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Context
Convex semialgebraic set : A (f,e) ={a €R™: f(a) >0,...}
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Context
Convex semialgebraic set : A (f,e) ={a €R™: f(a) >0,...}
Hyperbolic curve : V(f) ={a € R": f(a) =0}
Second curve : g € R{z]qeg f—1
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Context
Convex semialgebraic set : A (f,e) ={a €R™: f(a) >0,...}
Hyperbolic curve : V(f) ={a € R": f(a) =0}
Second curve : g € R[z]qeq f—1. Extra-factor : €1 - fy --- £,

.
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Hyperbolic polynomials

A homogeneous polynomial f € R[z]y is called hyperbolic in direction e if
* fle) #0
® The characteristic polynomial f(te — a) is real rooted, for every a € R™.

It is hyperbolic whenever such a direction e exists.

Examples:
- f=41ly - Ly, with ¢; € R[z]y, is hyperbolic
- f =det(X), with X = (z;;) symmetric, is hyperbolic in direction I

- More generally, [ = det(z1 Ay + -+ x,A,), with e 41 + -+ + 2, A, = 0, is hyperbolic in direction
e=(e1,...,€n)

- More generally, f¥ =det(z1 Ay +---+x,A,), with ey Ay +---+ 2,4, = 0, for some k € N, implies
f hyperbolic in direction e = (e1,...,e,)

often called “determinantal” and “weakly determinantal™.

S. Naldi Spectrahedral representations of hyperbolic plane curves March 28, 2022



Hyperbolicity cone Xliim e o @

Let f € R[z]; be hyperbolic in direction e. The set

Ai(f,e) ={a € R":ch,(t)=0=1t >0}

is called the hyperbolicity cone in direction e of f.

Equivalent definition: the connected component of R™ \ V(f) containing e.

There are “many” hyperbolicity cones:
® Only one pair, if f is irreducible

* Bound of 23725 (%
[Theobald et al., 2018]

[Kummer, 2018]

) for large d, or of 2¢ for large n, attained for products of linear forms
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Optimization viewpoint

4/18 S. Naldi

Xlim W

Feasible set name Optimization | Polynomial
Hyperbolicity HP Hyperbolic
Cone polynomial
‘ i Spectrahedron SDP f=det A(x)
Polyhedron LP f=114x)
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Spectrahedral representation

A set S C R" has a spectrahedral representation if there are real symmetric matrices
A= (Ay,...,A,) such that S = S4 with

SA ::{xGR”:x1A1+'--+mnAn50}

If f = det(X), then Ay (f,I) = S‘i (psd matrices), and more generally if f* = det(xA; +
ot xpAy), with e; Ay + -+ 4+ e, Ay = 0, then

A+(fk,6) = A+(f7 6) =54

If f is hyperbolic in direction e, is Ay (f,e) spectrahedral ?
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Generalized Lax conjecture

Geometric version. Let f € R[z]; be hyperbolic in direction e. Then
Ay(f,e) =54

for some real symmetric matrices A = (A, ..., A,).

or, equivalently:

Algebraic version. Let f € R[z]; be hyperbolic in direction e. Then there is g € R[z]. s.t
° fg=det(z1 A1 + - + 2, 4,) [“generalized determinantal”]
° A+(f7 6) c AJr(gve)

If such a g exists, then

A+(f7 6) = A+(f7 6) ﬁA+(g,e) = A+(fg,€) = SA
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A4 (f,e) = green region
f = blue curve
L., the “extra factor”, whose cone is a polyhedral set that strictly contains A (f,e)
Spectrahedral representations of hyperbolic plane curves
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Let f € R[z,y, z]q be hyperbolic in direction e. Then h € Rz, y, z]q—1 is a
® contact curve for f if every intersection point of Vi (f) and Vi(g) has even multiplicity

® real contact curve for f if every intersection point of Vk(f) and Vg (g) has even multiplicity

e interlacer of f in direction e if the roots a; < ag < --- < ay of f(te — a) and the roots
B1 < By <--- < B4_1 of h(te — a) interlace perfectly, namely

o <P <ar <P < B <ay

contact curve >>> real contact curve <<< interlacer
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Dixon method (variant of Plaumann-Vinzant)

Based on Cramer's rule : A- A% = det A - I;
Assume f = det A and V(f) is smooth, then

co-rank(A) = rank(A¥) =1 mod det A.

INPUT
f (hyperbolic curve)
OUTPUT
Hermitian matrix A (satisfying f = det A and A(e) > 0)
Sketch of the PROCEDURE :
mi1 < D.f == e a£ + €9 8f + 63 # D.f special interlacer
split SUS = Vi(f) N Ve(Def)
extend my; to basis (mqj...mq4) of polyn. vanishing on S
mji, < solve ay1aj, — ayja1, = 0 mod f for j < k # rank =1
M + (m]k)
A« Madj/fde
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The cone of interlacers
Precomputing an interlacer is “easier” than precomputing a contact curve.
This is because the set of interlacers is tractable:

(Kummer-Plaumann-Vinzant 2013)
Int(f,e) = {h € Rlz,y, z]4—1 | h interlaces f in direction e}
is a section of the cone of positive polynomials:

Int(f, 6) = {h € R[$7y7 Z]d—l ‘ W(fv h) o= (Def)h - f(Deh') > 0}

Thus interlacers can be sampled by computing a SOS decomposition of W (f, h): such
relaxation is exact if f is determinantal.
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Let f € R[z,y, z]q be hyperbolic with respect to e, and let h € Int(f,e). Let ¢4,
(real) lines joining the pairs of complex intersections of f and h.

Then* there are Ay, Ay, A3 € S™, with m = (d? + d)/2 — r, such that
* A (f,e) ={z € R3:2A; +yAs + 243 = 0}

., 4. be the

° f 0 él 0 62 000 gc = det(xlAl aF IEQAQ + LEgAg)

* up to genericity assumptions on g:
@ no three intersection points of f and h aligned
@® no three of the lines pass through the same point

©® [ does not vanish over intersection points of two lines
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The main point is that the extra factor g = ¢; - - - £. corrects the failure of A to be a contact
curve, by adding multiplicity to the complex intersections of f and h.

Positive aspects:

@ The multiplier is the simplest we can get : product of linear forms

@® The size of the representation depends on r, the number of real intersections.

©® For maximal r, one gets the Helton-Vinnikov representation

Maximizing r means minimizing the size of the representation, and means that the interlacer is
“special”.

Question: how to get interlacers with many real intersections?
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Extremal interlacers

An extreme point of Int(f,e) is called an extremal interlacer
It corresponds to interlacers with “many” real intersections with f.

If f is smooth, any extremal interlacer has at least

[(d—i- 14)d— 2}

contact points (counted multiplicities).

degree d 23 4 5 6
lower bound for extr. int. W 1 3 5 7 10
Bézout @D 1136 10 15
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Quartic curves

Open question : can we always have six intersections for d = 47
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The cubic f = 23 4 222y — 2y? — 2y — 222 is hyperbolic with respect to e = (1,0,0).

One example

The two green interlacers have coefficients in K with |K : Q|= 4, and the dashed one is
rational. The corresponding spectrahedral representation is

or + 10y —x — 2y —4z 2z
24 —x — 2y x 0 0
125 Gr o) f=det) 0 dr +2y —2z — 4y
2z 0 —2x —4y  dx+ 2y
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Rational representations

We prove that there are (possibly large) rational spectrahedral representations (even in the
case when there are no rational determinantal representations)

Let f € Q[z,y, z] be a hyperbolic curve, with smooth real zero set. Then its hyperbolicity cone
has a rational spectrahedral representation, of size at most (*4').

On the other hand, there are hyperbolic curves in Q[z,y, z]4 that do not admit rational
determinantal representations.
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f =1vy%2 — (23 — 6222 — 32%) has no rational 3 x 3 determinantal representation, but it has a
rational generalized representation, which yields the spectrahedral representation

3z Y —r—z —3xr+=z
_ Y -+ 2z 0 —y
+(f,e) = —x—z 0 2 x+ 4z =0
—3x+z —y r+4z —x+ 18z

The extra-factor is a line and the interlacer has two contact points:
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