Mutually unbiased bases: polynomial optimization and symmetry

Sven Polak

CWI

Joint work with Sander Gribling (IRIF Paris) arXiv:2111. 05698

Mutually unbiased bases

Definition

Two orthonormal bases B, B^{\prime} of \mathbb{C}^{d} are mutually unbiased if

$$
\left|e^{*} f\right|^{2}=\frac{1}{d} \quad \forall e \in B, f \in B^{\prime}
$$

Mutually unbiased bases

Definition

Two orthonormal bases B, B^{\prime} of \mathbb{C}^{d} are mutually unbiased if

$$
\left|e^{*} f\right|^{2}=\frac{1}{d} \quad \forall e \in B, f \in B^{\prime}
$$

Question

Do there exist k mutually unbiased bases in dimension d ?

Mutually unbiased bases

Definition

Two orthonormal bases B, B^{\prime} of \mathbb{C}^{d} are mutually unbiased if

$$
\left|e^{*} f\right|^{2}=\frac{1}{d} \quad \forall e \in B, f \in B^{\prime}
$$

Question

Do there exist k mutually unbiased bases in dimension d ?

Example

There exist 3 mutually unbiased bases (MUBs) in dimension 2 :

$$
\left\{\binom{1}{0},\binom{0}{1}\right\}, \quad\left\{\frac{1}{\sqrt{2}}\binom{1}{1}, \frac{1}{\sqrt{2}}\binom{1}{-1}\right\}, \quad\left\{\frac{1}{\sqrt{2}}\binom{i}{1}, \frac{1}{\sqrt{2}}\binom{1}{i}\right\} .
$$

Why do so many people study MUBs?

Picture: MS-Tech

Picture: Forest Stearns, Google AI

Mutually unbiased bases yield complementary measurements.

- If outcome in $\left\{u_{i}\right\}_{i \in[d]}$ is deterministic (say u_{1}), then the outcome in $\left\{v_{j}\right\}_{j \in[d]}$ is uniformly random.
Applications in cryptography, quantum information theory.
See the survey 'On mutually unbiased bases'.
(Durt, Englert, Bengtsson, Życzkowski '10).

Known results

- Known: $k \leq d+1$, attained if d is a prime power.
(Ivanovic '81, Wooters-Fields '89)

An affine plane of order 3

Known results

- Known: $k \leq d+1$, attained if d is a prime power.
(Ivanovic '81, Wooters-Fields '89)
- What about $d=6$? Not known if there exist >3 MUBs in \mathbb{C}^{6}.

An affine plane of order 3

- Known: $k \leq d+1$, attained if d is a prime power.
(Ivanovic '81, Wooters-Fields '89)
- What about $d=6$? Not known if there exist >3 MUBs in \mathbb{C}^{6}.
- Lower bound: if $\exists k$ MUBs in $\mathbb{C}^{d_{1}}$ and $\mathbb{C}^{d_{2}}$, then $\exists k$ MUBs in $\mathbb{C}^{d_{1} d_{2}}$.

An affine plane of order 3

Known results

- Known: $k \leq d+1$, attained if d is a prime power.
(Ivanovic '81, Wooters-Fields '89)
- What about $d=6$? Not known if there exist >3 MUBs in \mathbb{C}^{6}.
- Lower bound: if $\exists k \mathrm{MUBs}$ in $\mathbb{C}^{d_{1}}$ and $\mathbb{C}^{d_{2}}$, then $\exists k \mathrm{MUBs}$ in $\mathbb{C}^{d_{1} d_{2}}$.
- Not best possible: for $d=26^{2}=2^{2} 13^{2}$ a construction of $6>2^{2}+1$ MUBs is known.

An affine plane of order 3

Known results

- Known: $k \leq d+1$, attained if d is a prime power.
(Ivanovic '81, Wooters-Fields '89)
- What about $d=6$? Not known if there exist >3 MUBs in \mathbb{C}^{6}.
- Lower bound: if $\exists k$ MUBs in $\mathbb{C}^{d_{1}}$ and $\mathbb{C}^{d_{2}}$, then $\exists k$ MUBs in $\mathbb{C}^{d_{1} d_{2}}$.
- Not best possible: for $d=26^{2}=2^{2} 13^{2}$ a construction of $6>2^{2}+1$ MUBs is known.
(Wocjan-Beth '05)
- Question: $\exists d+1$ MUBs in $\mathbb{C}^{d} \Longleftrightarrow \exists$ affine plane of order d ?

An affine plane of order 3

Elementary upper bound

Upper bound

If there are k MUBs in dimension d, then $k \leq d+1$.
Proof. For each $e \in \mathbb{C}^{d}$, define $M(e):=e e^{*}-I_{d} / d$. Then

$$
M(e) \in \mathcal{M}:=\left\{X \in \mathbb{C}^{d \times d} \mid X^{*}=X, \operatorname{trace}(X)=0\right\}
$$

- Orthonormal basis gives $(d-1)$-dim subspace of \mathcal{M}.
- For $u, v \in \mathbb{C}^{d}$:

$$
\operatorname{trace}(M(u) M(v))=\left|u^{*} v\right|^{2}-1 / d
$$

so MUBs give orthogonal subspaces of \mathcal{M}.

- Hence $k \leq \operatorname{dim}(\mathcal{M}) /(d-1)=\frac{d^{2}-1}{d-1}=d+1$.

MUBs and polynomial optimization

Approach 1: commutative

$\exists k$ MUBs in $\operatorname{dim} d \Longleftrightarrow$ a system of polynomial equations $\left\{f_{1}(x)=0, \ldots, f_{N}(x)=0\right\}$ in $2 k d^{2}$ real variables has a real solution.

MUBs and polynomial optimization

Approach 1: commutative

$\exists k$ MUBs in $\operatorname{dim} d \Longleftrightarrow$ a system of polynomial equations $\left\{f_{1}(x)=0, \ldots, f_{N}(x)=0\right\}$ in $2 k d^{2}$ real variables has a real solution.

- No solution if 1 in ideal generated by f_{1}, \ldots, f_{N}. \rightsquigarrow Gröbner bases

MUBs and polynomial optimization

Approach 1: commutative

$\exists k$ MUBs in $\operatorname{dim} d \Longleftrightarrow$ a system of polynomial equations $\left\{f_{1}(x)=0, \ldots, f_{N}(x)=0\right\}$ in $2 k d^{2}$ real variables has a real solution.

- No solution if 1 in ideal generated by f_{1}, \ldots, f_{N}. \rightsquigarrow Gröbner bases
- Optimization: $\min \left\{f_{1}(x)^{2} \mid f_{2}(x)=0, \ldots, f_{N}(x)=0\right\}$.
- Lasserre hierarchy of lower bounds in polynomial optimization.
(Brierly, Weigert '10)

MUBs and polynomial optimization

Approach 1: commutative

$\exists k$ MUBs in $\operatorname{dim} d \Longleftrightarrow$ a system of polynomial equations $\left\{f_{1}(x)=0, \ldots, f_{N}(x)=0\right\}$ in $2 k d^{2}$ real variables has a real solution.

- No solution if 1 in ideal generated by f_{1}, \ldots, f_{N}. \rightsquigarrow Gröbner bases
- Optimization: $\min \left\{f_{1}(x)^{2} \mid f_{2}(x)=0, \ldots, f_{N}(x)=0\right\}$.
- Lasserre hierarchy of lower bounds in polynomial optimization.
(Brierly, Weigert '10)

Approach 2: noncommutative

$\checkmark \exists k$ MUBs in dimension $d \Longleftrightarrow \exists(d, k)$-MUB C^{*}-algebra.
(Navascués, Pironio, Acín '12)
\rightsquigarrow problem in $d k$ noncommutative real variables.

MUBs and polynomial optimization

Approach 1: commutative

$\exists k$ MUBs in $\operatorname{dim} d \Longleftrightarrow$ a system of polynomial equations $\left\{f_{1}(x)=0, \ldots, f_{N}(x)=0\right\}$ in $2 k d^{2}$ real variables has a real solution.

- No solution if 1 in ideal generated by f_{1}, \ldots, f_{N}. \rightsquigarrow Gröbner bases
- Optimization: $\min \left\{f_{1}(x)^{2} \mid f_{2}(x)=0, \ldots, f_{N}(x)=0\right\}$.
- Lasserre hierarchy of lower bounds in polynomial optimization.
(Brierly, Weigert '10)

Approach 2: noncommutative

$\checkmark \exists k$ MUBs in dimension $d \Longleftrightarrow \exists(d, k)$-MUB C^{*}-algebra.
(Navascués, Pironio, Acín '12)
\rightsquigarrow problem in $d k$ noncommutative real variables.

- Quantum random access codes and nonlocal games. \rightsquigarrow no $d+2$ MUBs for $d=3,4$. (Aguilar, Borkała, Mironowicz, Pawłowski '18)

Our contributions

SDPs resulting from characterization of Navascués, Pironio, Acín are symmetric under an action of the wreath product $S_{d} \backslash S_{k}=S_{d}^{k} \rtimes S_{k}$.

- We fully exploit this symmetry to reduce the SDPs.

Main contribution

Explicit decomposition of the $S_{d}\left\{S_{k}\right.$-module $\mathbb{C}^{([d] \times[k])^{t}}$ into irreducibles.

Our contributions

SDPs resulting from characterization of Navascués, Pironio, Acín are symmetric under an action of the wreath product $S_{d} \backslash S_{k}=S_{d}^{k} \rtimes S_{k}$.

- We fully exploit this symmetry to reduce the SDPs.

Main contribution

Explicit decomposition of the $S_{d} \backslash S_{k}$-module $\mathbb{C}^{([d] \times[k])^{t}}$ into irreducibles.

- We compute several levels of the hierarchy.
- Up to level 5.5 for $(d, k)=(6,7)$.
- Numerical SOS-certificates that no $d+2$ MUBs exist in dimensions $d=2,3,4,5,6,7,8$.

MUB-algebra

If $\left\{u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right\}, \ldots,\left\{u_{1}^{(k)}, \ldots, u_{d}^{(k)}\right\}$ are k MUBs in \mathbb{C}^{d}, define

$$
x_{i, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*} \text { for all } i \in[d], j \in[k] .
$$

MUB-algebra

If $\left\{u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right\}, \ldots,\left\{u_{1}^{(k)}, \ldots, u_{d}^{(k)}\right\}$ are k MUBs in \mathbb{C}^{d}, define

$$
X_{i, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*} \text { for all } i \in[d], j \in[k] .
$$

Relations

The $X_{i, j}$ are rank- 1 projectors with:

1. $X_{i, j} X_{\ell, j}=\delta_{i, \ell} X_{i, j}$ for all $i, \ell \in[d], j \in[k]$.
$\bigsqcup X_{i, j} X_{\ell, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*} u_{\ell}^{(j)}\left(u_{\ell}^{(j)}\right)^{*}=\delta_{i, \ell} X_{i, j}$.

MUB-algebra

If $\left\{u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right\}, \ldots,\left\{u_{1}^{(k)}, \ldots, u_{d}^{(k)}\right\}$ are k MUBs in \mathbb{C}^{d}, define

$$
X_{i, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*} \text { for all } i \in[d], j \in[k] .
$$

Relations

The $X_{i, j}$ are rank- 1 projectors with:

1. $X_{i, j} X_{\ell, j}=\delta_{i, \ell} X_{i, j}$ for all $i, \ell \in[d], j \in[k]$.
$\rightarrow X_{i, j} X_{\ell, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*} u_{\ell}^{(j)}\left(u_{\ell}^{(j)}\right)^{*}=\delta_{i, \ell} X_{i, j}$.
2. $\sum_{i \in[d]} X_{i, j}=I$ for all $j \in[k]$.
3. $X_{i, j} X_{\ell, m} X_{i, j}=\frac{1}{d} X_{i, j}$ for all $i, \ell \in[d], j, m \in[k]$ with $j \neq m$.
4. $\left[X_{i, j} \cup X_{i, j}, X_{i, j} V X_{i, j}\right]=0$ for all $i \in[d], j \in[k], U, V \in \mathbb{C}^{d \times d}$.

MUB-algebra

If $\left\{u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right\}, \ldots,\left\{u_{1}^{(k)}, \ldots, u_{d}^{(k)}\right\}$ are k MUBs in \mathbb{C}^{d}, define

$$
X_{i, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*} \text { for all } i \in[d], j \in[k] .
$$

Relations

The $X_{i, j}$ are rank- 1 projectors with:

1. $X_{i, j} X_{\ell, j}=\delta_{i, \ell} X_{i, j}$ for all $i, \ell \in[d], j \in[k]$.

$$
\bigsqcup X_{i, j} X_{\ell, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*} u_{\ell}^{(j)}\left(u_{\ell}^{(j)}\right)^{*}=\delta_{i, \ell} X_{i, j} .
$$

2. $\sum_{i \in[d]} X_{i, j}=I$ for all $j \in[k]$.
3. $X_{i, j} X_{\ell, m} X_{i, j}=\frac{1}{d} X_{i, j}$ for all $i, \ell \in[d], j, m \in[k]$ with $j \neq m$.
4. $\left[X_{i, j} \cup X_{i, j}, X_{i, j} V X_{i, j}\right]=0$ for all $i \in[d], j \in[k], U, V \in \mathbb{C}^{d \times d}$.

Theorem (Navascués, Pironio, Acín '12)

$\exists k$ MUBs in dimension $d \Longleftrightarrow$
$\exists C^{*}$-algebra \mathcal{A} with self-adjoint operators $X_{i, j} \in \mathcal{A}$ satisfying 1-4

MUB-algebra

If $\left\{u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right\}, \ldots,\left\{u_{1}^{(k)}, \ldots, u_{d}^{(k)}\right\}$ are k MUBs in \mathbb{C}^{d}, define

$$
X_{i, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*} \text { for all } i \in[d], j \in[k] .
$$

Relations

The $X_{i, j}$ are rank- 1 projectors with:

1. $X_{i, j} X_{\ell, j}=\delta_{i, \ell} X_{i, j}$ for all $i, \ell \in[d], j \in[k]$.

$$
\bigsqcup X_{i, j} X_{\ell, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*} u_{\ell}^{(j)}\left(u_{\ell}^{(j)}\right)^{*}=\delta_{i, \ell} X_{i, j} .
$$

2. $\sum_{i \in[d]} X_{i, j}=I$ for all $j \in[k]$.
3. $X_{i, j} X_{\ell, m} X_{i, j}=\frac{1}{d} X_{i, j}$ for all $i, \ell \in[d], j, m \in[k]$ with $j \neq m$.
4. $\left[X_{i, j} \cup X_{i, j}, X_{i, j} V X_{i, j}\right]=0$ for all $i \in[d], j \in[k], U, V \in \mathbb{C}^{d \times d}$.

Theorem (Navascués, Pironio, Acín '12)

$\exists k$ MUBs in dimension $d \Longleftrightarrow$
$\exists C^{*}$-algebra \mathcal{A} with self-adjoint operators $X_{i, j} \in \mathcal{A}$ satisfying 1-4
with linear $\tau: \mathcal{A} \rightarrow \mathbb{R}$ which is positive $\tau\left(a^{*} a\right) \geq 0$ and tracial $\tau(a b)=\tau(b a)$ for all $a, b \in \mathcal{A}$.

SDP formulation

$$
\begin{gathered}
f(d, k)=\inf \left\{0: \exists L \in \mathbb{R}\langle\mathbf{x}\rangle^{*} \text { with } L \text { positive, tracial, } L=0 \text { on } \mathcal{I}_{\mathrm{MUB}},\right. \\
\left.L\left(x_{i, j}\right)=1 \text { for all } i \in[d], j \in[k]\right\} .
\end{gathered}
$$

SDP formulation

$f(d, k)=\inf \left\{0: \exists L \in \mathbb{R}\langle\mathbf{x}\rangle^{*}\right.$ with L positive, tracial, $L=0$ on $\mathcal{I}_{\text {MUB }}$,

$$
\left.L\left(x_{i, j}\right)=1 \text { for all } i \in[d], j \in[k]\right\}
$$

Level t bound

$$
\begin{aligned}
& \operatorname{sdp}(d, k, t)=\inf \left\{0: \exists L \in \mathbb{R}\langle\mathbf{x}\rangle_{2 t}^{*} \text { s.t. } L\right. \text { is tracial, } \\
& L=0 \text { on } \mathcal{I}_{\mathrm{MUB}, 2 t}, \\
& L\left(p^{*} p\right) \geq 0 \text { for all } p \in \mathbb{R}\langle\mathbf{x}\rangle_{=t}, \\
&\left.L\left(x_{i, j}\right)=1 \text { for all } i \in[d], j \in[k]\right\} .
\end{aligned}
$$

SDP formulation

$f(d, k)=\inf \left\{0: \exists L \in \mathbb{R}\langle\mathbf{x}\rangle^{*}\right.$ with L positive, tracial, $L=0$ on $\mathcal{I}_{\mathrm{MUB}}$,

$$
\left.L\left(x_{i, j}\right)=1 \text { for all } i \in[d], j \in[k]\right\}
$$

Level t bound

$$
\begin{aligned}
\operatorname{sdp}(d, k, t)=\inf \{0 & : \exists L \in \mathbb{R}\langle\mathbf{x}\rangle_{2 t}^{*} \text { s.t. } L \text { is tracial, } \\
& L=0 \text { on } \mathcal{I}_{\mathrm{MUB}, 2 t}, \\
& L\left(p^{*} p\right) \geq 0 \text { for all } p \in \mathbb{R}\langle\mathbf{x}\rangle_{=t}, \\
& \left.L\left(x_{i, j}\right)=1 \text { for all } i \in[d], j \in[k]\right\} .
\end{aligned}
$$

Positivity condition gives SDP:

$$
L\left(p^{*} p\right) \geq 0 \text { for all } p \in \mathbb{R}\langle\boldsymbol{x}\rangle_{=t} \quad \Longleftrightarrow \quad M_{t}(L):=\left(L\left(u^{*} v\right)\right)_{u, v \in\langle\boldsymbol{x}\rangle_{=t}} \succeq 0
$$

SDP formulation

$$
\begin{gathered}
f(d, k)=\inf \left\{0: \exists L \in \mathbb{R}\langle\mathbf{x}\rangle^{*} \text { with } L \text { positive, tracial, } L=0 \text { on } \mathcal{I}_{\text {MUB }},\right. \\
\left.L\left(x_{i, j}\right)=1 \text { for all } i \in[d], j \in[k]\right\} .
\end{gathered}
$$

Level t bound

$$
\begin{aligned}
\operatorname{sdp}(d, k, t)=\inf \{0 & : \exists L \in \mathbb{R}\langle\mathbf{x}\rangle_{2 t}^{*} \text { s.t. } L \text { is tracial, } \\
& L=0 \text { on } \mathcal{I}_{\mathrm{MUB}, 2 t}, \\
& L\left(p^{*} p\right) \geq 0 \text { for all } p \in \mathbb{R}\langle\mathbf{x}\rangle_{=t}, \\
& \left.L\left(x_{i, j}\right)=1 \text { for all } i \in[d], j \in[k]\right\} .
\end{aligned}
$$

Positivity condition gives SDP:

$$
L\left(p^{*} p\right) \geq 0 \text { for all } p \in \mathbb{R}\langle\boldsymbol{x}\rangle_{=t} \quad \Longleftrightarrow \quad M_{t}(L):=\left(L\left(u^{*} v\right)\right)_{u, v \in\langle\boldsymbol{x}\rangle_{=t}} \succeq 0
$$

Certificates

$\operatorname{sdp}(d, k, t)$ infeasible $\quad \Longrightarrow \quad$ no $k M U B s$ in \mathbb{C}^{d}. No k MUBs in $\mathbb{C}^{d} \quad \Longrightarrow \quad \exists t$ with $\operatorname{sdp}(d, k, t)$ infeasible.

Group-invariant problem

Suppose: G finite group, acting on $[d] \times[k]$, hence on $\mathbb{R}\langle\boldsymbol{x}\rangle$, s.t.

$$
p \in \mathcal{I}_{\mathrm{MUB}} \Longrightarrow \sigma \cdot p \in \mathcal{I}_{\mathrm{MUB}} \quad \forall \sigma \in G .
$$

Group-invariant problem
Suppose: G finite group, acting on $[d] \times[k]$, hence on $\mathbb{R}\langle\boldsymbol{x}\rangle$, s.t.

$$
p \in \mathcal{I}_{\mathrm{MUB}} \Longrightarrow \sigma \cdot p \in \mathcal{I}_{\mathrm{MUB}} \quad \forall \sigma \in G
$$

Then L feasible $\Longrightarrow \sigma \cdot L \in \mathbb{R}\langle\boldsymbol{x}\rangle^{*}$ feasible, with $\sigma \cdot L(p)=L(\sigma \cdot p)$.

Group-invariant problem

Suppose: G finite group, acting on $[d] \times[k]$, hence on $\mathbb{R}\langle\boldsymbol{x}\rangle$, s.t.

$$
p \in \mathcal{I}_{\mathrm{MUB}} \Longrightarrow \sigma \cdot p \in \mathcal{I}_{\mathrm{MUB}} \quad \forall \sigma \in G .
$$

Then L feasible $\Longrightarrow \sigma \cdot L \in \mathbb{R}\langle\boldsymbol{x}\rangle^{*}$ feasible, with $\sigma \cdot L(p)=L(\sigma \cdot p)$. Indeed:

- $M(\sigma \cdot L) \succeq 0$
$\bigsqcup M(\sigma \cdot L)_{u, v}=\sigma \cdot L\left(u^{*} v\right)=L\left(\sigma\left(u^{*} v\right)\right)=L\left(\sigma\left(u^{*}\right) \sigma(v)\right)=M(L)_{\sigma \cdot u, \sigma \cdot v}$
- $\sigma \cdot L=0$ on $\mathcal{I}_{\text {MUB }}$
- $\sigma \cdot L$ is tracial.
$\measuredangle \sigma \cdot L(a b)=L(\sigma(a b))=L(\sigma(a) \sigma(b))=L(\sigma(b) \sigma(a))=\sigma \cdot L(b a)$.

Group-invariant problem

Suppose: G finite group, acting on $[d] \times[k]$, hence on $\mathbb{R}\langle\boldsymbol{x}\rangle$, s.t.

$$
p \in \mathcal{I}_{\mathrm{MUB}} \Longrightarrow \sigma \cdot p \in \mathcal{I}_{\mathrm{MUB}} \quad \forall \sigma \in G .
$$

Then L feasible $\Longrightarrow \sigma \cdot L \in \mathbb{R}\langle\boldsymbol{x}\rangle^{*}$ feasible, with $\sigma \cdot L(p)=L(\sigma \cdot p)$. Indeed:

- $M(\sigma \cdot L) \succeq 0$
$\bigsqcup M(\sigma \cdot L)_{u, v}=\sigma \cdot L\left(u^{*} v\right)=L\left(\sigma\left(u^{*} v\right)\right)=L\left(\sigma\left(u^{*}\right) \sigma(v)\right)=M(L)_{\sigma \cdot u, \sigma \cdot v}$
- $\sigma \cdot L=0$ on $\mathcal{I}_{\text {MUB }}$
- $\sigma \cdot L$ is tracial.
$\bigsqcup \sigma \cdot L(a b)=L(\sigma(a b))=L(\sigma(a) \sigma(b))=L(\sigma(b) \sigma(a))=\sigma \cdot L(b a)$.
$\Longrightarrow \quad L^{G}:=\frac{1}{|G|} \sum_{\sigma \in G} \sigma \cdot L$ is feasible, and G-invariant.

Assumption

Optimum L is G-invariant. \rightsquigarrow significant reduction in number of variables

The symmetry of the problem
Suppose $\left\{u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right\}, \ldots,\left\{u_{1}^{(k)}, \ldots, u_{d}^{(k)}\right\}$ are k MUBs in \mathbb{C}^{d}.

The symmetry of the problem

Suppose $\left\{u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right\}, \ldots,\left\{u_{1}^{(k)}, \ldots, u_{d}^{(k)}\right\}$ are k MUBs in \mathbb{C}^{d}.

The group $G=S_{d} \backslash S_{k}$ acts on the $X_{i, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*}$ via:
$\left(\sigma_{1}, \ldots, \sigma_{k} ; \pi\right) \cdot X_{i, j}=X_{\sigma_{\pi(j)}(i), \pi(j)}, \quad(i \in[d], j \in[k])$, respecting $\mathcal{I}_{\text {MUB }}$.

The symmetry of the problem

Suppose $\left\{u_{1}^{(1)}, \ldots, u_{d}^{(1)}\right\}, \ldots,\left\{u_{1}^{(k)}, \ldots, u_{d}^{(k)}\right\}$ are k MUBs in \mathbb{C}^{d}.

The group $G=S_{d} \backslash S_{k}$ acts on the $X_{i, j}=u_{i}^{(j)}\left(u_{i}^{(j)}\right)^{*}$ via:
$\left(\sigma_{1}, \ldots, \sigma_{k} ; \pi\right) \cdot X_{i, j}=X_{\sigma_{\pi(j)}(i), \pi(j)}, \quad(i \in[d], j \in[k])$, respecting $\mathcal{I}_{\text {MUB }}$.

Example of G-invariant L

Let $t=1$. Then $M(L)_{=1}$ contains monomials of length 2 . Up to S_{d} 久 S_{k} :

$$
\begin{aligned}
& L\left(x_{1,1} x_{1,1}\right)=L\left(x_{1,1}\right)=1 \\
& L\left(x_{1,1} x_{1,2}\right)=L\left(x_{1,1} x_{1,2} x_{1,1}\right)=1 / d \\
& L\left(x_{1,1} x_{2,1}\right)=0 .
\end{aligned}
$$

Approach: reduction via block-diagonalization

Symmetric problems have symmetric solutions in a matrix algebra. Then there exists a reduction to matrix blocks.

- Challenge: obtain reduction, no general recipe.
- Approach: study representation theory of group leaving the problem invariant.

Block-diagonalization

Artin-Wedderburn

Every (unital) complex matrix $*$-algebra \mathcal{A} is $*$-isomorphic to a direct sum of full matrix $*$-algebras.

$$
\mathcal{A} \cong \bigoplus_{i=1}^{k} \mathbb{C}^{m_{i} \times m_{i}}
$$

The m_{i} depend on the "commutativity" of \mathcal{A}. Small example:

$$
\left(\begin{array}{llll}
a & b & b & b \\
b & c & d & d \\
b & d & c & d \\
b & d & d & c
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad\left(\begin{array}{ccc}
a & 3 b \\
3 b & 3 c+6 d & \\
& & 2 c-2 d
\end{array}\right) \succeq 0 .
$$

Block-diagonalization

Artin-Wedderburn

Every (unital) complex matrix $*$-algebra \mathcal{A} is $*$-isomorphic to a direct sum of full matrix *-algebras.

$$
\mathcal{A} \cong \bigoplus_{i=1}^{k} \mathbb{C}^{m_{i} \times m_{i}}
$$

The m_{i} depend on the "commutativity" of \mathcal{A}. Small example:

$$
\left(\begin{array}{llll}
a & b & b & b \\
b & c & d & d \\
b & d & c & d \\
b & d & d & c
\end{array}\right) \succeq 0 \quad \Longleftrightarrow \quad\left(\begin{array}{ccc}
a & 3 b \\
3 b & 3 c+6 d & \\
& & 2 c-2 d
\end{array}\right) \succeq 0 .
$$

Applications in

- Coding theory
- Other areas of combinatorics
- Polynomial optimization
(Gatermann, Parrilo '04, Riener, Theobald, Andrén, Lasserre '13)

Group invariance and Artin-Wedderburn

Let G be a finite group acting on a finite set Z. Decompose \mathbb{C}^{Z} as:

$$
V=\bigoplus_{i=1}^{k} \bigoplus_{j=1}^{m_{i}} V_{i, j}
$$

for irreducible G-modules $V_{i, j}$ with $V_{i, j} \cong V_{i^{\prime}, j^{\prime}}$ iff $i=i^{\prime}$.

Group invariance and Artin-Wedderburn

Let G be a finite group acting on a finite set Z. Decompose \mathbb{C}^{Z} as:

$$
V=\bigoplus_{i=1}^{k} \bigoplus_{j=1}^{m_{i}} V_{i, j}
$$

for irreducible G-modules $V_{i, j}$ with $V_{i, j} \cong V_{i^{\prime}, j^{\prime}}$ iff $i=i^{\prime}$. Choose nonzero $u_{i, j} \in V_{i, j}$ s.t. for all $i \in[k], j, j^{\prime} \in\left[m_{i}\right]$ there is a G-isomorphism $V_{i, j} \rightarrow V_{i, j^{\prime}}$ mapping $u_{i, j}$ to $u_{i, j^{\prime}}$. Define the map

$$
\begin{aligned}
\Phi:\left(\mathbb{C}^{Z \times Z}\right)^{G} & \rightarrow \bigoplus_{i=1}^{k} \mathbb{C}^{m_{i} \times m_{i}}, \\
A & \mapsto \bigoplus_{i=1}^{k}\left(\left\langle u_{i, j^{\prime}}, A u_{i, j}\right\rangle\right)_{j, j^{\prime} \in\left[m_{i}\right]}
\end{aligned}
$$

Group invariance and Artin-Wedderburn

Let G be a finite group acting on a finite set Z. Decompose \mathbb{C}^{Z} as:

$$
V=\bigoplus_{i=1}^{k} \bigoplus_{j=1}^{m_{i}} V_{i, j}
$$

for irreducible G-modules $V_{i, j}$ with $V_{i, j} \cong V_{i^{\prime}, j^{\prime}}$ iff $i=i^{\prime}$. Choose nonzero $u_{i, j} \in V_{i, j}$ s.t. for all $i \in[k], j, j^{\prime} \in\left[m_{i}\right]$ there is a G-isomorphism $V_{i, j} \rightarrow V_{i, j^{\prime}}$ mapping $u_{i, j}$ to $u_{i, j^{\prime}}$. Define the map

$$
\begin{aligned}
\Phi:\left(\mathbb{C}^{Z \times Z}\right)^{G} & \rightarrow \bigoplus_{i=1}^{k} \mathbb{C}^{m_{i} \times m_{i}} \\
A & \mapsto \bigoplus_{i=1}^{k}\left(\left\langle u_{i, j^{\prime}}, A u_{i, j}\right\rangle\right)_{j, j^{\prime} \in\left[m_{i}\right]}
\end{aligned}
$$

Key fact

For all $A \in\left(\mathbb{C}^{Z \times Z}\right)^{G}$ we have $A \succeq 0 \Longleftrightarrow \Phi(A) \succeq 0$.

Symmetry reduction

Recall: $\operatorname{sdp}(d, k, t)=\inf \left\{0: \exists L \in \mathbb{R}\langle\mathbf{x}\rangle_{2 t}^{*}\right.$ s.t. L is tracial, G-invariant,

$$
L=0 \text { on } \mathcal{I}_{\mathrm{MUB}, 2 t}, L(I)=d
$$

$$
\left.M_{t}(L):=\left(L\left(u^{*} v\right)\right)_{u, v \in\langle\boldsymbol{x}\rangle=t} \succeq 0\right\}
$$

In our case $Z=\langle\mathbf{x}\rangle_{=t} \simeq([d] \times[k])^{t}$ and $G=S_{d}\left\langle S_{k}\right.$.

Symmetry reduction

Recall: $\operatorname{sdp}(d, k, t)=\inf \left\{0: \exists L \in \mathbb{R}\langle\mathbf{x}\rangle_{2 t}^{*}\right.$ s.t. L is tracial, G-invariant,

$$
\begin{aligned}
& L=0 \text { on } \mathcal{I}_{\text {MUB }, 2 t}, L(I)=d, \\
& \left.M_{t}(L):=\left(L\left(u^{*} v\right)\right)_{u, v \in\langle\boldsymbol{x}\rangle=t} \succeq 0\right\} .
\end{aligned}
$$

In our case $Z=\langle\mathbf{x}\rangle_{=t} \simeq([d] \times[k])^{t}$ and $G=S_{d} \prec S_{k}$.
First decomposition from G-orbits: $\mathbb{C}^{Z}=\bigoplus_{(P, \mathbf{Q})} V_{P, \boldsymbol{Q}}$, where

- $P=\left\{P_{1}, \ldots, P_{r}\right\}$ is a set partition of $[t]$ in $\leq k$ parts,
- $\boldsymbol{Q}=\left\{Q_{1}, \ldots, Q_{r}\right\}$ where Q_{i} is a set partition of P_{i} in $\leq d$ parts.

Symmetry reduction

Recall: $\operatorname{sdp}(d, k, t)=\inf \left\{0: \exists L \in \mathbb{R}\langle\mathbf{x}\rangle_{2 t}^{*}\right.$ s.t. L is tracial, G-invariant,

$$
\begin{aligned}
& L=0 \text { on } \mathcal{I}_{\text {MUB }, 2 t}, L(I)=d, \\
& \left.M_{t}(L):=\left(L\left(u^{*} v\right)\right)_{u, v \in\langle\boldsymbol{x}\rangle=t} \succeq 0\right\} .
\end{aligned}
$$

In our case $Z=\langle\mathbf{x}\rangle_{=t} \simeq([d] \times[k])^{t}$ and $\left.G=S_{d}\right\} S_{k}$.
First decomposition from G-orbits: $\mathbb{C}^{Z}=\bigoplus_{(P, \mathbf{Q})} V_{P, \boldsymbol{Q}}$, where

- $P=\left\{P_{1}, \ldots, P_{r}\right\}$ is a set partition of $[t]$ in $\leq k$ parts,
- $\boldsymbol{Q}=\left\{Q_{1}, \ldots, Q_{r}\right\}$ where Q_{i} is a set partition of P_{i} in $\leq d$ parts.

Example of (P, Q) for $t=4$:
$P=\{\{1,3,4\},\{2\}\}, \boldsymbol{Q}=\left\{Q_{1}, Q_{2}\right\}$ with $Q_{1}=\{\{1,3\},\{4\}\}, Q_{2}=\{2\}$
$V_{P, \mathbf{Q}}:=$ span of monomials with indices $(i, j)(a, \ell)(i, j)(b, j)$

Decomposing V_{P} with S_{k}-action: 'L-shapes'

First consider S_{k}-action on monomials in x_{1}, \ldots, x_{k}.
S_{k}-orbit of $\langle\mathbf{x}\rangle_{=\mathbf{t}} \stackrel{1: 1}{\longleftrightarrow} P=\left\{P_{1}, \ldots, P_{r}\right\}$ set partition of $[t]$ in $\leq k$ parts.

Decomposing V_{p} with S_{k}-action: 'L-shapes'

First consider S_{k}-action on monomials in x_{1}, \ldots, x_{k}.
S_{k}-orbit of $\langle\mathbf{x}\rangle_{=\mathbf{t}} \stackrel{1: 1}{\longleftrightarrow} P=\left\{P_{1}, \ldots, P_{r}\right\}$ set partition of $[t]$ in $\leq k$ parts.
V_{P} is a permutation module $M^{\mu_{r}}$ for the partition $\mu_{r}=(k-r, \overbrace{1, \ldots, 1}^{r \text { times }})$: Identify monomial in V_{P} (with $w_{j} \in[k]$ assigned to P_{j}) with tabloid

Decomposing V_{p} with S_{k}-action: 'L-shapes'

First consider S_{k}-action on monomials in x_{1}, \ldots, x_{k}.
S_{k}-orbit of $\langle\mathbf{x}\rangle_{=\mathbf{t}} \stackrel{1: 1}{\longleftrightarrow} P=\left\{P_{1}, \ldots, P_{r}\right\}$ set partition of $[t]$ in $\leq k$ parts.
V_{P} is a permutation module $M^{\mu_{r}}$ for the partition $\mu_{r}=(k-r, \overbrace{1, \ldots, 1}^{r \text { times }})$: Identify monomial in V_{P} (with $w_{j} \in[k]$ assigned to P_{j}) with tabloid

Decomposition follows directly from known representation theory of S_{k}.

$$
V_{P}=M^{\mu_{r}}=\bigoplus_{\lambda \vdash k}\left(\bigoplus_{\tau \in T_{\lambda, \mu_{r}}} \tau \cdot S^{\lambda}\right)
$$

(e.g., Sagan '01)

Decomposing $V_{P, Q}$ with S_{d} S_{k}-action

Monomials in $V_{P, \boldsymbol{Q}}$ correspond to tensor products of tabloids.

As before: if $w(j) \in[k]$ assigned to $P_{j} \quad \longrightarrow \quad w=\frac{\frac{w(1)}{\vdots}}{\frac{\overline{w(r)}}{\overline{\ldots \ldots \ldots}}}$
if $v^{i}(j) \in[d]$ assigned to the j-th set in $Q_{i} \quad \longrightarrow \quad v_{i}=\frac{v^{i}(1)}{\frac{v^{i}\left(\left|Q_{i}\right|\right)}{\vdots}}$

Decomposing $V_{P, Q}$ with S_{d} S_{k}-action

Monomials in $V_{P, \boldsymbol{Q}}$ correspond to tensor products of tabloids.

As before: if $w(j) \in[k]$ assigned to $P_{j} \quad \longrightarrow \quad w=\frac{\frac{w(1)}{\vdots}}{\frac{\frac{w(r)}{\vdots}}{\underline{\ldots \ldots \cdots}}}$
if $v^{i}(j) \in[d]$ assigned to the j-th set in $Q_{i} \longrightarrow \quad v_{i}=\frac{v^{i}(1)}{\frac{v^{i}\left(\left|Q_{i}\right|\right)}{\vdots}}$
$S_{d} \imath S_{k}$-action is $\left(\sigma_{1}, \ldots, \sigma_{k} ; \tau\right) \cdot\left(\left(\bigotimes_{i \in[r]} v_{i}\right) \otimes w\right)=\left(\bigotimes_{i \in[r]} \sigma_{\tau w(i)} v_{i}\right) \otimes \tau w$

Decomposing $V_{P, Q}$ with $S_{d} \backslash S_{k}$-action - II

The irreducible 'Specht' modules of $S_{d} \backslash S_{k}$ are known, but the action looks different:

$$
\left(\sigma_{1}, \ldots, \sigma_{k} ; \tau\right) \cdot \bigotimes_{i \in[k]} v_{i}=\bigotimes_{i \in[k]} \sigma_{i} \cdot v_{\tau^{-1}(i)}
$$

Decomposing $V_{P, Q}$ with $S_{d} \backslash S_{k}$-action - II

The irreducible 'Specht' modules of $S_{d} \backslash S_{k}$ are known, but the action looks different:

$$
\left(\sigma_{1}, \ldots, \sigma_{k} ; \tau\right) \cdot \bigotimes_{i \in[k]} v_{i}=\bigotimes_{i \in[k]} \sigma_{i} \cdot v_{\tau^{-1}(i)}
$$

- We decompose $V_{P, \boldsymbol{Q}}$ by separately decomposing each permutation module for S_{d} or S_{k}.

Decomposing $V_{P, Q}$ with $S_{d} \backslash S_{k}$-action - II

The irreducible 'Specht' modules of $S_{d} \backslash S_{k}$ are known, but the action looks different:

$$
\left(\sigma_{1}, \ldots, \sigma_{k} ; \tau\right) \cdot \bigotimes_{i \in[k]} v_{i}=\bigotimes_{i \in[k]} \sigma_{i} \cdot v_{\tau^{-1}(i)}
$$

- We decompose $V_{P, \boldsymbol{Q}}$ by separately decomposing each permutation module for S_{d} or S_{k}.
- Key step: We show that the modules in our decomposition are isomorphic to known 'Specht' modules Sㅅ.

Decomposing $V_{P, Q}$ with $S_{d} \backslash S_{k}$-action - II

The irreducible 'Specht' modules of $S_{d} \backslash S_{k}$ are known, but the action looks different:

$$
\left(\sigma_{1}, \ldots, \sigma_{k} ; \tau\right) \cdot \bigotimes_{i \in[k]} v_{i}=\bigotimes_{i \in[k]} \sigma_{i} \cdot v_{\tau^{-1}(i)}
$$

- We decompose $V_{P, \boldsymbol{Q}}$ by separately decomposing each permutation module for S_{d} or S_{k}.
- Key step: We show that the modules in our decomposition are isomorphic to known 'Specht' modules S ㄱ.
- Link to literature: $V_{P, \boldsymbol{Q}} \cong M^{\underline{\gamma}}$, for known 'permutation' module $M \underline{\underline{\gamma}}$.
- Multiplicities of $S^{\underline{\lambda}}$ in $M^{\underline{\gamma}}$ can be derived from the literature,
- Explicit embeddings not available.

Computational results - full hierarchy

- $\sum m_{i}^{2}$ obtained from reduction for $d, k \geq 2 t$ is entry $2 t$ of OEIS A000258: 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137.

Computational results - full hierarchy

- $\sum m_{i}^{2}$ obtained from reduction for $d, k \geq 2 t$ is entry $2 t$ of OEIS A000258: 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137.
- We compute several levels of the hierarchy:

d	k	t	$(d k)^{[t]}$	\#vars	\#linear constraints	block sizes		result
					sum	max		
2	4	4.5	4096	7	8	472	85	infeasible
3	5	4.5	50625	7	2	1259	142	infeasible
4	6	5	7962624	43	2	6374	389	infeasible
5	7	5	52521875	43	2	6732	389	infeasible
6	8	5	254803968	43	2	6820	389	infeasible
7	9	5	992436543	43	2	6830	389	infeasible
8	10	5	3276800000	43	2	6831	389	infeasible
6	4	5.5	7962624	54	3	8049	577	feasible
6	7	4.5	3111696	7	0	1627	146	feasible
6	7	5	130691232	43	2	6749	389	feasible
6	7	5.5	130691232	75	3	18538	1107	feasible

Future work

- Improve implementation, run on cluster instead of desktop. - Aim: no 7 MUBs in dimension 6 .

Future work

- Improve implementation, run on cluster instead of desktop. - Aim: no 7 MUBs in dimension 6.
- Partial approaches: subset of blocks or relations from higher levels.

Future work

- Improve implementation, run on cluster instead of desktop. - Aim: no 7 MUBs in dimension 6 .
- Partial approaches: subset of blocks or relations from higher levels.
- If infeasible, find analytic certificate.
- Question: certificate for no $d+2$ MUBs in \mathbb{C}^{d} at level $t=5$?

Future work

- Improve implementation, run on cluster instead of desktop.
- Aim: no 7 MUBs in dimension 6 .
- Partial approaches: subset of blocks or relations from higher levels.
- If infeasible, find analytic certificate.
- Question: certificate for no $d+2$ MUBs in \mathbb{C}^{d} at level $t=5$?
- Can the reduction be computed in polynomial time, for fixed t ?

- Improve implementation, run on cluster instead of desktop.
- Aim: no 7 MUBs in dimension 6 .
- Partial approaches: subset of blocks or relations from higher levels.
- If infeasible, find analytic certificate.
- Question: certificate for no $d+2$ MUBs in \mathbb{C}^{d} at level $t=5$?
- Can the reduction be computed in polynomial time, for fixed t ?
- Symmetry reduction for other semidefinite programming approaches. (e.g., QRAC-formulation of Aguilar, Borkała, Mironowicz, Pawłowski '18)

Computational results $-S_{k}$-part

- Use only submatrix indexed by monomials $x_{1, j}$ with $j \in[k]$.

Computational results $-S_{k}$-part

- Use only submatrix indexed by monomials $x_{1, j}$ with $j \in[k]$.
- Bell numbers: $\sum m_{i}^{2}$ obtained from reduction for $k \geq 2 t$ is entry $2 t$ of OEIS A000110: 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975.

d	k	t	$k^{[t]}$	\#vars	\#linear constraints	block sizes		result
				sum	max			
2	4	4.5	256	5	0	48	24	infeasible
3	5	4.5	625	5	0	95	32	infeasible
4	6	5	7776	17	2	364	70	infeasible
5	7	6.5	117649	467	74	3288	640	infeasible
6	4	7.5	16384	20	5	586	293	feasible
6	7	6.5	117649	467	74	3288	640	feasible

