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Context
Convex semialgebraic set : Λ+(f, e) = {a ∈ Rn : f(a) ≥ 0, . . .}
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Context
Convex semialgebraic set : Λ+(f, e) = {a ∈ Rn : f(a) ≥ 0, . . .}
Hyperbolic curve : V (f) = {a ∈ Rn : f(a) = 0}
Second curve : g ∈ R[x]deg f−1
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Context
Convex semialgebraic set : Λ+(f, e) = {a ∈ Rn : f(a) ≥ 0, . . .}
Hyperbolic curve : V (f) = {a ∈ Rn : f(a) = 0}
Second curve : g ∈ R[x]deg f−1. Extra-factor : `1 · `2 · · · `s
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Hyperbolic polynomials

A homogeneous polynomial f ∈ R[x]d is called hyperbolic in direction e if
• f(e) 6= 0
• The characteristic polynomial f(te− a) is real rooted, for every a ∈ Rn.

It is hyperbolic whenever such a direction e exists.

Examples:
- f = `1`2 · · · `d, with `i ∈ R[x]1, is hyperbolic

- f = det(X), with X = (xij) symmetric, is hyperbolic in direction I

- More generally, f = det(x1A1 + · · ·+ xnAn), with e1A1 + · · ·+ xnAn � 0, is hyperbolic in direction
e = (e1, . . . , en)

- More generally, fk = det(x1A1 + · · ·+ xnAn), with e1A1 + · · ·+ xnAn � 0, for some k ∈ N, implies
f hyperbolic in direction e = (e1, . . . , en)

often called “determinantal” and “weakly determinantal”.
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Hyperbolicity cone

Let f ∈ R[x]d be hyperbolic in direction e. The set

Λ+(f, e) = {a ∈ Rn : cha(t) = 0⇒ t ≥ 0}

is called the hyperbolicity cone in direction e of f .

Equivalent definition: the connected component of Rn \ V (f) containing e.

There are “many” hyperbolicity cones:
• Only one pair, if f is irreducible [Kummer, 2018]

• Bound of 2
∑n−1

k=0
(

d−1
k

)
for large d, or of 2d for large n, attained for products of linear forms

[Theobald et al., 2018]
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Hyperbolicity cone
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Optimization viewpoint

Feasible set name Optimization Polynomial

Hyperbolicity HP Hyperbolic
Cone polynomial

Spectrahedron SDP f = det A(x)

Polyhedron LP f =
∏
`i(x)
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Spectrahedral representation

A set S ⊂ Rn has a spectrahedral representation if there are real symmetric matrices
A = (A1, . . . , An) such that S = SA with

SA := {x ∈ Rn : x1A1 + · · ·+ xnAn � 0}

If f = det(X), then Λ+(f, I) = Sd
+ (psd matrices), and more generally if fk = det(x1A1 +

· · ·+ xnAn), with e1A1 + · · ·+ enAn � 0, then

Λ+(fk, e) = Λ+(f, e) = SA

If f is hyperbolic in direction e, is Λ+(f, e) spectrahedral ?
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Generalized Lax conjecture

Geometric version. Let f ∈ R[x]d be hyperbolic in direction e. Then

Λ+(f, e) = SA

for some real symmetric matrices A = (A1, . . . , An).

or, equivalently:

Algebraic version. Let f ∈ R[x]d be hyperbolic in direction e. Then there is g ∈ R[x]c s.t.
• fg = det(x1A1 + · · ·+ xnAn) [“generalized determinantal”]
• Λ+(f, e) ⊂ Λ+(g, e)

If such a g exists, then

Λ+(f, e) = Λ+(f, e) ∩ Λ+(g, e) = Λ+(fg, e) = SA
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Our construction

Λ+(f, e) = green region

f = blue curve

g = `1`2 · · · `c, the “extra factor”, whose cone is a polyhedral set that strictly contains Λ+(f, e)
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Contact curves and interlacers

Let f ∈ R[x, y, z]d be hyperbolic in direction e. Then h ∈ R[x, y, z]d−1 is a
• contact curve for f if every intersection point of VC(f) and VC(g) has even multiplicity
• real contact curve for f if every intersection point of VR(f) and VR(g) has even multiplicity
• interlacer of f in direction e if the roots α1 ≤ α2 ≤ · · · ≤ αd of f(te− a) and the roots
β1 ≤ β2 ≤ · · · ≤ βd−1 of h(te− a) interlace perfectly, namely

α1 ≤ β1 ≤ α2 ≤ β2 ≤ · · · ≤ βd−1 ≤ αd

contact curve >>> real contact curve <<< interlacer
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Dixon method (variant of Plaumann-Vinzant)

Based on Cramer’s rule : A ·Aadj = det A · Id

Assume f = det A and VC(f) is smooth, then

co-rank(A) = rank(Aadj) = 1 mod det A.

INPUT
f (hyperbolic curve)

OUTPUT
Hermitian matrix A (satisfying f = det A and A(e) � 0)

Sketch of the PROCEDURE :
m11 ← Def := e1

∂f
∂x + e2

∂f
∂y + e3

∂f
∂z # Def special interlacer

split S ∪ S = VC(f) ∩ VC(Def)
extend m11 to basis 〈m11 . . .m1d〉 of polyn. vanishing on S
mjk ← solve a11ajk − a1ja1k = 0 mod f for j ≤ k # rank = 1
M ← (mjk)
A←Madj/fd−2
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The cone of interlacers

Precomputing an interlacer is “easier” than precomputing a contact curve.

This is because the set of interlacers is tractable:

(Kummer-Plaumann-Vinzant 2013)

Int(f, e) = {h ∈ R[x, y, z]d−1 | h interlaces f in direction e}

is a section of the cone of positive polynomials:

Int(f, e) = {h ∈ R[x, y, z]d−1 | W (f, h) := (Def)h− f(Deh) ≥ 0}

Thus interlacers can be sampled by computing a SOS decomposition of W (f, h): such
relaxation is exact if f is determinantal.
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Main result

Let f ∈ R[x, y, z]d be hyperbolic with respect to e, and let h ∈ Int(f, e). Let `1, . . . , `c be the
(real) lines joining the pairs of complex intersections of f and h.
Then∗ there are A1, A2, A3 ∈ Sm, with m = (d2 + d)/2− r, such that
• Λ+(f, e) = {x ∈ R3 : xA1 + yA2 + zA3 � 0}
• f · `1 · `2 · · · `c = det(x1A1 + x2A2 + x3A3)

* up to genericity assumptions on g:

1 no three intersection points of f and h aligned

2 no three of the lines pass through the same point

3 f does not vanish over intersection points of two lines

11/18 S. Naldi Spectrahedral representations of hyperbolic plane curves March 28, 2022



Our variant

The main point is that the extra factor g = `1 · · · `c corrects the failure of h to be a contact
curve, by adding multiplicity to the complex intersections of f and h.

Positive aspects:
1 The multiplier is the simplest we can get : product of linear forms

2 The size of the representation depends on r, the number of real intersections.

3 For maximal r, one gets the Helton-Vinnikov representation

Maximizing r means minimizing the size of the representation, and means that the interlacer is
“special”.

Question: how to get interlacers with many real intersections?
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Extremal interlacers

An extreme point of Int(f, e) is called an extremal interlacer

It corresponds to interlacers with “many” real intersections with f .

If f is smooth, any extremal interlacer has at least⌈(d+ 1)d− 2
4

⌉
contact points (counted multiplicities).

degree d 2 3 4 5 6 · · ·
lower bound for extr. int.

⌈
(d+1)d−2

4

⌉
1 3 5 7 10 · · ·

Bézout d(d−1)
2 1 3 6 10 15 · · ·
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Quartic curves

Open question : can we always have six intersections for d = 4?
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One example
The cubic f = x3 + 2x2y − xy2 − 2y3 − xz2 is hyperbolic with respect to e = (1, 0, 0).

The two green interlacers have coefficients in K with |K : Q|= 4, and the dashed one is
rational. The corresponding spectrahedral representation is

24
125 (2x− y) · f = det


5x+ 10y −x− 2y −4z 2z
−x− 2y x 0 0
−4z 0 4x+ 2y −2x− 4y
2z 0 −2x− 4y 4x+ 2y

 .
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Rational representations

We prove that there are (possibly large) rational spectrahedral representations (even in the
case when there are no rational determinantal representations)

Let f ∈ Q[x, y, z] be a hyperbolic curve, with smooth real zero set. Then its hyperbolicity cone
has a rational spectrahedral representation, of size at most

(d+1
2
)
.

On the other hand, there are hyperbolic curves in Q[x, y, z]d that do not admit rational
determinantal representations.
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Example
f = y2z − (x3 − 6xz2 − 3z3) has no rational 3× 3 determinantal representation, but it has a
rational generalized representation, which yields the spectrahedral representation

Λ+(f, e) =




3z y −x− z −3x+ z
y −x+ 2z 0 −y

−x− z 0 z x+ 4z
−3x+ z −y x+ 4z −x+ 18z

 � 0

 .
The extra-factor is a line and the interlacer has two contact points:
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