Mutually unbiased bases: polynomial optimization and symmetry

Sven Polak

Joint work with Sander Gribling (IRIF Paris)

arXiv:2111.05698
Mutually unbiased bases

Definition

Two orthonormal bases B, B' of \mathbb{C}^d are \textit{mutually unbiased} if

$$|e^*f|^2 = \frac{1}{d} \quad \forall e \in B, f \in B'.$$
Mutually unbiased bases

Definition

Two orthonormal bases B, B' of \mathbb{C}^d are mutually unbiased if

$$|e^* f|^2 = \frac{1}{d} \quad \forall e \in B, f \in B'.$$

Question

Do there exist k mutually unbiased bases in dimension d?
Mutually unbiased bases

Definition

Two orthonormal bases B, B' of \mathbb{C}^d are mutually unbiased if

$$|e^*f|^2 = \frac{1}{d} \quad \forall e \in B, f \in B'.$$

Question

Do there exist k mutually unbiased bases in dimension d?

Example

There exist 3 mutually unbiased bases (MUBs) in dimension 2:

$$\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}, \quad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\}, \quad \left\{ \frac{1}{\sqrt{2}} \begin{pmatrix} i \\ 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ i \end{pmatrix} \right\}.$$
Mutually unbiased bases yield complementary measurements.

- If outcome in \(\{u_i\}_{i \in [d]} \) is deterministic (say \(u_1 \)), then the outcome in \(\{v_j\}_{j \in [d]} \) is uniformly random.

Applications in cryptography, quantum information theory.

See the survey ‘On mutually unbiased bases’.

(Durt, Englert, Bengtsson, Žyczkowski ’10).
Known results

- Known: $k \leq d + 1$, attained if d is a prime power.
 (Ivanovic '81, Wooters-Fields '89)

What about $d = 6$? Not known if there exist ≥ 3 MUBs in \mathbb{C}^6.

Lower bound: if $\exists k$ MUBs in \mathbb{C}^d_1 and \mathbb{C}^d_2, then $\exists k$ MUBs in $\mathbb{C}^{d_1 \cdot d_2}$.

Not best possible: for $d = 26$, a construction of $6 > 2^{2^{13}}$ MUBs is known. (Wocjan-Beth '05)

Question: $\exists d + 1$ MUBs in $\mathbb{C}^d \iff \exists$ affine plane of order d?
Known results

- Known: $k \leq d + 1$, attained if d is a prime power.
 (Ivanovic '81, Wooters-Fields '89)
- What about $d = 6$? Not known if there exist ≥ 3 MUBs in \mathbb{C}^6.

An affine plane of order 3
Known results

- Known: $k \leq d + 1$, attained if d is a prime power.
 (Ivanovic '81, Wooters-Fields '89)
- What about $d = 6$? Not known if there exist > 3 MUBs in \mathbb{C}^6.
- Lower bound: if $\exists k$ MUBs in \mathbb{C}^{d_1} and \mathbb{C}^{d_2}, then $\exists k$ MUBs in $\mathbb{C}^{d_1d_2}$.

An affine plane of order 3
Known results

- Known: \(k \leq d + 1 \), attained if \(d \) is a prime power.
 \((\text{Ivanovic '81, Wooters-Fields '89})\)
- What about \(d = 6 \)? Not known if there exist \(> 3 \) MUBs in \(\mathbb{C}^6 \).
- Lower bound: if \(\exists k \) MUBs in \(\mathbb{C}^{d_1} \) and \(\mathbb{C}^{d_2} \), then \(\exists k \) MUBs in \(\mathbb{C}^{d_1 \cdot d_2} \).
 - Not best possible: for \(d = 26^2 = 2^2 \cdot 13^2 \) a construction of \(6 > 2^2 + 1 \) MUBs is known.
 \((\text{Wocjan-Beth '05})\)
Known results

- Known: $k \leq d + 1$, attained if d is a prime power.
 \footnotesize{(Ivanovic '81, Wooters-Fields '89)}

- What about $d = 6$? Not known if there exist > 3 MUBs in \mathbb{C}^6.

- Lower bound: if $\exists k$ MUBs in \mathbb{C}^{d_1} and \mathbb{C}^{d_2}, then $\exists k$ MUBs in $\mathbb{C}^{d_1 d_2}$.
 - Not best possible: for $d = 26^2 = 2^2 \cdot 13^2$ a construction of $6 > 2^2 + 1$ MUBs is known. \footnotesize{(Wocjan-Beth '05)}

- Question: $\exists d + 1$ MUBs in $\mathbb{C}^d \iff \exists$ affine plane of order d?

An affine plane of order 3
Upper bound

If there are k MUBs in dimension d, then $k \leq d + 1$.

Proof. For each $e \in \mathbb{C}^d$, define $M(e) := ee^* - I_d/d$. Then

$$M(e) \in \mathcal{M} := \{ X \in \mathbb{C}^{d \times d} \mid X^* = X, \text{trace}(X) = 0 \}.$$

- Orthonormal basis gives $(d - 1)$-dim subspace of \mathcal{M}.
- For $u, v \in \mathbb{C}^d$:
 $$\text{trace}(M(u)M(v)) = |u^* v|^2 - 1/d,$$
 so MUBs give orthogonal subspaces of \mathcal{M}.
- Hence $k \leq \dim(\mathcal{M})/(d - 1) = \frac{d^2 - 1}{d - 1} = d + 1$.

\[\square\]
MUBs and polynomial optimization

Approach 1: commutative

\[\exists k \text{ MUBs in dim } d \iff \text{a system of polynomial equations } \{f_1(x) = 0, \ldots, f_N(x) = 0\} \text{ in } 2kd^2 \text{ real variables has a real solution.} \]
MUBs and polynomial optimization

Approach 1: commutative

\[\exists k \text{ MUBs in dim } d \iff \text{a system of polynomial equations } \{ f_1(x) = 0, \ldots, f_N(x) = 0 \} \text{ in } 2kd^2 \text{ real variables has a real solution.} \]

▶ No solution if 1 in ideal generated by \(f_1, \ldots, f_N \). \(\rightsquigarrow \) Gröbner bases
Approach 1: commutative

\[\exists k \text{ MUBs in dim } d \iff \text{a system of polynomial equations} \]
\[\{ f_1(x) = 0, \ldots, f_N(x) = 0 \} \text{ in } 2kd^2 \text{ real variables has a real solution.} \]

- No solution if 1 in ideal generated by \(f_1, \ldots, f_N \). \(\sim \) Gröbner bases
- Optimization: \(\min \{ f_1(x)^2 \mid f_2(x) = 0, \ldots, f_N(x) = 0 \} \).
 - Lasserre hierarchy of lower bounds in polynomial optimization.

（Brierly, Weigert '10）
MUBs and polynomial optimization

Approach 1: commutative

\[\exists k \text{ MUBs in dim } d \iff \text{a system of polynomial equations } \{ f_1(x) = 0, \ldots, f_N(x) = 0 \} \text{ in } 2kd^2 \text{ real variables has a real solution.} \]

- No solution if 1 in ideal generated by \(f_1, \ldots, f_N \). ⇔ Gröbner bases
- Optimization: \(\min \{ f_1(x)^2 \mid f_2(x) = 0, \ldots, f_N(x) = 0 \} \).
 - Lasserre hierarchy of lower bounds in polynomial optimization.

(Brierly, Weigert '10)

Approach 2: noncommutative

- \(\exists k \text{ MUBs in dimension } d \iff \exists (d, k)-\text{MUB } C^*\text{-algebra.} \)

(Navascués, Pironio, Acín '12)

\[\implies \text{problem in } dk \text{ noncommutative real variables.} \]
MUBs and polynomial optimization

Approach 1: commutative

\[\exists k \text{ MUBs in dim } d \iff \text{a system of polynomial equations} \]
\[\{ f_1(x) = 0, \ldots, f_N(x) = 0 \} \text{ in } 2kd^2 \text{ real variables has a real solution.} \]

- No solution if 1 in ideal generated by \(f_1, \ldots, f_N \). \(\leadsto \) Gröbner bases
- Optimization: \(\min \{ f_1(x)^2 \mid f_2(x) = 0, \ldots, f_N(x) = 0 \} \).
 - Lasserre hierarchy of lower bounds in polynomial optimization.

(Brierly, Weigert ’10)

Approach 2: noncommutative

- \(\exists k \text{ MUBs in dimension } d \iff \exists (d, k)-\text{MUB } C^*-\text{algebra.} \)
 (Navascués, Pironio, Acín ’12)

\(\leadsto \) problem in \(dk \) noncommutative real variables.

- Quantum random access codes and nonlocal games.
 \(\leadsto \) no \(d + 2 \) MUBs for \(d = 3, 4 \). (Aguilar, Borkała, Mironowicz, Pawłowski ’18)
Our contributions

SDPs resulting from characterization of Navascués, Pironio, Acín are symmetric under an action of the wreath product $S_d \wr S_k = S_d^k \rtimes S_k$.

▶ We fully exploit this symmetry to reduce the SDPs.

Main contribution

Explicit decomposition of the $S_d \wr S_k$-module $\mathbb{C}^{([d] \times [k])^t}$ into irreducibles.
Our contributions

SDPs resulting from characterization of Navascués, Pironio, Acín are symmetric under an action of the wreath product \(S_d \wr S_k = S_d^k \rtimes S_k \).

\(\blacktriangleright \) We fully exploit this symmetry to reduce the SDPs.

Main contribution

Explicit decomposition of the \(S_d \wr S_k \)-module \(\mathbb{C}^([d] \times [k])^t \) into irreducibles.

\(\blacktriangleright \) We compute several levels of the hierarchy.

\(\blacktriangleright \) Up to level 5.5 for \((d, k) = (6, 7)\).

\(\blacktriangleright \) Numerical SOS-certificates that no \(d + 2 \) MUBs exist in dimensions \(d = 2, 3, 4, 5, 6, 7, 8 \).
If \{u^{(1)}_1, \ldots, u^{(1)}_d\}, \ldots, \{u^{(k)}_1, \ldots, u^{(k)}_d\} are \(k\) MUBs in \(\mathbb{C}^d\), define
\[X_{i,j} = u^{(j)}_i (u^{(j)}_i)^*\] for all \(i \in [d], j \in [k]\).
If \(\{u_1^{(1)}, \ldots, u_d^{(1)}\}, \ldots, \{u_1^{(k)}, \ldots, u_d^{(k)}\} \) are \(k \) MUBs in \(\mathbb{C}^d \), define
\[
X_{i,j} = u_i^{(j)}(u_i^{(j)})^* \quad \text{for all } i \in [d], j \in [k].
\]

Relations

The \(X_{i,j} \) are rank-1 projectors with:

1. \(X_{i,j}X_{\ell,j} = \delta_{i,\ell}X_{i,j} \) for all \(i, \ell \in [d], j \in [k] \).

\[
\Downarrow \quad X_{i,j}X_{\ell,j} = u_i^{(j)}(u_i^{(j)})^*u_\ell^{(j)}(u_\ell^{(j)})^* = \delta_{i,\ell}X_{i,j}.
\]
If \(\{ u_1^{(1)}, \ldots, u_d^{(1)} \}, \ldots, \{ u_1^{(k)}, \ldots, u_d^{(k)} \} \) are \(k \) MUBs in \(\mathbb{C}^d \), define

\[
X_{i,j} = u_i^{(j)}(u_i^{(j)})^* \text{ for all } i \in [d], j \in [k].
\]

Relations

The \(X_{i,j} \) are rank-1 projectors with:

1. \(X_{i,j}X_{\ell,j} = \delta_{i,\ell}X_{i,j} \text{ for all } i, \ell \in [d], j \in [k]. \)

\(\Rightarrow \ X_{i,j}X_{\ell,j} = u_i^{(j)}(u_i^{(j)})^*u_\ell^{(j)}(u_\ell^{(j)})^* = \delta_{i,\ell}X_{i,j}. \)

2. \(\sum_{i \in [d]} X_{i,j} = I \text{ for all } j \in [k]. \)

3. \(X_{i,j}X_{\ell,m}X_{i,j} = \frac{1}{d}X_{i,j} \text{ for all } i, \ell \in [d], j, m \in [k] \text{ with } j \neq m. \)

4. \([X_{i,j}UX_{i,j}, X_{i,j}VX_{i,j}] = 0 \text{ for all } i \in [d], j \in [k], U, V \in \mathbb{C}^{d \times d}. \)
If \(\{u_1^{(1)}, \ldots, u_d^{(1)}\}, \ldots, \{u_1^{(k)}, \ldots, u_d^{(k)}\} \) are \(k \) MUBs in \(\mathbb{C}^d \), define
\[
X_{i,j} = u_i^{(j)}(u_i^{(j)})^* \quad \text{for all } i \in [d], j \in [k].
\]

Relations

The \(X_{i,j} \) are rank-1 projectors with:

1. \(X_{i,j}X_{\ell,j} = \delta_{i,\ell}X_{i,j} \) for all \(i, \ell \in [d], j \in [k] \).

\[
\Downarrow \quad X_{i,j}X_{\ell,j} = u_i^{(j)}(u_i^{(j)})^*u_{\ell}^{(j)}(u_{\ell}^{(j)})^* = \delta_{i,\ell}X_{i,j}.
\]

2. \(\sum_{i \in [d]} X_{i,j} = I \) for all \(j \in [k] \).

3. \(X_{i,j}X_{\ell,m}X_{i,j} = \frac{1}{d}X_{i,j} \) for all \(i, \ell \in [d], j, m \in [k] \) with \(j \neq m \).

4. \([X_{i,j}UX_{i,j}, X_{i,j}VX_{i,j}] = 0 \) for all \(i \in [d], j \in [k], U, V \in \mathbb{C}^{d \times d} \).

Theorem (Navascués, Pironio, Acín ’12)

\[\exists k \text{ MUBs in dimension } d \iff \exists \text{ } C^*-\text{algebra } \mathcal{A} \text{ with self-adjoint operators } X_{i,j} \in \mathcal{A} \text{ satisfying } 1-4 \]
MUB-algebra

If \(\{u^{(1)}_1, \ldots, u^{(1)}_d\}, \ldots, \{u^{(k)}_1, \ldots, u^{(k)}_d\} \) are \(k \) MUBs in \(\mathbb{C}^d \), define

\[
X_{i,j} = u^{(j)}_i (u^{(j)}_i)^* \quad \text{for all } i \in [d], j \in [k].
\]

Relations

The \(X_{i,j} \) are rank-1 projectors with:

1. \(X_{i,j} X_{\ell,j} = \delta_{i,\ell} X_{i,j} \) for all \(i, \ell \in [d], j \in [k] \).

\[
\Downarrow \quad X_{i,j} X_{\ell,j} = u^{(j)}_i (u^{(j)}_i)^* u^{(j)}_\ell (u^{(j)}_\ell)^* = \delta_{i,\ell} X_{i,j}.
\]

2. \(\sum_{i \in [d]} X_{i,j} = I \) for all \(j \in [k] \).

3. \(X_{i,j} X_{\ell,m} X_{i,j} = \frac{1}{d} X_{i,j} \) for all \(i, \ell \in [d], j, m \in [k] \) with \(j \neq m \).

4. \([X_{i,j} UX_{i,j}, X_{i,j} VX_{i,j}] = 0 \) for all \(i \in [d], j \in [k], U, V \in \mathbb{C}^{d \times d} \).

Theorem (Navascués, Pironio, Acín ’12)

\(\exists k \) MUBs in dimension \(d \) \(\iff \)

\(\exists \mathbb{C}^*\)-algebra \(\mathcal{A} \) with self-adjoint operators \(X_{i,j} \in \mathcal{A} \) satisfying 1-4

with linear \(\tau : \mathcal{A} \rightarrow \mathbb{R} \) which is positive \(\tau(a^*a) \geq 0 \) and tracial \(\tau(ab) = \tau(ba) \) for all \(a, b \in \mathcal{A} \).
SDP formulation

\[f(d, k) = \inf \{ 0 : \exists L \in \mathbb{R}\langle x\rangle^* \text{ with } L \text{ positive, tracial, } L = 0 \text{ on } \mathcal{I}_{\text{MUB}}, \\
L(x_{i,j}) = 1 \text{ for all } i \in [d], j \in [k] \}. \]
\[f(d, k) = \inf \{ 0 : \exists L \in \mathbb{R}\langle x\rangle^* \text{ with } L \text{ positive, tracial, } L = 0 \text{ on } \mathcal{I}_{\text{MUB}}, \]
\[L(x_{i,j}) = 1 \text{ for all } i \in [d], j \in [k] \}. \]

Level \(t \) bound

\[\text{sdp}(d, k, t) = \inf \{ 0 : \exists L \in \mathbb{R}\langle x\rangle^*_{2t} \text{ s.t. } L \text{ is tracial,} \]
\[L = 0 \text{ on } \mathcal{I}_{\text{MUB,2t}}, \]
\[L(p^*p) \geq 0 \text{ for all } p \in \mathbb{R}\langle x\rangle_{=t}, \]
\[L(x_{i,j}) = 1 \text{ for all } i \in [d], j \in [k] \}. \]
SDP formulation

\[f(d, k) = \inf \{ 0 : \exists L \in \mathbb{R}\langle x\rangle^* \text{ with } L \text{ positive, tracial, } L = 0 \text{ on } \mathcal{I}_{\text{MUB}}, \\
L(x_{i,j}) = 1 \text{ for all } i \in [d], j \in [k] \}. \]

Level \(t \) bound

\[
\text{sdp}(d, k, t) = \inf \{ 0 : \exists L \in \mathbb{R}\langle x\rangle_{2t}^* \text{ s.t. } L \text{ is tracial,} \\
L = 0 \text{ on } \mathcal{I}_{\text{MUB}, 2t}, \\
L(p^*p) \geq 0 \text{ for all } p \in \mathbb{R}\langle x\rangle_{=t}, \\
L(x_{i,j}) = 1 \text{ for all } i \in [d], j \in [k] \}.
\]

Positivity condition gives SDP:

\[
L(p^*p) \geq 0 \text{ for all } p \in \mathbb{R}\langle x\rangle_{=t} \iff M_t(L) := (L(u^*v))_{u,v \in \langle x\rangle_{=t}} \succeq 0
\]
SDP formulation

\[f(d, k) = \inf \{ 0 : \exists L \in \mathbb{R}\langle x \rangle^* \text{ with } L \text{ positive, tracial, } L = 0 \text{ on } \mathcal{I}_{\text{MUB}}, \]
\[L(x_{i,j}) = 1 \text{ for all } i \in [d], j \in [k] \}. \]

Level \(t \) bound

\[\text{sdp}(d, k, t) = \inf \{ 0 : \exists L \in \mathbb{R}\langle x \rangle_{2t}^* \text{ s.t. } L \text{ is tracial, } \]
\[L = 0 \text{ on } \mathcal{I}_{\text{MUB},2t}, \]
\[L(p^*p) \geq 0 \text{ for all } p \in \mathbb{R}\langle x \rangle_{=t}, \]
\[L(x_{i,j}) = 1 \text{ for all } i \in [d], j \in [k] \}. \]

Positivity condition gives SDP:

\[L(p^*p) \geq 0 \text{ for all } p \in \mathbb{R}\langle x \rangle_{=t} \iff M_t(L) := (L(u^*v))_{u,v} \in \langle x \rangle_{=t} \succeq 0 \]

Certificates

\[\text{sdp}(d, k, t) \text{ infeasible } \implies \text{ no } k \text{ MUBs in } \mathbb{C}^d. \]
\[\text{No } k \text{ MUBs in } \mathbb{C}^d \implies \exists t \text{ with sdp}(d, k, t) \text{ infeasible.} \]
Suppose: G finite group, acting on $[d] \times [k]$, hence on $\mathbb{R}\langle x \rangle$, s.t.

$$p \in I_{\text{MUB}} \implies \sigma \cdot p \in I_{\text{MUB}} ~ \forall \sigma \in G.$$
Group-invariant problem

Suppose: G finite group, acting on $[d] \times [k]$, hence on $\mathbb{R} \langle x \rangle$, s.t.

$$ p \in \mathcal{I}_{MUB} \implies \sigma \cdot p \in \mathcal{I}_{MUB}, \quad \forall \sigma \in G. $$

Then L feasible $\implies \sigma \cdot L \in \mathbb{R} \langle x \rangle^* \text{ feasible, with } \sigma \cdot L(p) = L(\sigma \cdot p)$.
Suppose: G finite group, acting on $[d] \times [k]$, hence on $\mathbb{R}\langle x \rangle$, s.t.

$$p \in \mathcal{I}_{\text{MUB}} \implies \sigma \cdot p \in \mathcal{I}_{\text{MUB}} \quad \forall \sigma \in G.$$

Then L feasible $\implies \sigma \cdot L \in \mathbb{R}\langle x \rangle^*$ feasible, with $\sigma \cdot L(p) = L(\sigma \cdot p)$.

Indeed:

1. $M(\sigma \cdot L) \succeq 0$
 $$\downarrow \quad M(\sigma \cdot L)_{u,v} = \sigma \cdot L(u^* v) = L(\sigma(u^*)\sigma(v)) = M(L)_{\sigma \cdot u, \sigma \cdot v}$$
2. $\sigma \cdot L = 0$ on \mathcal{I}_{MUB}
3. $\sigma \cdot L$ is tracial.
 $$\downarrow \quad \sigma \cdot L(ab) = L(\sigma(ab)) = L(\sigma(a)\sigma(b)) = L(\sigma(b)\sigma(a)) = \sigma \cdot L(ba).$$
Group-invariant problem

Suppose: G finite group, acting on $[d] \times [k]$, hence on $\mathbb{R}\langle x \rangle$, s.t.

$$ p \in \mathcal{I}_{\text{MUB}} \implies \sigma \cdot p \in \mathcal{I}_{\text{MUB}} \quad \forall \sigma \in G. $$

Then L feasible $\implies \sigma \cdot L \in \mathbb{R}\langle x \rangle^*$ feasible, with $\sigma \cdot L(p) = L(\sigma \cdot p)$.

Indeed:

- $M(\sigma \cdot L) \succeq 0$
 - $M(\sigma \cdot L)_{u,v} = \sigma \cdot L(u^*v) = L(\sigma(u^*)\sigma(v)) = M(L)_{\sigma \cdot u, \sigma \cdot v}$

- $\sigma \cdot L = 0$ on \mathcal{I}_{MUB}

- $\sigma \cdot L$ is tracial.
 - $\sigma \cdot L(ab) = L(\sigma(ab)) = L(\sigma(a)\sigma(b)) = L(\sigma(b)\sigma(a)) = \sigma \cdot L(ba)$.

$$ \implies L^G := \frac{1}{|G|} \sum_{\sigma \in G} \sigma \cdot L \text{ is feasible, and } G\text{-invariant.} $$

Assumption

Optimum L is G-invariant. \Rightarrow significant reduction in number of variables
The symmetry of the problem

Suppose \(\{u_1^{(1)}, \ldots, u_d^{(1)}\}, \ldots, \{u_1^{(k)}, \ldots, u_d^{(k)}\} \) are \(k \) MUBs in \(\mathbb{C}^d \).
The symmetry of the problem

Suppose \(\{u_1^{(1)}, \ldots, u_d^{(1)}\}, \ldots, \{u_1^{(k)}, \ldots, u_d^{(k)}\} \) are \(k \) MUBs in \(\mathbb{C}^d \).

The group \(G = S_d \rtimes S_k \) acts on the \(X_{i,j} = u_i^{(j)}(u_i^{(j)})^* \) via:

\[
(\sigma_1, \ldots, \sigma_k; \pi) \cdot X_{i,j} = X_{\sigma_{\pi(j)}(i), \pi(j)}, \quad (i \in [d], j \in [k]), \text{ respecting } \mathcal{I}_{\text{MUB}}.
\]
The symmetry of the problem

Suppose \(\{ u_1^{(1)}, \ldots, u_d^{(1)} \}, \ldots, \{ u_1^{(k)}, \ldots, u_d^{(k)} \} \) are \(k \) MUBs in \(\mathbb{C}^d \).

The group \(G = S_d \wr S_k \) acts on the \(X_{i,j} = u_i^{(j)}(u_i^{(j)})^* \) via:

\[
(\sigma_1, \ldots, \sigma_k; \pi) \cdot X_{i,j} = X_{\sigma_1^{\pi(j)}, \sigma_2^{\pi(j)}, \ldots, \sigma_k^{\pi(j)}}(i, \pi(j)), \quad (i \in [d], j \in [k]), \text{ respecting } I_{\text{MUB}}.
\]

Example of \(G \)-invariant \(L \)

Let \(t = 1 \). Then \(M(L)_{1} \) contains monomials of length 2. Up to \(S_d \wr S_k \):

\[
L(x_1,1x_1,1) = L(x_1,1) = 1,
\]

\[
L(x_1,1x_1,2) = L(x_1,1x_1,2x_1,1) = 1/d,
\]

\[
L(x_1,1x_2,1) = 0.
\]
Approach: reduction via block-diagonalization

Symmetric problems have symmetric solutions in a matrix algebra. Then there exists a reduction to matrix blocks. (Artin-Wedderburn)

Challenge: obtain reduction, no general recipe.

Approach: study representation theory of group leaving the problem invariant.
Artin-Wedderburn

Every (unital) complex matrix \mathcal{A} is \ast-isomorphic to a direct sum of full matrix \ast-algebras.

$$\mathcal{A} \cong \bigoplus_{i=1}^{k} \mathbb{C}^{m_i \times m_i}.$$

The m_i depend on the “commutativity” of \mathcal{A}. Small example:

$$\begin{pmatrix} a & b & b & b \\ b & c & d & d \\ b & d & c & d \\ b & d & d & c \end{pmatrix} \succeq 0 \iff \begin{pmatrix} a & 3b \\ 3b & 3c + 6d \\ \end{pmatrix} \begin{pmatrix} 2c - 2d \end{pmatrix} \succeq 0.$$
Block-diagonalization

Artin-Wedderburn

Every (unital) complex matrix $*$-algebra \mathcal{A} is $*$-isomorphic to a direct sum of full matrix $*$-algebras.

$$\mathcal{A} \cong k \bigoplus_{i=1}^{k} \mathbb{C}^{m_i \times m_i}. $$

The m_i depend on the “commutativity” of \mathcal{A}. Small example:

$$\begin{pmatrix}
 a & b & b & b \\
 b & c & d & d \\
 b & d & c & d \\
 b & d & d & c
\end{pmatrix} \succeq 0 \iff \begin{pmatrix}
 a & 3b \\
 3b & 3c + 6d \\
 2c - 2d
\end{pmatrix} \succeq 0.$$

Applications in

- Coding theory (Schrijver ’05)
- Other areas of combinatorics (survey De Klerk, ’10)
- Polynomial optimization (Gatermann, Parrilo ’04, Riener, Theobald, Andrén, Lasserre ’13)
Let G be a finite group acting on a finite set Z. Decompose \mathbb{C}^Z as:

$$V = \bigoplus_{i=1}^{k} \bigoplus_{j=1}^{m_i} V_{i,j},$$

for irreducible G-modules $V_{i,j}$ with $V_{i,j} \cong V_{i',j'}$ iff $i = i'$.
Let G be a finite group acting on a finite set Z. Decompose \mathbb{C}^Z as:

$$V = \bigoplus_{i=1}^{k} \bigoplus_{j=1}^{m_i} V_{i,j},$$

for irreducible G-modules $V_{i,j}$ with $V_{i,j} \cong V_{i',j'}$ iff $i = i'$. Choose nonzero $u_{i,j} \in V_{i,j}$ s.t. for all $i \in [k], j, j' \in [m_i]$ there is a G-isomorphism $V_{i,j} \to V_{i,j'}$ mapping $u_{i,j}$ to $u_{i,j'}$. Define the map

$$\Phi : \left(\mathbb{C}^Z \times Z \right)^G \to \bigoplus_{i=1}^{k} \mathbb{C}^{m_i \times m_i},$$

$$A \mapsto \bigoplus_{i=1}^{k} \left(\langle u_{i,j'}, Au_{i,j} \rangle \right)_{j,j' \in [m_i]}$$
Let G be a finite group acting on a finite set Z. Decompose \mathbb{C}^Z as:

$$V = \bigoplus_{i=1}^{k} \bigoplus_{j=1}^{m_i} V_{i,j},$$

for irreducible G-modules $V_{i,j}$ with $V_{i,j} \cong V_{i',j'}$ iff $i = i'$. Choose nonzero $u_{i,j} \in V_{i,j}$ s.t. for all $i \in [k]$, $j, j' \in [m_i]$ there is a G-isomorphism $V_{i,j} \rightarrow V_{i,j'}$ mapping $u_{i,j}$ to $u_{i,j'}$. Define the map

$$\Phi : \left(\mathbb{C}^{Z \times Z} \right)^G \rightarrow \bigoplus_{i=1}^{k} \mathbb{C}^{m_i \times m_i},$$

$$A \mapsto \bigoplus_{i=1}^{k} \left(\langle u_{i,j}, Au_{i,j} \rangle \right)_{j,j' \in [m_i]}$$

Key fact

For all $A \in \left(\mathbb{C}^{Z \times Z} \right)^G$ we have $A \succeq 0 \iff \Phi(A) \succeq 0$.
Symmetry reduction

Recall: \(\text{sdp}(d, k, t) = \inf \{ 0 : \exists L \in \mathbb{R} \langle x \rangle_{2t}^* \text{ s.t. } L \text{ is tracial, } G\text{-invariant, } \)
\[L = 0 \text{ on } \mathcal{I}_{\text{MUB},2t}, \quad L(I) = d, \]
\[M_t(L) := (L(u^* v))_{u,v \in \langle x \rangle_{=t}} \geq 0 \} \).

In our case \(Z = \langle x \rangle_{=t} \cong ([d] \times [k])^t \) and \(G = S_d \wr S_k \).
Recall: $\text{sdp}(d, k, t) = \inf \{ 0 : \exists \ L \in \mathbb{R}\langle \mathbf{x} \rangle_{2t}^* \text{ s.t. } L \text{ is tracial, } G\text{-invariant, }$
$ L = 0 \text{ on } \mathcal{I}_{\text{MUB},2t}, L(I) = d,$
$ M_t(L) := (L(u^* v))_{u,v \in \langle \mathbf{x} \rangle_{=t}} \succeq 0 \}.$

In our case $Z = \langle \mathbf{x} \rangle_{=t} \simeq ([d] \times [k])^t$ and $G = S_d \wr S_k.$

First decomposition from G-orbits: $\mathbb{C}^Z = \bigoplus_{(P,Q)} V_{P,Q},$ where

- $P = \{ P_1, \ldots, P_r \}$ is a set partition of $[t]$ in $\leq k$ parts,
- $Q = \{ Q_1, \ldots, Q_r \}$ where Q_i is a set partition of P_i in $\leq d$ parts.
Symmetry reduction

Recall: \(\text{sdp}(d, k, t) = \inf \{ 0 : \exists L \in \mathbb{R}\langle x \rangle_{2t}^* \text{ s.t. } L \text{ is tracial}, G\text{-invariant}, \)
\[
L = 0 \text{ on } \mathcal{I}_{\text{MUB},2t}, L(I) = d,
\]
\[
M_t(L) := (L(u^* v))_{u,v \in \langle x \rangle_{=t}} \succeq 0 \}.
\]

In our case \(Z = \langle x \rangle_{=t} \simeq ([d] \times [k])^t \) and \(G = S_d \wr S_k \).

First decomposition from \(G \)-orbits: \(\mathbb{C}^Z = \bigoplus_{(P,Q)} V_{P,Q} \), where
\begin{itemize}
 \item \(P = \{P_1, \ldots, P_r\} \) is a set partition of \([t]\) in \(\leq k \) parts,
 \item \(Q = \{Q_1, \ldots, Q_r\} \) where \(Q_i \) is a set partition of \(P_i \) in \(\leq d \) parts.
\end{itemize}

Example of \((P, Q)\) for \(t = 4\):
\[
P = \{\{1, 3, 4\}, \{2\}\}, \ Q = \{Q_1, Q_2\} \text{ with } Q_1 = \{\{1, 3\}, \{4\}\}, \ Q_2 = \{2\}
\]
\[
V_{P,Q} := \text{span of monomials with indices } (i, j) (a, \ell) (i, j) (b, j)
\]
Decomposing V_P with S_k-action: ‘L-shapes’

First consider S_k-action on monomials in x_1, \ldots, x_k.

S_k-orbit of $\langle x \rangle = t \xleftarrow{1:1} P = \{P_1, \ldots, P_r\}$ set partition of $[t]$ in $\leq k$ parts.
Decomposing V_P with S_k-action: ‘L-shapes’

First consider S_k-action on monomials in x_1, \ldots, x_k.

S_k-orbit of $\langle x \rangle = t \stackrel{1:1}{\longleftrightarrow} P = \{P_1, \ldots, P_r\}$ set partition of $[t]$ in $\leq k$ parts.

V_P is a permutation module M^{μ_r} for the partition $\mu_r = (k - r, 1, \ldots, 1)$:

Identify monomial in V_P (with $w_j \in [k]$ assigned to P_j) with tabloid

\[
\begin{array}{c}
\cdots \\
\vdots \\
w_1 \\
w_2 \\
\vdots \\
w_r \\
\end{array}
\quad \leftrightarrow \quad \begin{array}{c}
\cdots \\
3 \\
7 \\
4 \\
\end{array}
\]

Example: $x_3 x_7 x_3 x_7 x_4 \leftrightarrow \begin{array}{c}
\cdots \\
3 \\
7 \\
4 \\
\end{array}$

Decomposition follows directly from known representation theory of S_k.\[V_P = M^{\mu_r} = \bigoplus_{\lambda \vdash k} \bigoplus_{\tau \in T_{\lambda, \mu_r}} \lambda \cdot S_{\lambda}. \] (e.g., Sagan '01)
Decomposing V_P with S_k-action: ‘L-shapes’

First consider S_k-action on monomials in x_1, \ldots, x_k.

S_k-orbit of $\langle x \rangle \mapsto P = \{P_1, \ldots, P_r\}$ set partition of $[t]$ in $\leq k$ parts.

V_P is a permutation module M^{μ_r} for the partition $\mu_r = (k - r, 1, \ldots, 1)$: Identify monomial in V_P (with $w_j \in [k]$ assigned to P_j) with tabloid

\[
\begin{array}{cccc}
\cdots \\
| w_1 \\
| w_2 \\
| \\
| \cdots \\
| w_r \\
\end{array}
\]

Example: $x_3x_7x_3x_7x_4 \mapsto \begin{array}{cccc}
\cdots \\
3 \\
7 \\
4 \\
\end{array}$

Decomposition follows directly from known representation theory of S_k.

\[
V_P = M^{\mu_r} = \bigoplus_{\lambda \vdash k} \left(\bigoplus_{\tau \in T_{\lambda, \mu_r}} \tau \cdot S^{\lambda} \right).
\]

(e.g., Sagan '01)
Decomposing $V_{P,Q}$ with $S_d \wr S_k$-action

Monomials in $V_{P,Q}$ correspond to tensor products of tabloids.

As before: if $w(j) \in [k]$ assigned to P_j \[\rightarrow \quad w = \]

if $v^i(j) \in [d]$ assigned to the j-th set in Q_i \[\rightarrow \quad v_i = \]
Decomposing $V_{P,Q}$ with $S_d \wr S_k$-action

Monomials in $V_{P,Q}$ correspond to tensor products of tabloids.

As before: if $w(j) \in [k]$ assigned to P_j \quad $w = \ldots \ldots \ldots \ldots$

if $v^i(j) \in [d]$ assigned to the j-th set in Q_i \quad $v_i = \ldots \ldots \ldots \ldots$

$S_d \wr S_k$-action is $(\sigma_1, \ldots, \sigma_k; \tau) \cdot \left(\bigotimes_{i \in [r]} v_i \otimes w \right) = \left(\bigotimes_{i \in [r]} \sigma_{\tau w(i)} v_i \right) \otimes \tau w$
The irreducible ‘Specht’ modules of $S_d \wr S_k$ are known, but the action looks different:

$$(\sigma_1, \ldots, \sigma_k; \tau) \cdot \bigotimes_{i \in [k]} v_i = \bigotimes_{i \in [k]} \sigma_i \cdot v_{\tau^{-1}(i)}.$$
The irreducible ‘Specht’ modules of $S_d \wr S_k$ are known, but the action looks different:

$$(\sigma_1, \ldots, \sigma_k; \tau) \cdot \bigotimes_{i \in [k]} v_i = \bigotimes_{i \in [k]} \sigma_i \cdot v_{\tau^{-1}(i)}.$$

We decompose $V_{P, Q}$ by separately decomposing each permutation module for S_d or S_k.

Key step: We show that the modules in our decomposition are isomorphic to known ‘Specht’ modules S^λ.

Link to literature: $V_{P, Q} \approx M_\gamma$, for known ‘permutation’ module M_γ.

Multiplicities of S^λ in M_γ can be derived from the literature, explicit embeddings not available.
Decomposing $V_{P,Q}$ with $S_d \wr S_k$-action – II

The irreducible ‘Specht’ modules of $S_d \wr S_k$ are known, but the action looks different:

$$(\sigma_1, \ldots, \sigma_k; \tau) \cdot \bigotimes_{i \in [k]} v_i = \bigotimes_{i \in [k]} \sigma_i \cdot v_{\tau^{-1}(i)}.$$

- We decompose $V_{P,Q}$ by separately decomposing each permutation module for S_d or S_k.
- **Key step:** We show that the modules in our decomposition are isomorphic to known ‘Specht’ modules S^λ.

▶ Link to literature: $V_{P,Q} \cong M_{\gamma}$, for known ‘permutation’ module M_{γ}.

▶ Multiplicities of S^λ in M_{γ} can be derived from the literature, explicit embeddings not available.
Decomposing V_P, Q with $S_d \wr S_k$-action – II

The irreducible ‘Specht’ modules of $S_d \wr S_k$ are known, but the action looks different:

$$(\sigma_1, \ldots, \sigma_k; \tau) \cdot \bigotimes_{i \in [k]} v_i = \bigotimes_{i \in [k]} \sigma_i \cdot v_{\tau^{-1}(i)}.$$

- We decompose V_P, Q by separately decomposing each permutation module for S_d or S_k.
- Key step: We show that the modules in our decomposition are isomorphic to known ‘Specht’ modules S^λ.
- Link to literature: $V_P, Q \cong M^\gamma$, for known ‘permutation’ module M^γ.
 - Multiplicities of S^λ in M^γ can be derived from the literature,
 - Explicit embeddings not available.
Computational results – full hierarchy

- \(\sum m_i^2 \) obtained from reduction for \(d, k \geq 2t \) is entry 2t of OEIS A000258: 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137.
Computational results – full hierarchy

- $\sum m_i^2$ obtained from reduction for $d, k \geq 2t$ is entry $2t$ of OEIS A000258: 1, 3, 12, 60, 358, 2471, 19302, 167894, 1606137.

- We compute several levels of the hierarchy:

<table>
<thead>
<tr>
<th>d</th>
<th>k</th>
<th>t</th>
<th>$(dk)^[t]$</th>
<th>#vars</th>
<th>#linear constraints</th>
<th>block sizes</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sum</td>
<td>max</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4.5</td>
<td>4096</td>
<td>7</td>
<td>8</td>
<td>472</td>
<td>85</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4.5</td>
<td>50625</td>
<td>7</td>
<td>2</td>
<td>1259</td>
<td>142</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>5</td>
<td>7962624</td>
<td>43</td>
<td>2</td>
<td>6374</td>
<td>389</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>52521875</td>
<td>43</td>
<td>2</td>
<td>6732</td>
<td>389</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>5</td>
<td>254803968</td>
<td>43</td>
<td>2</td>
<td>6820</td>
<td>389</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>5</td>
<td>992436543</td>
<td>43</td>
<td>2</td>
<td>6830</td>
<td>389</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>5</td>
<td>32768000000</td>
<td>43</td>
<td>2</td>
<td>6831</td>
<td>389</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>5.5</td>
<td>7962624</td>
<td>54</td>
<td>3</td>
<td>8049</td>
<td>577</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>4.5</td>
<td>3111696</td>
<td>7</td>
<td>0</td>
<td>1627</td>
<td>146</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>5</td>
<td>130691232</td>
<td>43</td>
<td>2</td>
<td>6749</td>
<td>389</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>5.5</td>
<td>130691232</td>
<td>75</td>
<td>3</td>
<td>18538</td>
<td>1107</td>
</tr>
</tbody>
</table>
Future work

- Improve implementation, run on cluster instead of desktop.
 - Aim: no 7 MUBs in dimension 6.
Future work

- Improve implementation, run on cluster instead of desktop.
 - Aim: no 7 MUBs in dimension 6.
- Partial approaches: subset of blocks or relations from higher levels.

If infeasible, find analytic certificate.

Question: certificate for no \(d + 2\) MUBs in \(C^d\) at level \(t = 5\)?

Can the reduction be computed in polynomial time, for fixed \(t\)?

Symmetry reduction for other semidefinite programming approaches. (e.g., QRAC-formulation of Aguilar, Borka la, Mironowicz, Paw lowski '18)
Future work

- Improve implementation, run on cluster instead of desktop.
 - Aim: no 7 MUBs in dimension 6.
- Partial approaches: subset of blocks or relations from higher levels.
- If infeasible, find analytic certificate.
 - Question: certificate for no $d + 2$ MUBs in \mathbb{C}^d at level $t = 5$?
Future work

- Improve implementation, run on cluster instead of desktop.
 - Aim: no 7 MUBs in dimension 6.
- Partial approaches: subset of blocks or relations from higher levels.
- If infeasible, find analytic certificate.
 - Question: certificate for no \(d + 2 \) MUBs in \(\mathbb{C}^d \) at level \(t = 5 \)?
- Can the reduction be computed in polynomial time, for fixed \(t \)?
Future work

- Improve implementation, run on cluster instead of desktop.
 - Aim: no 7 MUBs in dimension 6.
- Partial approaches: subset of blocks or relations from higher levels.
- If infeasible, find analytic certificate.
 - Question: certificate for no $d + 2$ MUBs in \mathbb{C}^d at level $t = 5$?
- Can the reduction be computed in polynomial time, for fixed t?
- Symmetry reduction for other semidefinite programming approaches.
 (e.g., QRAC-formulation of Aguilar, Borkała, Mironowicz, Pawłowski ‘18)
Use only submatrix indexed by monomials $x_{1,j}$ with $j \in [k]$.
Computational results – S_k-part

- Use only submatrix indexed by monomials $x_{1,j}$ with $j \in [k]$.
- Bell numbers: $\sum m_i^2$ obtained from reduction for $k \geq 2t$ is entry $2t$ of OEIS A000110: 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975.

<table>
<thead>
<tr>
<th>d</th>
<th>k</th>
<th>t</th>
<th>$k^{[t]}$</th>
<th>#vars</th>
<th>#linear constraints</th>
<th>block sizes</th>
<th>result</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sum</td>
<td>max</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>4.5</td>
<td>256</td>
<td>5</td>
<td>0</td>
<td>48</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>4.5</td>
<td>625</td>
<td>5</td>
<td>0</td>
<td>95</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>5</td>
<td>7776</td>
<td>17</td>
<td>2</td>
<td>364</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>6.5</td>
<td>117649</td>
<td>467</td>
<td>74</td>
<td>3288</td>
<td>640</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>7.5</td>
<td>16384</td>
<td>20</td>
<td>5</td>
<td>586</td>
<td>293</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6.5</td>
<td>117649</td>
<td>467</td>
<td>74</td>
<td>3288</td>
<td>640</td>
</tr>
</tbody>
</table>