Spectrahedral representations of hyperbolic plane curves
BrainPOP - CNRS LAAS, Toulouse

Simone Naldi (jw M. Kummer, D. Plaumann) XLIM - Université de Limoges

March 28, 2022

$x \lim$
Université
dePoitiers

Context

Convex semialgebraic set : $\Lambda_{+}(f, e)=\left\{a \in \mathbb{R}^{n}: f(a) \geq 0, \ldots\right\}$

Context

Convex semialgebraic set : $\Lambda_{+}(f, e)=\left\{a \in \mathbb{R}^{n}: f(a) \geq 0, \ldots\right\}$
Hyperbolic curve : $V(f)=\left\{a \in \mathbb{R}^{n}: f(a)=0\right\}$

Context

Convex semialgebraic set : $\Lambda_{+}(f, e)=\left\{a \in \mathbb{R}^{n}: f(a) \geq 0, \ldots\right\}$
Hyperbolic curve : $V(f)=\left\{a \in \mathbb{R}^{n}: f(a)=0\right\}$
Second curve : $g \in \mathbb{R}[x]_{\operatorname{deg} f-1}$

Context

Convex semialgebraic set : $\Lambda_{+}(f, e)=\left\{a \in \mathbb{R}^{n}: f(a) \geq 0, \ldots\right\}$
Hyperbolic curve : $V(f)=\left\{a \in \mathbb{R}^{n}: f(a)=0\right\}$
Second curve : $g \in \mathbb{R}[x]_{\operatorname{deg} f-1}$. Extra-factor: $\ell_{1} \cdot \ell_{2} \cdots \ell_{s}$

Hyperbolic polynomials

A homogeneous polynomial $f \in \mathbb{R}[x]_{d}$ is called hyperbolic in direction e if

- $f(e) \neq 0$
- The characteristic polynomial $f(t e-a)$ is real rooted, for every $a \in \mathbb{R}^{n}$.

It is hyperbolic whenever such a direction exists.

Examples:

- $f=\ell_{1} \ell_{2} \cdots \ell_{d}$, with $\ell_{i} \in \mathbb{R}[x]_{1}$, is hyperbolic
- $f=\operatorname{det}(X)$, with $X=\left(x_{i j}\right)$ symmetric, is hyperbolic in direction I
- More generally, $f=\operatorname{det}\left(x_{1} A_{1}+\cdots+x_{n} A_{n}\right)$, with $e_{1} A_{1}+\cdots+x_{n} A_{n} \succ 0$, is hyperbolic in direction $e=\left(e_{1}, \ldots, e_{n}\right)$
- More generally, $f^{k}=\operatorname{det}\left(x_{1} A_{1}+\cdots+x_{n} A_{n}\right)$, with $e_{1} A_{1}+\cdots+x_{n} A_{n} \succ 0$, for some $k \in \mathbb{N}$, implies f hyperbolic in direction $e=\left(e_{1}, \ldots, e_{n}\right)$
often called "determinantal" and "weakly determinantal".

Hyperbolicity cone

Let $f \in \mathbb{R}[x]_{d}$ be hyperbolic in direction e. The set

$$
\Lambda_{+}(f, e)=\left\{a \in \mathbb{R}^{n}: c h_{a}(t)=0 \Rightarrow t \geq 0\right\}
$$

is called the hyperbolicity cone in direction e of f.
Equivalent definition: the connected component of $\mathbb{R}^{n} \backslash V(f)$ containing e.
There are "many" hyperbolicity cones:

- Only one pair, if f is irreducible
[Kummer, 2018]
- Bound of $2 \sum_{k=0}^{n-1}\binom{d-1}{k}$ for large d, or of 2^{d} for large n, attained for products of linear forms [Theobald et al., 2018]

Hyperbolicity cone

Optimization viewpoint

Feasible set	name	Optimization	Polynomial		
	Spectrahedron	SDP	$f=\operatorname{det} A(x)$		
	Hyperbolicity				
Cone				\quad Hyperbolic	polynomial
:---:					

Spectrahedral representation

A set $S \subset \mathbb{R}^{n}$ has a spectrahedral representation if there are real symmetric matrices $A=\left(A_{1}, \ldots, A_{n}\right)$ such that $S=S_{A}$ with

$$
S_{A}:=\left\{x \in \mathbb{R}^{n}: x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0\right\}
$$

If $f=\operatorname{det}(X)$, then $\Lambda_{+}(f, I)=\mathbb{S}_{+}^{d}$ (psd matrices), and more generally if $f^{k}=\operatorname{det}\left(x_{1} A_{1}+\right.$ $\cdots+x_{n} A_{n}$), with $e_{1} A_{1}+\cdots+e_{n} A_{n} \succ 0$, then

$$
\Lambda_{+}\left(f^{k}, e\right)=\Lambda_{+}(f, e)=S_{A}
$$

If f is hyperbolic in direction e, is $\Lambda_{+}(f, e)$ spectrahedral ?

Generalized Lax conjecture

Geometric version. Let $f \in \mathbb{R}[x]_{d}$ be hyperbolic in direction e. Then

$$
\Lambda_{+}(f, e)=S_{A}
$$

for some real symmetric matrices $A=\left(A_{1}, \ldots, A_{n}\right)$.
or, equivalently:
Algebraic version. Let $f \in \mathbb{R}[x]_{d}$ be hyperbolic in direction e. Then there is $g \in \mathbb{R}[x]_{c}$ s.t.

- $f g=\operatorname{det}\left(x_{1} A_{1}+\cdots+x_{n} A_{n}\right)$
["generalized determinantal"]
- $\Lambda_{+}(f, e) \subset \Lambda_{+}(g, e)$

If such a g exists, then

$$
\Lambda_{+}(f, e)=\Lambda_{+}(f, e) \cap \Lambda_{+}(g, e)=\Lambda_{+}(f g, e)=S_{A}
$$

Our construction

$\Lambda_{+}(f, e)=$ green region
$f=$ blue curve
$g=\ell_{1} \ell_{2} \cdots \ell_{c}$, the "extra factor", whose cone is a polyhedral set that strictly contains $\Lambda_{+}(f, e)$

Contact curves and interlacers

Let $f \in \mathbb{R}[x, y, z]_{d}$ be hyperbolic in direction e. Then $h \in \mathbb{R}[x, y, z]_{d-1}$ is a

- contact curve for f if every intersection point of $V_{\mathbb{C}}(f)$ and $V_{\mathbb{C}}(g)$ has even multiplicity
- real contact curve for f if every intersection point of $V_{\mathbb{R}}(f)$ and $V_{\mathbb{R}}(g)$ has even multiplicity
- interlacer of f in direction e if the roots $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{d}$ of $f(t e-a)$ and the roots $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{d-1}$ of $h(t e-a)$ interlace perfectly, namely

$$
\alpha_{1} \leq \beta_{1} \leq \alpha_{2} \leq \beta_{2} \leq \cdots \leq \beta_{d-1} \leq \alpha_{d}
$$

contact curve \ggg real contact curve \lll interlacer

Dixon method (variant of Plaumann-Vinzant)

Based on Cramer's rule : $A \cdot A^{a d j}=\operatorname{det} A \cdot I_{d}$
Assume $f=\operatorname{det} A$ and $V_{\mathbb{C}}(f)$ is smooth, then

$$
\operatorname{co-rank}(A)=\operatorname{rank}\left(A^{a d j}\right)=1 \quad \bmod \operatorname{det} A .
$$

INPUT

f (hyperbolic curve)
OUTPUT
Hermitian matrix A (satisfying $f=\operatorname{det} A$ and $A(e) \succ 0$)
Sketch of the PROCEDURE :
$m_{11} \leftarrow D_{e} f:=e_{1} \frac{\partial f}{\partial x}+e_{2} \frac{\partial f}{\partial y}+e_{3} \frac{\partial f}{\partial z}$
$\# D_{e} f$ special interlacer
split $S \cup \bar{S}=V_{\mathbb{C}}(f) \cap V_{\mathbb{C}}\left(D_{e} f\right)$
extend m_{11} to basis $\left\langle m_{11} \ldots m_{1 d}\right\rangle$ of polyn. vanishing on S
$m_{j k} \leftarrow$ solve $a_{11} a_{j k}-\overline{a_{1 j}} a_{1 k}=0 \bmod f$ for $j \leq k$
$M \leftarrow\left(m_{j k}\right)$
$A \leftarrow M^{a d j} / f^{d-2}$

The cone of interlacers

Precomputing an interlacer is "easier" than precomputing a contact curve.

This is because the set of interlacers is tractable:
(Kummer-Plaumann-Vinzant 2013)

$$
\operatorname{Int}(f, e)=\left\{h \in \mathbb{R}[x, y, z]_{d-1} \mid h \text { interlaces } f \text { in direction } e\right\}
$$

is a section of the cone of positive polynomials:

$$
\operatorname{Int}(f, e)=\left\{h \in \mathbb{R}[x, y, z]_{d-1} \mid W(f, h):=\left(D_{e} f\right) h-f\left(D_{e} h\right) \geq 0\right\}
$$

Thus interlacers can be sampled by computing a SOS decomposition of $W(f, h)$: such relaxation is exact if f is determinantal.

Main result

Let $f \in \mathbb{R}[x, y, z]_{d}$ be hyperbolic with respect to e, and let $h \in \operatorname{Int}(f, e)$. Let $\ell_{1}, \ldots, \ell_{c}$ be the (real) lines joining the pairs of complex intersections of f and h.
Then* there are $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{m}$, with $m=\left(d^{2}+d\right) / 2-r$, such that

- $\Lambda_{+}(f, e)=\left\{x \in \mathbb{R}^{3}: x A_{1}+y A_{2}+z A_{3} \succeq 0\right\}$
- $f \cdot \ell_{1} \cdot \ell_{2} \cdots \ell_{c}=\operatorname{det}\left(x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)$
* up to genericity assumptions on g :
(1) no three intersection points of f and h aligned
(2) no three of the lines pass through the same point
(3) f does not vanish over intersection points of two lines

Our variant

The main point is that the extra factor $g=\ell_{1} \cdots \ell_{c}$ corrects the failure of h to be a contact curve, by adding multiplicity to the complex intersections of f and h.

Positive aspects:

(1) The multiplier is the simplest we can get : product of linear forms
(2) The size of the representation depends on r, the number of real intersections.
(3) For maximal r, one gets the Helton-Vinnikov representation

Maximizing r means minimizing the size of the representation, and means that the interlacer is "special".

Question: how to get interlacers with many real intersections?

Extremal interlacers

An extreme point of $\operatorname{Int}(f, e)$ is called an extremal interlacer
It corresponds to interlacers with "many" real intersections with f.
If f is smooth, any extremal interlacer has at least

$$
\left\lceil\frac{(d+1) d-2}{4}\right\rceil
$$

contact points (counted multiplicities).

degree	d	2	3	4	5	6	\cdots
lower bound for extr. int.	$\left[\frac{(d+1) d-2}{4}\right\rceil$	1	3	5	7	10	\cdots
Bézout	$\frac{d(d-1)}{2}$	1	3	6	10	15	\cdots

Quartic curves

Open question : can we always have six intersections for $d=4$?

One example

The cubic $f=x^{3}+2 x^{2} y-x y^{2}-2 y^{3}-x z^{2}$ is hyperbolic with respect to $e=(1,0,0)$.

The two green interlacers have coefficients in K with $|K: \mathbb{Q}|=4$, and the dashed one is rational. The corresponding spectrahedral representation is

$$
\frac{24}{125}(2 x-y) \cdot f=\operatorname{det}\left(\begin{array}{cccc}
5 x+10 y & -x-2 y & -4 z & 2 z \\
-x-2 y & x & 0 & 0 \\
-4 z & 0 & 4 x+2 y & -2 x-4 y \\
2 z & 0 & -2 x-4 y & 4 x+2 y
\end{array}\right)
$$

Rational representations

We prove that there are (possibly large) rational spectrahedral representations (even in the case when there are no rational determinantal representations)

Let $f \in \mathbb{Q}[x, y, z]$ be a hyperbolic curve, with smooth real zero set. Then its hyperbolicity cone has a rational spectrahedral representation, of size at most $\binom{d+1}{2}$.

On the other hand, there are hyperbolic curves in $\mathbb{Q}[x, y, z]_{d}$ that do not admit rational determinantal representations.

Example

$f=y^{2} z-\left(x^{3}-6 x z^{2}-3 z^{3}\right)$ has no rational 3×3 determinantal representation, but it has a rational generalized representation, which yields the spectrahedral representation

$$
\Lambda_{+}(f, e)=\left\{\left(\begin{array}{cccc}
3 z & y & -x-z & -3 x+z \\
y & -x+2 z & 0 & -y \\
-x-z & 0 & z & x+4 z \\
-3 x+z & -y & x+4 z & -x+18 z
\end{array}\right) \succeq 0\right\}
$$

The extra-factor is a line and the interlacer has two contact points:

References

\odot

This part is based on

(18) "Spectrahedral representations of plane hyperbolic curves"
(M. Kummer, S. Naldi, D. Plaumann) Pac. J. Math. 303(1):243-263 (2019)

Related papers:

(010 "Determinantal repr. of hyperbolic plane curves: An elementary approach" (Plaumann, Vinzant) Journal of Symb. Comp. Vol. 57, 48-60 (2013)
"Computing Hermitian determinantal representations of hyperbolic curves"
(Plaumann, Sinn, Speyer, Vinzant) Int. J. Alg. Comp. 25(8):1327-1336 (2015)

