - 1)\)-SDP exact region with the aid of the theory of amoeba
Degree bound on

\[f_\ast = \min_{x \in \mathbb{R}^n} f(x) \]

s.t. \(g_1(x) = g_2(x) = \ldots = g_m(x) = 0 \),

when the set of critical points is finite.

Degree bound depending the degree of \(f \).

More exploitation of moment map image, convex hull and Barvinok’s result.

Inner and outer approximation of \(d \)-SDP exact region.
Barvinok, Alexander (2013). “Convexity of the image of a quadratic map via the relative entropy distance”. In: Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 55. DOI: 10.1007/s13366-013-0187-x.

Forsberg, Mikael et al. (2000). “Laurent determinants and arrangements of hyperplane amoebas”. In: Advances in Mathematics 151, pp. 45–70.

Sakaue, Shinsaku et al. (2017). “Exact Semidefinite Programming Relaxations with Truncated Moment Matrix for Binary Polynomial Optimization Problems”. In: SIAM Journal on Optimization 27.1,