Theoretical and practical applications of signomial rings to polynomial optimization

Riley Murray

University of California, Berkeley

LAAS – CNRS *BrainPOP Seminar*
October 4, 2021

Joint work with Mareike Dressler
What are signomials?

Start with “monomial” basis functions, for $\alpha \in \mathbb{R}^n$

$$e^\alpha : \mathbb{R}^n \rightarrow \mathbb{R}_{++} \quad \text{takes values} \quad e^\alpha(x) := \exp \langle \alpha, x \rangle.$$

A signomial supported on $A \subset \mathbb{R}^n$ is a linear combination

$$f = \sum_{\alpha \in A} c_\alpha e^\alpha.$$

For modeling reasons, write as generalized polynomials in $t_i = \exp x_i$:

$$t \mapsto \sum_{\alpha \in A} c_\alpha t_1^{\alpha_1} \cdots t_n^{\alpha_n}.$$
What are signomials?

Start with “monomial” basis functions, for $\alpha \in \mathbb{R}^n$

$$e^\alpha : \mathbb{R}^n \rightarrow \mathbb{R}_{++} \text{ takes values } e^\alpha(x) := \exp\langle \alpha, x \rangle.$$

A signomial supported on $A \subset \mathbb{R}^n$ is a linear combination

$$f = \sum_{\alpha \in A} c_\alpha e^\alpha.$$

For modeling reasons, write as generalized polynomials in $t_i = \exp x_i$:

$$t \mapsto \sum_{\alpha \in A} c_\alpha t_1^{\alpha_1} \cdots t_n^{\alpha_n}$$
What are signomials?

Start with “monomial” basis functions, for $\alpha \in \mathbb{R}^n$

$$e^\alpha : \mathbb{R}^n \to \mathbb{R}_{++} \quad \text{takes values} \quad e^\alpha(x) := \exp\langle \alpha, x \rangle.$$

A signomial supported on $A \subset \mathbb{R}^n$ is a linear combination

$$f = \sum_{\alpha \in A} c_\alpha e^\alpha.$$

For modeling reasons, write as generalized polynomials in $t_i = \exp x_i$:

$$t \mapsto \sum_{\alpha \in A} c_\alpha t_1^{\alpha_1} \cdots t_n^{\alpha_n}$$
What are signomials?

Start with “monomial” basis functions, for $\alpha \in \mathbb{R}^n$

$$e^\alpha : \mathbb{R}^n \to \mathbb{R}_{++} \quad \text{takes values} \quad e^\alpha(\mathbf{x}) := \exp\langle \alpha, \mathbf{x} \rangle.$$

A signomial supported on $\mathcal{A} \subset \mathbb{R}^n$ is a linear combination

$$f = \sum_{\alpha \in \mathcal{A}} c_\alpha e^\alpha.$$

For modeling reasons, write as generalized polynomials in $t_i = \exp x_i$:

$$t \mapsto \sum_{\alpha \in \mathcal{A}} c_\alpha t_1^{\alpha_1} \cdots t_n^{\alpha_n}.$$
A template for nonnegativity certificates

Characterize nonnegative functions

\[\sum_{\alpha \in A} c_{\alpha} t^{\alpha} + c_{\beta} t^{\beta} \geq 0 \quad \text{for all} \quad t \in S \]

with one free term \((c_{\alpha} t^{\alpha} \geq 0 \text{ on } S \text{ “trivially”}). \]

Then take sums!

Example. \(t^{-3} + t^{-2} + 4t + t^2 - 4t^{-1} - 1 - t^3 \geq 0 \text{ for all } t \in (0, 1]. \)
A template for nonnegativity certificates

Characterize nonnegative functions

$$\sum_{\alpha \in \mathcal{A}} c_{\alpha} t^\alpha + c_{\beta} t^\beta \geq 0 \quad \text{for all} \quad t \in S$$

with one free term ($c_{\alpha} t^\alpha \geq 0$ on S “trivially”). Then take sums!

Example. $t^{-3} + t^{-2} + 4t + t^2 - 4t^{-1} - 1 - t^3 \geq 0$ for all $t \in (0, 1]$.
A template for nonnegativity certificates

Characterize nonnegative functions

\[\sum_{\alpha \in A} c_\alpha t^\alpha + c_\beta t^\beta \geq 0 \quad \text{for all} \quad t \in S \]

with one free term \((c_\alpha t^\alpha \geq 0 \text{ on } S \text{ “trivially”}) \). Then take sums!

Example. \(t^{-3} + t^{-2} + 4t + t^2 - 4t^{-1} - 1 - t^3 \geq 0 \text{ for all } t \in (0, 1].\)
Manifestations of the template

<table>
<thead>
<tr>
<th>Who</th>
<th>Method name</th>
<th>S</th>
<th>am/gm</th>
<th>convex duality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reznick [1]</td>
<td>agiforms</td>
<td>\mathbb{R}^n</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Pantea, Koepll, and Craciun [2]</td>
<td>monomial domination</td>
<td>\mathbb{R}^n_{++}</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Iliman and de Wolff [3]</td>
<td>SONC</td>
<td>\mathbb{R}^n</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Chandrasekaran and Shah [4]</td>
<td>SAGE signomials</td>
<td>\mathbb{R}^n_{++}</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>MCW [5]</td>
<td>SAGE polynomials</td>
<td>\mathbb{R}^n</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Katthän, Naumann, and Theobald [6]</td>
<td>S-cone*</td>
<td>\mathbb{R}^n</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>MCW [7]</td>
<td>conditional SAGE</td>
<td>$\log S$ convex</td>
<td>no**</td>
<td>yes</td>
</tr>
</tbody>
</table>

Call them what you will, but use the efficient relative entropy formulations in [5, 7]! They work out of the box!
Manifestations of the template

<table>
<thead>
<tr>
<th>Who</th>
<th>Method name</th>
<th>S</th>
<th>am/gm</th>
<th>convex duality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reznick [1]</td>
<td>agiforms</td>
<td>\mathbb{R}^n</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Pantea, Koepl, and Craciun [2]</td>
<td>monomial domination</td>
<td>\mathbb{R}^n_{++}</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Iliman and de Wolff [3]</td>
<td>SONC</td>
<td>\mathbb{R}^n</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Chandrasekaran and Shah [4]</td>
<td>SAGE signomials</td>
<td>\mathbb{R}^n_{++}</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>MCW [5]</td>
<td>SAGE polynomials</td>
<td>\mathbb{R}^n</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Katthän, Naumann, and Theobald [6]</td>
<td>S-cone*</td>
<td>\mathbb{R}^n</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>MCW [7]</td>
<td>conditional SAGE</td>
<td>$\log S_{\text{convex}}$</td>
<td>no**</td>
<td>yes</td>
</tr>
</tbody>
</table>

Call them what you will, but use the efficient relative entropy formulations in [5, 7]! They work out of the box!
What’s this all good for?

High-degree and non-polynomial models.

Aircraft design \([8, 9, 10, 11, 12]\) and structural engineering \([13, 14, 15, 16]\).

Optimized Pulse Patterns \([17]\)

Hyperloop Design \([18]\)

For applications in communications networks, see Chiang’s monograph \([19]\).
What’s this all good for?

High-degree and non-polynomial models.

Aircraft design [8, 9, 10, 11, 12] and structural engineering [13, 14, 15, 16].

For applications in communications networks, see Chiang’s monograph [19].
What’s this all good for?

High-degree and non-polynomial models.

Aircraft design [8, 9, 10, 11, 12] and structural engineering [13, 14, 15, 16].

For applications in communications networks, see Chiang’s monograph [19].
What’s this all good for?

High-degree and non-polynomial models.

Aircraft design [8, 9, 10, 11, 12] and structural engineering [13, 14, 15, 16].

Optimized Pulse Patterns [17]

For applications in communications networks, see Chiang’s monograph [19].
What’s this all good for?

High-degree and non-polynomial models.

Aircraft design [8, 9, 10, 11, 12] and structural engineering [13, 14, 15, 16].

Optimized Pulse Patterns [17]

Hyperloop Design [18]

For applications in communications networks, see Chiang’s monograph [19].
Outline for the talk

This talk is about “conditional SAGE.”

1. Basics of conditional SAGE.
 Definition \rightarrow dual perspective \rightarrow an application

2. A Positivstellensatz which respects signomial rings
 An earlier SAGE Positivstellensatz \rightarrow our result \rightarrow proof outline

3. Grading signomial rings by “A-degree”

4. A new hierarchy
 Definition \rightarrow signomial example \rightarrow polynomial example

All numerical convex optimization examples use MOSEK 9.2.
Outline for the talk

This talk is about “conditional SAGE.”

1 Basics of conditional SAGE.
 Definition → dual perspective → an application

2 A Positivstellensatz which respects signomial rings
 An earlier SAGE Positivstellensatz → our result → proof outline

3 Grading signomial rings by “A-degree”

4 A new hierarchy
 Definition → signomial example → polynomial example

All numerical convex optimization examples use MOSEK 9.2.
This talk is about “conditional SAGE.”

1. Basics of conditional SAGE.
 - Definition → dual perspective → an application

2. A Positivstellensatz which respects signomial rings
 - An earlier SAGE Positivstellensatz → our result → proof outline

3. Grading signomial rings by “A-degree”

4. A new hierarchy
 - Definition → signomial example → polynomial example

All numerical convex optimization examples use MOSEK 9.2.
This talk is about “conditional SAGE.”

1 Basics of conditional SAGE.
 Definition → dual perspective → an application

2 A Positivstellensatz which respects signomial rings
 An earlier SAGE Positivstellensatz → our result → proof outline

3 Grading signomial rings by “A-degree”

4 A new hierarchy
 Definition → signomial example → polynomial example

All numerical convex optimization examples use MOSEK 9.2.
Outline for the talk

This talk is about “conditional SAGE.”

1. Basics of conditional SAGE.
 - Definition \rightarrow dual perspective \rightarrow an application

2. A Positivstellensatz which respects signomial rings
 - An earlier SAGE Positivstellensatz \rightarrow our result \rightarrow proof outline

3. Grading signomial rings by “A-degree”

4. A new hierarchy
 - Definition \rightarrow signomial example \rightarrow polynomial example

All numerical convex optimization examples use MOSEK 9.2.
Outline for the talk

This talk is about “conditional SAGE.”

1 Basics of conditional SAGE.
 Definition \rightarrow dual perspective \rightarrow an application

2 A Positivstellensatz which respects signomial rings
 An earlier SAGE Positivstellensatz \rightarrow our result \rightarrow proof outline

3 Grading signomial rings by “A-degree”

4 A new hierarchy
 Definition \rightarrow signomial example \rightarrow polynomial example

All numerical convex optimization examples use MOSEK 9.2.
For finite $A \subset \mathbb{R}^n$, define

$$\mathbb{R}^A := \{ \text{real } |A|\text{-tuples indexed by } \alpha \in A \}.$$

Identify signomials w/ coefficients on basis functions $\{ e^\alpha \}_{\alpha \in A}$

$$\sum_{\alpha \in A} c_\alpha e^\alpha \iff c \in \mathbb{R}^A.$$

Understand $A : \mathbb{R}^n \to \mathbb{R}^A$ as a linear operator

$$Ax = (\langle \alpha, x \rangle)_{\alpha \in A}$$

The support of a signomial

$$\text{supp}(f) = \text{the smallest } A \subset \mathbb{R}^n \text{ for which } f \in \text{span}\{e^\alpha\}_{\alpha \in A}.$$
Notation

For finite $A \subset \mathbb{R}^n$, define

$$\mathbb{R}^A := \{\text{real } |A|-\text{tuples indexed by } \alpha \in A\}.$$

Identify signomials w/ coefficients on basis functions $\{e^\alpha\}_{\alpha \in A}$

$$\sum_{\alpha \in A} c_\alpha e^\alpha \iff c \in \mathbb{R}^A.$$

Understand $A : \mathbb{R}^n \rightarrow \mathbb{R}^A$ as a linear operator

$$Ax = (\langle \alpha, x \rangle)_{\alpha \in A}.$$

The support of a signomial

$$\text{supp}(f) = \text{the smallest } A \subset \mathbb{R}^n \text{ for which } f \in \text{span}\{e^\alpha\}_{\alpha \in A}.$$
Notation

For finite $A \subset \mathbb{R}^n$, define

$$\mathbb{R}^A := \{\text{real } |A|\text{-tuples indexed by } \alpha \in A\}.$$

Identify signomials w/ coefficients on basis functions $\{e^\alpha\}_{\alpha \in A}$

$$\sum_{\alpha \in A} c_\alpha e^\alpha \iff c \in \mathbb{R}^A.$$

Understand $A : \mathbb{R}^n \to \mathbb{R}^A$ as a linear operator

$$A\mathbf{x} = (\langle \alpha, \mathbf{x} \rangle)_{\alpha \in A}$$

The support of a signomial

$$\text{supp}(f) = \text{the smallest } A \subset \mathbb{R}^n \text{ for which } f \in \text{span}\{e^\alpha\}_{\alpha \in A}.$$
Notation

For finite $A \subset \mathbb{R}^n$, define

$$\mathbb{R}^A := \{\text{real } |A|\text{-tuples indexed by } \alpha \in A\}.$$

Identify signomials w/ coefficients on basis functions $\{e^\alpha\}_{\alpha \in A}$

$$\sum_{\alpha \in A} c_\alpha e^\alpha \iff c \in \mathbb{R}^A.$$

Understand $A : \mathbb{R}^n \to \mathbb{R}^A$ as a linear operator

$$Ax = (\langle \alpha, x \rangle)_{\alpha \in A}.$$

The support of a signomial

$$\text{supp}(f) = \text{the smallest } A \subset \mathbb{R}^n \text{ for which } f \in \text{span}\{e^\alpha\}_{\alpha \in A}.$$
Definition [7, MCW]. A signomial \(f = \sum_{\alpha \in A} c_{\alpha} e^{\alpha} \) is called X-AGE if

(1) \(f \) is nonnegative on \(X \), and

(2) at most one \(c_{\beta} < 0 \) for any \(\beta \in A \).

Take sums to get X-SAGE signomials.

\[
C_X(A) = \left\{ c \in \mathbb{R}^A \left| \begin{array}{l}
\sum_{\alpha \in A} c_{\alpha} e^{\alpha}(x) = \sum_i f_i(x) \\
each f_i \text{ is an X-AGE signomial}
\end{array} \right. \right\}
\]

Sparsity preservation ([5, MCW] and [7, MCW]):

If \(f \) is an X-SAGE signomial supported on \(A \), then \(f \) is a sum of X-AGE signomials also supported on \(A \).
Conditional SAGE

Definition [7, MCW]. A signomial \(f = \sum_{\alpha \in A} c_{\alpha}e^{\alpha} \) is called X-\text{AGE} if

1. \(f \) is nonnegative on \(X \), and
2. at most one \(c_{\beta} < 0 \) for any \(\beta \in A \).

Take sums to get X-SAGE signomials.

\[
C_X(A) = \left\{ c \in \mathbb{R}^A \left| \sum_{\alpha \in A} c_{\alpha}e^{\alpha}(x) = \sum_{i} f_i(x) \right. \right.
\text{each } f_i \text{ is an X-AGE signomial} \right\}
\]

Sparsity preservation ([5, MCW] and [7, MCW]):

If \(f \) is an X-SAGE signomial supported on \(A \), then \(f \) is a sum of X-AGE signomials also supported on \(A \).
Conditional SAGE

Definition [7, MCW]. A signomial \(f = \sum_{\alpha \in A} c_\alpha e^\alpha \) is called X-AGE if

1. \(f \) is nonnegative on \(X \), and
2. at most one \(c_\beta < 0 \) for any \(\beta \in A \).

Take sums to get X-SAGE signomials.

\[
C_X(A) = \left\{ c \in \mathbb{R}^A \mid \sum_{\alpha \in A} c_\alpha e^\alpha(x) = \sum_i f_i(x), \text{ each } f_i \text{ is an X-AGE signomial} \right\}
\]

Sparsity preservation ([5, MCW] and [7, MCW]):

If \(f \) is an X-SAGE signomial supported on \(A \), then \(f \) is a sum of X-AGE signomials also supported on \(A \).
The dual perspective

Introduce X-AGE cones

\[C_X(A, \beta) := \left\{ c \in \mathbb{R}^A \left| \begin{array}{c} \ c_\alpha \geq 0 \ \text{for all } \alpha \neq \beta \\ \sum_{\alpha \in A} c_\alpha e^\alpha \geq 0 \ \text{on } X \end{array} \right. \right\}. \]

The dual X-SAGE cone can be represented as

\[C_X(A)^\dagger = \bigcap_{\beta \in A} C_X(A, \beta)^\dagger. \]

Theorem [7, MCW]. If \(X \) is convex, then

\[C_X(A, \beta)^\dagger = \text{cl} \left\{ v \in \mathbb{R}^A_{++} : \text{some } z \text{ satisfies } z/v_\beta \in X \right\} \]

\[\text{and } v_\beta \log \left(\frac{v_\alpha}{v_\beta} \right) \geq \langle \alpha - \beta, z \rangle \ \forall \alpha \in A \].
The dual perspective

Introduce X-AGE cones

\[C_X(A, \beta) := \left\{ c \in \mathbb{R}^A \left| \begin{array}{c} c_\alpha \geq 0 \text{ for all } \alpha \neq \beta \\ \sum_{\alpha \in A} c_\alpha e^\alpha \geq 0 \text{ on } X \end{array} \right. \right\}. \]

The dual X-SAGE cone can be represented as

\[C_X(A)^\dagger = \bigcap_{\beta \in A} C_X(A, \beta)^\dagger. \]

Theorem [7, MCW]. If \(X \) is convex, then

\[C_X(A, \beta)^\dagger = \text{cl} \left\{ v \in \mathbb{R}^A_{++} : \text{some } z \text{ satisfies } z/v_\beta \in X \text{ and } v_\beta \log \left(\frac{v_\alpha}{v_\beta} \right) \geq \langle \alpha - \beta, z \rangle \forall \alpha \in A \right\}. \]
The dual perspective

Introduce X-AGE cones

\[C_X(A, \beta) := \left\{ c \in \mathbb{R}^A \left| \begin{array}{c} c_\alpha \geq 0 \text{ for all } \alpha \neq \beta \\ \sum_{\alpha \in A} c_\alpha e^\alpha \geq 0 \text{ on } X \end{array} \right. \right\}. \]

The dual X-SAGE cone can be represented as

\[C_X(A)^\dagger = \bigcap_{\beta \in A} C_X(A, \beta)^\dagger. \]

Theorem [7, MCW]. If \(X \) is convex, then

\[C_X(A, \beta)^\dagger = \text{cl} \left\{ v \in \mathbb{R}^A_{++} : \text{some } z \text{ satisfies } z/v_\beta \in X \right\} \]

and \(v_\beta \log \left(\frac{v_\alpha}{v_\beta} \right) \geq \langle \alpha - \beta, z \rangle \forall \alpha \in A \).
Chemical dynamics

Concentrations of chemical species are described by an ODE

\[\frac{d}{dt} s(t) = R_k(s(t)). \]

At most one equilibrium point? See Pantea, Koeppel, Craciun [2].

Consider various boxes B.

Is \(R_k \) injective \(\forall k \in B \)?

Apply conditional SAGE

Yes, \(R_k \) always injective

No, some \(R_k \) not injective

0.05 seconds per B
Chemical dynamics

Concentrations of chemical species are described by an ODE

\[\frac{d}{dt}s(t) = R_k(s(t)). \]

At most one equilibrium point? See Pantea, Koeppel, Craciun [2].

Consider various boxes B.

Is \(R_k \) injective \(\forall k \in B? \)

Apply conditional SAGE

Yes, \(R_k \) always injective

No, some \(R_k \) not injective

0.05 seconds per B
Chemical dynamics

Concentrations of *chemical species* are described by an ODE

\[
\frac{d}{dt}s(t) = R_k(s(t)).
\]

At most one equilibrium point? See Pantea, Koepppl, Craciun [2].

Consider various boxes B.

Is R_k injective $\forall k \in B$?

Apply conditional SAGE

Yes, R_k always injective

No, some R_k not injective

0.05 seconds per B
Chemical dynamics

Concentrations of chemical species are described by an ODE

\[\frac{d}{dt} s(t) = R_k(s(t)). \]

At most one equilibrium point? See Pantea, Koeppl, Craciun [2].

Consider various boxes B.

Is \(R_k \) injective \(\forall k \in B \)?

Apply conditional SAGE

Yes, \(R_k \) always injective
No, some \(R_k \) not injective

0.05 seconds per B
Chemical dynamics

Concentrations of *chemical species* are described by an ODE

\[\frac{d}{dt} s(t) = R_k(s(t)). \]

At most one equilibrium point? See Pantea, Koeppel, Craciun [2].

Consider various boxes \(B \).

Is \(R_k \) injective \(\forall k \in B \)?

Apply conditional SAGE

Yes, \(R_k \) always injective

No, some \(R_k \) not injective

0.05 seconds per \(B \)
Reinterpreting an earlier SAGE Positivstellensatz

Definition

For a finite set $\mathcal{A} \subset \mathbb{R}^n$ which contains the origin, the signomial ring $\mathbb{R}[\mathcal{A}]$ is the \mathbb{R}-algebra generated by $\{e^\alpha\}_{\alpha \in \mathcal{A}}$.

Chandrasekaran and Shah [4, Theorem 4.2].

Suppose we have rational exponents $\mathcal{A} = \{0, \alpha_1, \ldots, \alpha_\ell\} \subset \mathbb{Q}^n$ and constraint signomials $\{g_1, \ldots, g_{2\ell+m}\} \subset \mathbb{R}[\mathcal{A}]$ that include

\[g_i(x) = U - e^{\alpha_i}(x) \quad \text{for } i \in \{1, \ldots, \ell\}, \text{ and} \]
\[g_i(x) = e^{\alpha_i}(x) - L \quad \text{for } i \in \{\ell + 1, \ldots, 2\ell\} \]

for some $U, L > 0$. Abbreviate $M = 2\ell + m$ and define the compact set

$K = \{x \mid g_i(x) \geq 0 \text{ for all } i \in \{1, \ldots, M\}\}$.

If $f \in \mathbb{R}[\mathcal{A}]$ is positive on K, then there is an identity

\[f = \sum_{j \in \mathbb{N}^M} \lambda_j \cdot g_1^{j_1} \cdots g_M^{j_M} \quad \text{for finitely many } \mathbb{R}^n\text{-SAGE } \lambda_j \in \mathbb{R}[\mathcal{A}]. \]
Reinterpreting an earlier SAGE Positivstellensatz

Definition

For a finite set $\mathcal{A} \subset \mathbb{R}^n$ which contains the origin, the signomial ring $\mathbb{R}[\mathcal{A}]$ is the \mathbb{R}-algebra generated by $\{e^\alpha\}_{\alpha \in \mathcal{A}}$.

Chandrasekaran and Shah [4, Theorem 4.2].

Suppose we have rational exponents $\mathcal{A} = \{0, \alpha_1, \ldots, \alpha_\ell\} \subset \mathbb{Q}^n$ and constraint signomials $\{g_1, \ldots, g_{2\ell+m}\} \subset \mathbb{R}[\mathcal{A}]$ that include

$$g_i(x) = U - e^{\alpha_i}(x) \text{ for } i \in \{1, \ldots, \ell\}, \text{ and}$$

$$g_i(x) = e^{\alpha_i}(x) - L \text{ for } i \in \{\ell + 1, \ldots, 2\ell\}$$

for some $U, L > 0$. Abbreviate $M = 2\ell + m$ and define the compact set

$$K = \{x | g_i(x) \geq 0 \text{ for all } i \in \{1, \ldots, M\}\}.$$

If $f \in \mathbb{R}[\mathcal{A}]$ is positive on K, then there is an identity

$$f = \sum_{j \in \mathbb{N}^M} \lambda_j \cdot g_1^{j_1} \cdots g_M^{j_M} \quad \text{for finitely many } \mathbb{R}^n\text{-SAGE } \lambda_j \in \mathbb{R}[\mathcal{A}].$$
Reinterpreting an earlier SAGE Positivstellensatz

Definition

For a finite set $\mathcal{A} \subset \mathbb{R}^n$ which contains the origin, the signomial ring $\mathbb{R}[\mathcal{A}]$ is the \mathbb{R}-algebra generated by $\{e^\alpha\}_{\alpha \in \mathcal{A}}$.

Chandrasekaran and Shah [4, Theorem 4.2].

Suppose we have rational exponents $\mathcal{A} = \{0, \alpha_1, \ldots, \alpha_\ell\} \subset \mathbb{Q}^n$ and constraint signomials $\{g_1, \ldots, g_{2\ell+m}\} \subset \mathbb{R}[\mathcal{A}]$ that include

$$g_i(x) = U - e^{\alpha_i}(x) \text{ for } i \in \{1, \ldots, \ell\}, \text{ and}$$

$$g_i(x) = e^{\alpha_i}(x) - L \text{ for } i \in \{\ell + 1, \ldots, 2\ell\}$$

for some $U, L > 0$. Abbreviate $M = 2\ell + m$ and define the compact set

$$K = \{x \mid g_i(x) \geq 0 \text{ for all } i \in \{1, \ldots, M\}\}.$$

If $f \in \mathbb{R}[\mathcal{A}]$ is positive on K, then there is an identity

$$f = \sum_{j \in \mathbb{N}^M} \lambda_j \cdot g_{1}^{j_1} \cdots g_{M}^{j_M} \text{ for finitely many } \mathbb{R}^n\text{-SAGE } \lambda_j \in \mathbb{R}[\mathcal{A}].$$
Reinterpreting an earlier SAGE Positivstellensatz

Definition

For a finite set $\mathcal{A} \subset \mathbb{R}^n$ which contains the origin, the signomial ring $\mathbb{R}[\mathcal{A}]$ is the \mathbb{R}-algebra generated by $\{e^\alpha\}_{\alpha \in \mathcal{A}}$.

Chandrasekaran and Shah [4, Theorem 4.2].

Suppose we have rational exponents $\mathcal{A} = \{0, \alpha_1, \ldots, \alpha_\ell\} \subset \mathbb{Q}^n$ and constraint signomials $\{g_1, \ldots, g_{2\ell+m}\} \subset \mathbb{R}[\mathcal{A}]$ that include

\[
g_i(x) = U - e^{\alpha_i}(x) \quad \text{for } i \in \{1, \ldots, \ell\}, \quad \text{and}
\]

\[
g_i(x) = e^{\alpha_i}(x) - L \quad \text{for } i \in \{\ell+1, \ldots, 2\ell\}
\]

for some $U, L > 0$. Abbreviate $M = 2\ell + m$ and define the compact set

\[
K = \{x \mid g_i(x) \geq 0 \quad \text{for all} \quad i \in \{1, \ldots, M\}\}.
\]

If $f \in \mathbb{R}[\mathcal{A}]$ is positive on K, then there is an identity

\[
f = \sum_{j \in \mathbb{N}^M} \lambda_j \cdot g_1^{j_1} \cdots g_M^{j_M} \quad \text{for finitely many } \mathbb{R}^n\text{-SAGE } \lambda_j \in \mathbb{R}[\mathcal{A}].
\]
Our result

Theorem

Consider a compact convex set X, signomials $g_1, \ldots, g_m \in \mathbb{R}[A]$, and

$$K = \{ x \in X \mid g_i(x) \geq 0 \text{ for all } i \in \{1, \ldots, m\}\}.$$

If $f \in \mathbb{R}[A]$ is positive on K, then there is an identity

$$(\sum_{\alpha \in A} e^{\alpha})^r f = \lambda_0 + \sum_{i=1}^m \lambda_i \cdot g_i$$

for X-SAGE $\lambda_0 \in \mathbb{R}[A]$, posynomials $\lambda_i \in \mathbb{R}[A]$, and $r \in \mathbb{N}$.

Points of note

- No products of constraint functions.
- Neither X nor $\{\exp x \mid x \in X\}$ need be semi-algebraic.
- No assumptions on A.

Riley Murray
Our result

Theorem

Consider a compact convex set X, signomials $g_1, \ldots, g_m \in \mathbb{R}[A]$, and

$$K = \{ x \in X \mid g_i(x) \geq 0 \text{ for all } i \in \{1, \ldots, m\} \}.$$

If $f \in \mathbb{R}[A]$ is positive on K, then there is an identity

$$(\sum_{\alpha \in A} e^{\alpha})^r f = \lambda_0 + \sum_{i=1}^{m} \lambda_i \cdot g_i$$

for X-SAGE $\lambda_0 \in \mathbb{R}[A]$, posynomials $\lambda_i \in \mathbb{R}[A]$, and $r \in \mathbb{N}$.

Points of note

- No products of constraint functions.
- Neither X nor $\{\exp x \mid x \in X\}$ need be semi-algebraic.
- No assumptions on A.
Theorem

Consider a compact convex set X, signomials $g_1, \ldots, g_m \in \mathbb{R}[A]$, and

$$K = \{ x \in X \mid g_i(x) \geq 0 \text{ for all } i \in \{1, \ldots, m\}\}.$$

If $f \in \mathbb{R}[A]$ is positive on K, then there is an identity

$$(\sum_{\alpha \in A} e^{\alpha})^r f = \lambda_0 + \sum_{i=1}^m \lambda_i \cdot g_i$$

for X-SAGE $\lambda_0 \in \mathbb{R}[A]$, posynomials $\lambda_i \in \mathbb{R}[A]$, and $r \in \mathbb{N}$.

Points of note

- No products of constraint functions.
- Neither X nor $\{\exp x \mid x \in X\}$ need be semi-algebraic.
- No assumptions on A.
Our result

Theorem

Consider a compact convex set X, signomials $g_1, \ldots, g_m \in \mathbb{R}[A]$, and

$$K = \{ x \in X \mid g_i(x) \geq 0 \text{ for all } i \in \{1, \ldots, m\} \}.$$

If $f \in \mathbb{R}[A]$ is positive on K, then there is an identity

$$(\sum_{\alpha \in A} e^{\alpha})^r f = \lambda_0 + \sum_{i=1}^m \lambda_i \cdot g_i$$

for X-SAGE $\lambda_0 \in \mathbb{R}[A]$, posynomials $\lambda_i \in \mathbb{R}[A]$, and $r \in \mathbb{N}$.

Points of note

- No products of constraint functions.
- Neither X nor $\{ \exp x \mid x \in X \}$ need be semi-algebraic.
- No assumptions on A.

Riley Murray
Our result

Theorem

Consider a compact convex set X, signomials $g_1, \ldots, g_m \in \mathbb{R}[A]$, and

$$K = \{ x \in X \mid g_i(x) \geq 0 \text{ for all } i \in \{1, \ldots, m\}\}.$$

If $f \in \mathbb{R}[A]$ is positive on K, then there is an identity

$$(\sum_{\alpha \in A} e^{\alpha})^r f = \lambda_0 + \sum_{i=1}^m \lambda_i \cdot g_i$$

for X-SAGE $\lambda_0 \in \mathbb{R}[A]$, posynomials $\lambda_i \in \mathbb{R}[A]$, and $r \in \mathbb{N}$.

Points of note

- No products of constraint functions.
- Neither X nor $\{\exp x \mid x \in X\}$ need be semi-algebraic.
- No assumptions on A.

Riley Murray
Corollary

If \(f \in \mathbb{R}[\mathcal{A}] \) is positive on a compact convex set \(X \), then

\[
(\sum_{\alpha \in \mathcal{A}} e^{\alpha})^r f \text{ is } X\text{-SAGE for large enough } r \in \mathbb{N}.
\]

We combine signomial rings with strategy of A. Wang et al [20].

1. Represent \(f(x) = p(\exp \mathcal{A}x) \) with a homogeneous polynomial \(p \):
 \[
 f > 0 \text{ on } X \iff p > 0 \text{ on } Y := \{ \exp \mathcal{A}x \mid x \in X \}.
 \]

2. Represent \(Y \) by infinitely many homogeneous binomial inequalities and one normalization constraint (\(y_0 = 1 \)).

3. Apply Dickinson-Povh Positivstellensatz [21] to \((p, Y)\).

4. Map the Dickinson-Povh certificate to an \(X\text{-SAGE} \) certificate.
Corollary

If $f \in \mathbb{R}[A]$ is positive on a compact convex set X, then

$$(\sum_{\alpha \in A} e^{\alpha})^r f \text{ is } X\text{-SAGE for large enough } r \in \mathbb{N}.$$

We combine signomial rings with strategy of A. Wang et al [20].

1. Represent $f(x) = p(\exp Ax)$ with a homogeneous polynomial p:

 $$f > 0 \text{ on } X \iff p > 0 \text{ on } Y := \{\exp Ax \mid x \in X\}.$$

2. Represent Y by **infinitely many** homogeneous binomial inequalities and one normalization constraint ($y_0 = 1$).

3. Apply Dickinson-Povh Positivstellensatz [21] to (p, Y).

4. Map the Dickinson-Povh certificate to an X-SAGE certificate.
If \(f \in \mathbb{R}[A] \) is positive on a compact convex set \(X \), then

\[
(\sum_{\alpha \in A} e^\alpha)^r f \text{ is } X\text{-SAGE for large enough } r \in \mathbb{N}.
\]

We combine signomial rings with strategy of A. Wang et al [20].

1. Represent \(f(x) = p(\exp Ax) \) with a homogeneous polynomial \(p \):

 \[
 f > 0 \text{ on } X \iff p > 0 \text{ on } Y := \{\exp Ax \mid x \in X\}.
 \]

2. Represent \(Y \) by \textbf{infinitely many} homogeneous binomial inequalities and one normalization constraint \((y_0 = 1)\).

3. Apply Dickinson-Povh Positivstellensatz [21] to \((p, Y)\).

4. Map the Dickinson-Povh certificate to an \(X\)-SAGE certificate.
Corollary

If \(f \in \mathbb{R}[A] \) is positive on a compact convex set \(X \), then

\[
\left(\sum_{\alpha \in A} e^{\alpha} \right)^r f \text{ is } X\text{-SAGE for large enough } r \in \mathbb{N}.
\]

We combine signomial rings with strategy of A. Wang et al [20].

1. Represent \(f(x) = p(\exp A x) \) with a homogeneous polynomial \(p \):

\[
f > 0 \text{ on } X \iff p > 0 \text{ on } Y := \{ \exp A x \mid x \in X \}.
\]

2. Represent \(Y \) by **infinitely many** homogeneous binomial inequalities and one normalization constraint \((y_0 = 1)\).

3. Apply Dickinson-Povh Positivstellensatz [21] to \((p,Y)\).

4. Map the Dickinson-Povh certificate to an \(X\text{-SAGE} \) certificate.
Corollary

If $f \in \mathbb{R}[A]$ *is positive on a compact convex set* X, *then*

$$(\sum_{\alpha \in A} e^{\alpha})^r f \text{ is } X\text{-SAGE for large enough } r \in \mathbb{N}.$$

We combine signomial rings with strategy of A. Wang et al [20].

1. Represent $f(x) = p(\exp Ax)$ with a homogeneous polynomial p:

$$f > 0 \text{ on } X \iff p > 0 \text{ on } Y := \{\exp Ax | x \in X\}.$$

2. Represent Y by **infinitely many** homogeneous binomial inequalities and one normalization constraint ($y_0 = 1$).

3. Apply Dickinson-Povh Positivstellensatz [21] to (p, Y).

4. Map the Dickinson-Povh certificate to an X-SAGE certificate.
Grading certificates from the Positivistensatz

We can use REP to search for an identity

\[(\sum_{\alpha \in A} e^{\alpha})^r f = \lambda_0 + \sum_{i=1}^{m} \lambda_i \cdot g_i\]

once we’ve decided \(r\) and \textbf{permissible supports} \(S_i \supset \text{supp}(\lambda_i)\).

By sparsity preservation, we don’t need to explicitly bound \(\text{supp}(\lambda_0)\).

We have to decide \(S_i\) for \(i \geq 1\).

How should we go about doing this?

Complexity of \(\lambda_i\) would be with consideration to \(f, r, \) and \(g_i\).

Signomials have no concept of “degree!”
Grading certificates from the Positivstellensatz

We can use REP to search for an identity

\[(\sum_{\alpha \in A} e^{\alpha})^r f = \lambda_0 + \sum_{i=1}^{m} \lambda_i \cdot g_i\]

once we’ve decided \(r\) and permissible supports \(S_i \supset \text{supp}(\lambda_i)\).

By sparsity preservation, we don’t need to explicitly bound \(\text{supp}(\lambda_0)\).

We have to decide \(S_i\) for \(i \geq 1\).

How should we go about doing this?

Complexity of \(\lambda_i\) would be with consideration to \(f, r, \) and \(g_i\).

Signomials have no concept of “degree!”
Grading certificates from the Positivstellensatz

We can use REP to search for an identity

\[(\sum_{\alpha \in A} e^{\alpha})^r f = \lambda_0 + \sum_{i=1}^{m} \lambda_i \cdot g_i\]

once we’ve decided \(r\) and permissible supports \(S_i \supset \text{supp}(\lambda_i)\).

By sparsity preservation, we don’t need to explicitly bound \(\text{supp}(\lambda_0)\).

We have to decide \(S_i\) for \(i \geq 1\).

How should we go about doing this?

Complexity of \(\lambda_i\) would be with consideration to \(f, r,\) and \(g_i\).

Signomials have no concept of “degree!”
Grading certificates from the Positivstellensatz

We can use REP to search for an identity

\[(\sum_{\alpha \in A} e^{\alpha})^r f = \lambda_0 + \sum_{i=1}^{m} \lambda_i \cdot g_i\]

once we’ve decided \(r\) and permissible supports \(S_i \supset \text{supp}(\lambda_i)\).

By sparsity preservation, we don’t need to explicitly bound \(\text{supp}(\lambda_0)\).

We have to decide \(S_i\) for \(i \geq 1\).

How should we go about doing this?

Complexity of \(\lambda_i\) would be with consideration to \(f, r,\) and \(g_i\).

Signomials have no concept of “degree!”
Grading certificates from the Positivstellensatz

We can use REP to search for an identity

\[(\sum_{\alpha \in A} e^\alpha)^r f = \lambda_0 + \sum_{i=1}^{m} \lambda_i \cdot g_i\]

once we’ve decided \(r \) and \textbf{permissible supports} \(S_i \supset \text{supp}(\lambda_i) \).

By sparsity preservation, we don’t need to explicitly bound \(\text{supp}(\lambda_0) \).

We have to decide \(S_i \) for \(i \geq 1 \).

How should we go about doing this?

Complexity of \(\lambda_i \) would be with consideration to \(f, r, \) and \(g_i \).

Signomials have no concept of “degree!”
Consider a sequence of nested sets

$$A_d := \left\{ \sum_{\alpha \in A} w_\alpha \alpha : w \in \mathbb{N}^A, \langle 1, w \rangle \leq d \right\}$$

for $d \geq 1$.

Definition

The A-degree of $f \in \mathbb{R}[A]$ is the smallest d for which $\text{supp}(f) \subset A_d$.

Denote this by $\text{deg}_A(f)$.

- *Not intrinsic to a signomial.*

 Setting $A = \text{supp}(f)$, we have $\text{deg}_A(f) = 1$.

- Co-variant with affine changes of coordinates.

Use $\mathbb{R}[A]_d$ to denote the signomials in $\mathbb{R}[A]$ of A-degree at most d.
Signomial A-degree

Consider a sequence of nested sets

$$A_d := \left\{ \sum_{\alpha \in A} w_\alpha \alpha : w \in \mathbb{N}^A, \langle 1, w \rangle \leq d \right\} \text{ for } d \geq 1.$$

Definition

The *A-degree* of $f \in \mathbb{R}[A]$ is the smallest d for which $\text{supp}(f) \subset A_d$.

Denote this by $\text{deg}_A(f)$.

- *Not intrinsic to a signomial.*

 Setting $A = \text{supp}(f)$, we have $\text{deg}_A(f) = 1$.

- Co-variant with affine changes of coordinates.

Use $\mathbb{R}[A]_d$ to denote the signomials in $\mathbb{R}[A]$ of A-degree at most d.

Not intrinsic to a signomial.
Signomial \mathcal{A}-degree

Consider a sequence of nested sets

$$\mathcal{A}_d := \left\{ \sum_{\alpha \in \mathcal{A}} w_\alpha \alpha : w \in \mathbb{N}^\mathcal{A}, \langle 1, w \rangle \leq d \right\} \quad \text{for } d \geq 1.$$

Definition

The \mathcal{A}-degree of $f \in \mathbb{R}[\mathcal{A}]$ is the smallest d for which $\text{supp}(f) \subset \mathcal{A}_d$.

Denote this by $\deg_{\mathcal{A}}(f)$.

- *Not intrinsic to a signomial.*

 Setting $\mathcal{A} = \text{supp}(f)$, we have $\deg_{\mathcal{A}}(f) = 1$.

- Co-variant with affine changes of coordinates.

Use $\mathbb{R}[\mathcal{A}]_d$ to denote the signomials in $\mathbb{R}[\mathcal{A}]$ of \mathcal{A}-degree at most d.
Consider a sequence of nested sets

\[A_d := \left\{ \sum_{\alpha \in A} w_{\alpha} \alpha : w \in \mathbb{N}^A, \langle 1, w \rangle \leq d \right\} \quad \text{for} \quad d \geq 1. \]

Definition

The \(A \)-degree of \(f \in \mathbb{R}[A] \) is the smallest \(d \) for which \(\text{supp}(f) \subset A_d \).

Denote this by \(\deg_A(f) \).

- *Not intrinsic to a signomial.*

 Setting \(A = \text{supp}(f) \), we have \(\deg_A(f) = 1 \).

- Co-variant with affine changes of coordinates.

Use \(\mathbb{R}[A]_d \) to denote the signomials in \(\mathbb{R}[A] \) of \(A \)-degree at most \(d \).
Consider a sequence of nested sets

\[A_d := \left\{ \sum_{\alpha \in A} w_\alpha \alpha : \ w \in \mathbb{N}^A, \ \langle 1, w \rangle \leq d \right\} \quad \text{for} \quad d \geq 1. \]

Definition

The A-degree of $f \in \mathbb{R}[A]$ is the smallest d for which $\text{supp}(f) \subset A_d$.

Denote this by $\deg_A(f)$.

- *Not intrinsic to a signomial.*

Setting $A = \text{supp}(f)$, we have $\deg_A(f) = 1$.

- Co-variant with affine changes of coordinates.

Use $\mathbb{R}[A]_d$ to denote the signomials in $\mathbb{R}[A]$ of A-degree at most d.
Signomial \mathcal{A}-degree

Consider a sequence of nested sets

$$\mathcal{A}_d := \left\{ \sum_{\alpha \in \mathcal{A}} w_\alpha \alpha : w \in \mathbb{N}^\mathcal{A}, \langle 1, w \rangle \leq d \right\} \quad \text{for} \quad d \geq 1.$$

Definition

The \mathcal{A}-degree of $f \in \mathbb{R}[\mathcal{A}]$ is the smallest d for which $\text{supp}(f) \subset \mathcal{A}_d$.

Denote this by $\deg_{\mathcal{A}}(f)$.

- *Not intrinsic to a signomial.*

 Setting $\mathcal{A} = \text{supp}(f)$, we have $\deg_{\mathcal{A}}(f) = 1$.

- Co-variant with affine changes of coordinates.

Use $\mathbb{R}[\mathcal{A}]_d$ to denote the signomials in $\mathbb{R}[\mathcal{A}]$ of \mathcal{A}-degree at most d.
Signomial \mathcal{A}-degree under multiplication

The following inequality always holds. It can be strict

$$\deg_{\mathcal{A}}(fg) \leq \deg_{\mathcal{A}}(f) + \deg_{\mathcal{A}}(g).$$

Consider $f(x) = \exp(3x)$ and $\mathcal{A} = \{-1, 0, 1, 2\}$.

If $g \in \{ c \exp(-x) \mid c \in \mathbb{R} \}$, then $\deg_{\mathcal{A}}(fg) = 1$.

Definition

The *inverse support of f in $\mathbb{R}[\mathcal{A}]_d$* is the largest $\mathcal{B} \subset \mathcal{A}_d$ that satisfies

$$\deg_{\mathcal{A}}(e^{\alpha}f) \leq d \text{ for all } \alpha \text{ in } \mathcal{B}.$$

Denote inverse support by $\text{invsupp}_d(f)$. Operationally

$$\text{supp}(g) \subset \text{invsupp}_d(f) \implies \deg_{\mathcal{A}}(g) \leq d \text{ and } \deg_{\mathcal{A}}(fg) \leq d.$$
Signomial \mathcal{A}-degree under multiplication

The following inequality always holds. It can be strict

$$\text{deg}_\mathcal{A}(fg) \leq \text{deg}_\mathcal{A}(f) + \text{deg}_\mathcal{A}(g).$$

Consider $f(x) = \exp(3x)$ and $\mathcal{A} = \{-1, 0, 1, 2\}$.

If $g \in \{c \exp(-x) \mid c \in \mathbb{R}\}$, then $\text{deg}_\mathcal{A}(fg) = 1$.

Definition

The *inverse support of f in $\mathbb{R}[\mathcal{A}]_d$* is the largest $\mathcal{B} \subset \mathcal{A}_d$ that satisfies

$$\text{deg}_\mathcal{A}(e^{\alpha}f) \leq d \text{ for all } \alpha \text{ in } \mathcal{B}.$$

Denote inverse support by $\text{invsupp}_d(f)$. Operationally

$$\text{supp}(g) \subset \text{invsupp}_d(f) \implies \text{deg}_\mathcal{A}(g) \leq d \text{ and } \text{deg}_\mathcal{A}(fg) \leq d.$$
Signomial \mathcal{A}-degree under multiplication

The following inequality always holds. It can be strict

$$\deg_{\mathcal{A}}(fg) \leq \deg_{\mathcal{A}}(f) + \deg_{\mathcal{A}}(g).$$

Consider $f(x) = \exp(3x)$ and $\mathcal{A} = \{-1, 0, 1, 2\}$.

If $g \in \{c \exp(-x) \mid c \in \mathbb{R}\}$, then $\deg_{\mathcal{A}}(fg) = 1$.

Definition

The *inverse support of f in $\mathbb{R}[\mathcal{A}]_d$* is the largest $\mathcal{B} \subset \mathcal{A}_d$ that satisfies

$$\deg_{\mathcal{A}}(e^{\alpha}f) \leq d \text{ for all } \alpha \text{ in } \mathcal{B}.$$

Denote inverse support by $\text{invsupp}_d(f)$. Operationally

$$\text{supp}(g) \subset \text{invsupp}_d(f) \Rightarrow \deg_{\mathcal{A}}(g) \leq d \text{ and } \deg_{\mathcal{A}}(fg) \leq d.$$
Signomial \mathcal{A}-degree under multiplication

The following inequality always holds. It can be strict

$$\text{deg}_\mathcal{A}(fg) \leq \text{deg}_\mathcal{A}(f) + \text{deg}_\mathcal{A}(g).$$

Consider $f(x) = \exp(3x)$ and $\mathcal{A} = \{-1, 0, 1, 2\}$.

If $g \in \{c \exp(-x) \mid c \in \mathbb{R}\}$, then $\text{deg}_\mathcal{A}(fg) = 1$.

Definition

The *inverse support of f in $\mathbb{R}[\mathcal{A}]_d$* is the largest $B \subset \mathcal{A}_d$ that satisfies

$$\text{deg}_\mathcal{A}(e^\alpha f) \leq d \text{ for all } \alpha \text{ in } B.$$

Denote inverse support by $\text{invsupp}_d(f)$. Operationally

$$\text{supp}(g) \subset \text{invsupp}_d(f) \implies \text{deg}_\mathcal{A}(g) \leq d \text{ and } \text{deg}_\mathcal{A}(fg) \leq d.$$
Signomial \mathcal{A}-degree under multiplication

The following inequality always holds. It can be strict

\[\deg_{\mathcal{A}}(fg) \leq \deg_{\mathcal{A}}(f) + \deg_{\mathcal{A}}(g). \]

Consider \(f(x) = \exp(3x) \) and \(\mathcal{A} = \{-1, 0, 1, 2\} \).

If \(g \in \{c \exp(-x) \mid c \in \mathbb{R}\} \), then \(\deg_{\mathcal{A}}(fg) = 1 \).

Definition

The *inverse support of \(f \) in \(\mathbb{R}[\mathcal{A}]_d \) is the largest \(\mathcal{B} \subset \mathcal{A}_d \) that satisfies

\[\deg_{\mathcal{A}}(e^{\alpha}f) \leq d \text{ for all } \alpha \text{ in } \mathcal{B}. \]

Denote inverse support by \(\text{invsupp}_d(f) \). Operationally

\[\text{supp}(g) \subset \text{invsupp}_d(f) \Rightarrow \deg_{\mathcal{A}}(g) \leq d \text{ and } \deg_{\mathcal{A}}(fg) \leq d. \]
Signomial A-degree under multiplication

The following inequality always holds. It can be strict

$$\deg_A(fg) \leq \deg_A(f) + \deg_A(g).$$

Consider $f(x) = \exp(3x)$ and $A = \{-1, 0, 1, 2\}$.

If $g \in \{c \exp(-x) \mid c \in \mathbb{R}\}$, then $\deg_A(fg) = 1$.

Definition

The *inverse support of f in $\mathbb{R}[A]_d$* is the largest $B \subset A_d$ that satisfies

$$\deg_A(e^{\alpha}f) \leq d \text{ for all } \alpha \text{ in } B.$$

Denote inverse support by $\text{invsupp}_d(f)$. Operationally

$$\text{supp}(g) \subset \text{invsupp}_d(f) \Rightarrow \deg_A(g) \leq d \text{ and } \deg_A(fg) \leq d.$$
A hierarchy of lower bounds

We want to compute

$$f_K^* = \inf_{x \in K} f(x) \quad \text{where} \quad K = \{x \in X | g(x) \geq 0\}.$$

Definition

If $r := d - \deg_A(f) \geq 0$, the \mathcal{A}-degree d SAGE bound is defined as

$$f_K^{(d)} := \sup \gamma \text{ s.t. } \left(\sum_{\alpha \in \mathcal{A}} e^\alpha\right)^r (f - \gamma) = \lambda_0 + \sum_{i=1}^m \lambda_i g_i,$$

$$\lambda_i \in \mathcal{C}_X(\text{invsupp}_d(g_i)) \quad \forall \ i \in \{1, \ldots, m\},$$

$$\lambda_0 \in \mathcal{C}_X(\mathcal{A}_d), \text{ and } \gamma \in \mathbb{R}.$$

Otherwise, $f_K^{(d)} = -\infty$.

Riley Murray
A hierarchy of lower bounds

We want to compute

$$f_K^* = \inf_{x \in K} f(x) \quad \text{where} \quad K = \{x \in X \mid g(x) \geq 0\}.$$

Definition

If \(r := d - \deg_A(f) \geq 0 \), the \(A \)-degree \(d \) **SAGE bound** is defined as

$$f_K^{(d)} := \sup \gamma \text{ s.t. } (\sum_{\alpha \in A} e^{\alpha})^r (f - \gamma) = \lambda_0 + \sum_{i=1}^m \lambda_i g_i,$$

\(\lambda_i \in C_X(\text{invsupp}_d(g_i)) \quad \forall \ i \in \{1, \ldots, m\}, \)

\(\lambda_0 \in C_X(\mathcal{A}_d), \ \text{and} \ \gamma \in \mathbb{R}. \)

Otherwise, \(f_K^{(d)} = -\infty. \)
A hierarchy of lower bounds

We want to compute

\[f^*_K = \inf_{x \in K} f(x) \quad \text{where} \quad K = \{ x \in X | g(x) \geq 0 \}. \]

Definition

If \(r := d - \deg_A(f) \geq 0 \), the \(A \)-degree \(d \) SAGE bound is defined as

\[f^{(d)}_K := \sup \gamma \text{ s.t. } (\sum_{\alpha \in A} e^\alpha)^r (f - \gamma) = \lambda_0 + \sum_{i=1}^{m} \lambda_i g_i, \]

\[\lambda_i \in C_X(\text{invsupp}_d(g_i)) \forall i \in \{1, \ldots, m\}, \]

\[\lambda_0 \in C_X(A_d), \text{ and } \gamma \in \mathbb{R}. \]

Otherwise, \(f^{(d)}_K = -\infty \).
A chemical reactor design problem

\[
\begin{align*}
\min_{t \in \mathbb{R}_+^8} & \quad 2.0425 t_1^{0.782} + 52.25 t_2 + 192.85 t_2^{0.9} + 5.25 t_2^3 + 61.465 t_6^{0.467} \\
& \quad + 0.01748 t_3^{1.33}/t_4^{0.8} + 100.7 t_4^{0.546} + 3.66 \cdot 10^{-10} t_3^{2.85}/t_4^{1.7} \\
& \quad + 0.00945 t_5 + 1.06 \cdot 10^{-10} t_5^{2.8}/t_4^{1.8} + 116 t_6 - 205 t_6 t_7 - 278 t_2^2 t_7
\end{align*}
\]

s.t. Five nonconvex constraints of the form

\[
1 - (\text{posynomial in } t) = 0.
\]

Invoke affine-invariance (in \(x\)) to rescale the problem!

Work in the naive ring

\[A = \text{all monomial exponents in the problem.} \]

Handling equality constraints

Infer valid convex constraints “\(1 - (\text{posynomial in } t) \geq 0\)” for X.

“Lagrange multipliers” \(\lambda_i\) only constrained by their supports.
A chemical reactor design problem

$$\begin{align*}
\min_{t \in \mathbb{R}^8_{++}} & \quad 2.0425 \, t_1^{0.782} + 52.25 \, t_2 + 192.85 \, t_2^{0.9} + 5.25 \, t_2^3 + 61.465 \, t_6^{0.467} \\
& \quad + 0.01748 \, t_3^{1.33} / t_4^{0.8} + 100.7 \, t_4^{0.546} + 3.66 \cdot 10^{-10} \, t_3^{2.85} / t_4^{1.7} \\
& \quad + 0.00945 \, t_5 + 1.06 \cdot 10^{-10} \, t_5^{2.8} / t_4^{1.8} + 116 \, t_6 - 205 \, t_6 \, t_7 - 278 \, t_2^3 \, t_7 \\
\text{s.t.} \quad & \quad 1 - (\text{posynomial in } t) = 0.
\end{align*}$$

Invoke affine-invariance (in x) to rescale the problem!

Work in the naive ring

$\mathcal{A} = \text{all monomial exponents in the problem.}$

Handling equality constraints

Infer valid convex constraints “$1 - (\text{posynomial in } t) \geq 0$” for X.

“Lagrange multipliers” λ_i only constrained by their supports.
A chemical reactor design problem

\[
\min_{t \in \mathbb{R}_+^8} \quad 2.0425 t_1^{0.782} + 52.25 t_2 + 192.85 t_2^{0.9} + 5.25 t_2^3 + 61.465 t_6^{0.467} \\
+ 0.01748 t_3^{1.33}/t_4^{0.8} + 100.7 t_4^{0.546} + 3.66 \cdot 10^{-10} t_3^{2.85}/t_4^{1.7} \\
+ 0.00945 t_5 + 1.06 \cdot 10^{-10} t_5^{2.8}/t_4^{1.8} + 116 t_6 - 205 t_6 t_7 - 278 t_2^3 t_7
\]

s.t. Five nonconvex constraints of the form

\[1 - (\text{posynomial in } t) = 0.\]

Invoke affine-invariance (in \(x\)) to rescale the problem!

Work in the \textit{naive ring}

\[\mathcal{A} = \text{all monomial exponents in the problem.}\]

Handling \text{\textit{equality constraints}}

Infer valid convex constraints “\(1 - (\text{posynomial in } t) \geq 0\)” for \(X\).

“Lagrange multipliers” \(\lambda_i\) only constrained by their supports.
A chemical reactor design problem

\[
\begin{align*}
\min_{t \in \mathbb{R}_{++}^8} & \quad 2.0425 t_1^{0.782} + 52.25 t_2 + 192.85 t_2^{0.9} + 5.25 t_2^3 + 61.465 t_6^{0.467} \\
& \quad + 0.01748 t_3^{1.33} / t_4^{0.8} + 100.7 t_4^{0.546} + 3.66 \cdot 10^{-10} t_3^{2.85} / t_4^{1.7} \\
& \quad + 0.00945 t_5 + 1.06 \cdot 10^{-10} t_5^{2.8} / t_4^{1.8} + 116 t_6 - 205 t_6 t_7 - 278 t_2^3 t_7
\end{align*}
\]

s.t. Five nonconvex constraints of the form

\[1 - \text{(posynomial in } t) = 0.\]

Invoke affine-invariance (in \(x\)) to rescale the problem!

Work in the naive ring

\[\mathcal{A} = \text{all monomial exponents in the problem}.\]

Handling equality constraints

Infer valid convex constraints \(1 - \text{(posynomial in } t) \geq 0\) for \(X\).

“Lagrange multipliers” \(\lambda_i\) only constrained by their supports.
A chemical reactor design problem

\[
\min_{t \in \mathbb{R}^8_{++}} \quad 2.0425 \, t_1^{0.782} + 52.25 \, t_2 + 192.85 \, t_2^{0.9} + 5.25 \, t_2^3 + 61.465 \, t_6^{0.467} \\
+ 0.01748 \, t_3^{1.33} / t_4^{0.8} + 100.7 \, t_4^{0.546} + 3.66 \cdot 10^{-10} \, t_3^{2.85} / t_4^{1.7} \\
+ 0.00945 \, t_5 + 1.06 \cdot 10^{-10} \, t_5^{2.8} / t_4^{1.8} + 116 \, t_6 - 205 \, t_6 t_7 - 278 \, t_2^3 t_7 \\
\]

s.t. Five nonconvex constraints of the form

\[
1 - \text{(posynomial in } t) = 0.
\]

Invoke affine-invariance (in \(x\)) to rescale the problem!

Work in the \textit{naive ring}

\[
\mathcal{A} = \text{all monomial exponents in the problem.}
\]

Handling \textbf{equality constraints}

Infer \textit{valid convex constraints} “\(1 - \text{(posynomial in } t) \geq 0\)” for \(X\).

“Lagrange multipliers” \(\lambda_i\) only constrained by their supports.
Results for the chemical reactor design problem

Compute SAGE bounds

\[f_K^{(1)} = 16377.32 \quad \text{in} \quad 0.13 \text{ seconds, and} \]
\[f_K^{(2)} = 17462.73 \quad \text{in} \quad 24.37 \text{ seconds.} \]

Solution recovery yields \(f(x') = 17485.99 \) and \(\|g(x')\|_\infty = 5.85 \cdot 10^{-15} \).

Apply global solvers in GAMS with two-hour time limit.

<table>
<thead>
<tr>
<th>Using (t) as optimization variable</th>
<th>Using (x) as optimization variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>solver time (s)</td>
<td>lower bound</td>
</tr>
<tr>
<td>BARON</td>
<td>163</td>
</tr>
<tr>
<td>ANTIGONE</td>
<td>145</td>
</tr>
<tr>
<td>LINDO</td>
<td>1468</td>
</tr>
</tbody>
</table>

All solvers above returned a solution with objective \(\approx 17485.99 \).
SCIP returned no solution and no bound before timeout.
Results for the chemical reactor design problem

Compute SAGE bounds

\[f_{K}^{(1)} = 16377.32 \quad \text{in} \quad 0.13 \text{ seconds, and} \]

\[f_{K}^{(2)} = 17462.73 \quad \text{in} \quad 24.37 \text{ seconds}. \]

Solution recovery yields \(f(x') = 17485.99 \) and \(\|g(x')\|_\infty = 5.85 \cdot 10^{-15} \).

Apply global solvers in GAMS with two-hour time limit.

<table>
<thead>
<tr>
<th></th>
<th>Using (t) as optimization variable</th>
<th>Using (x) as optimization variable</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>solver time (s) lower bound</td>
<td>solver time (s) lower bound</td>
</tr>
<tr>
<td>BARON</td>
<td>163 (-\infty)</td>
<td>7200 (-\infty)</td>
</tr>
<tr>
<td>ANTIGONE</td>
<td>145 (-16880.380)</td>
<td>7200 (-\infty)</td>
</tr>
<tr>
<td>LINDO</td>
<td>1468 17484.314</td>
<td>50 17485.988</td>
</tr>
</tbody>
</table>

All solvers above returned a solution with objective \(\approx 17485.99 \).

SCIP returned no solution and no bound before timeout.
Results for the chemical reactor design problem

Compute SAGE bounds

\[f_K^{(1)} = 16377.32 \quad \text{in} \quad 0.13 \text{ seconds, and} \]
\[f_K^{(2)} = 17462.73 \quad \text{in} \quad 24.37 \text{ seconds.} \]

Solution recovery yields \(f(x') = 17485.99 \) and \(\|g(x')\|_\infty = 5.85 \cdot 10^{-15} \).

Apply global solvers in GAMS with two-hour time limit.

<table>
<thead>
<tr>
<th>Using (t) as optimization variable</th>
<th>Using (x) as optimization variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>solver time (s)</td>
<td>lower bound</td>
</tr>
<tr>
<td>BARON</td>
<td>163</td>
</tr>
<tr>
<td>ANTIGONE</td>
<td>145</td>
</tr>
<tr>
<td>LINDO</td>
<td>1468</td>
</tr>
</tbody>
</table>

All solvers above returned a solution with objective \(\approx 17485.99 \).

SCIP returned no solution and no bound before timeout.
Minimizing the polynomial from the CRN example

We were interested in injectivity of the CRN dynamics map.

- Checked if a certain polynomial \(p \) was \(> 0 \) on 2,500 subsets of \(\mathbb{R}_+^9 \).

 \(p \) was degree 6 and had about 50 terms.

- We signomialized \(f(x) = p(\exp x) \), considered 2,500 different “X.”

Here: consider the X with largest gap \(f^*_x - \sup\{\gamma \mid f - \gamma \text{ is X-SAGE}\} \).

<table>
<thead>
<tr>
<th>(r)</th>
<th>SAGE bounds</th>
<th>solver runtimes (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A_{nat}</td>
<td>A_{int}</td>
</tr>
<tr>
<td>0</td>
<td>18.1596</td>
<td>18.1596</td>
</tr>
<tr>
<td>1</td>
<td>18.7188</td>
<td>22.8321</td>
</tr>
<tr>
<td>2</td>
<td>19.7375</td>
<td>-</td>
</tr>
</tbody>
</table>

Moment-SOS approaches

- Lasserre hierarchy via YALMIP: 572 s, computes \(f^*_x \approx 22.8 \)

- TSSOS via TSSOS.jl: 567 s, computes \(f^*_x \approx 22.8 \).
We were interested in injectivity of the CRN dynamics map.

- Checked if a certain polynomial \(p \) was \(> 0 \) on 2,500 subsets of \(\mathbb{R}^9_+ \).

 \(p \) was degree 6 and had about 50 terms.

- We signomialized \(f(x) = p(\exp x) \), considered 2,500 different “X.”

Here: consider the \(X \) with largest gap \(f^*_X - \sup\{\gamma | f - \gamma \text{ is } X\text{-SAGE}\} \).

<table>
<thead>
<tr>
<th>(r)</th>
<th>(A_{\text{nat}})</th>
<th>(A_{\text{int}})</th>
<th>(A_{\text{naive}})</th>
<th>(A_{\text{nat}})</th>
<th>(A_{\text{int}})</th>
<th>(A_{\text{naive}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18.1596</td>
<td>18.1596</td>
<td>18.1596</td>
<td>0.0344</td>
<td>0.0301</td>
<td>0.0321</td>
</tr>
<tr>
<td>1</td>
<td>18.7188</td>
<td>22.8321</td>
<td>22.8321</td>
<td>1.0541</td>
<td>1.1123</td>
<td>3.4648</td>
</tr>
<tr>
<td>2</td>
<td>19.7375</td>
<td>-</td>
<td>-</td>
<td>49.2000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Moment-SOS approaches

- Lasserre hierarchy via YALMIP: 572 s, computes \(f^*_X \approx 22.8 \)
- TSSOS via TSSOS.jl: 567 s, computes \(f^*_X \approx 22.8 \).
Minimizing the polynomial from the CRN example

We were interested in injectivity of the CRN dynamics map.

- Checked if a certain polynomial p was > 0 on 2,500 subsets of \mathbb{R}^9_+. p was degree 6 and had about 50 terms.
- We signomialized $f(x) = p(\exp x)$, considered 2,500 different “X.”

Here: consider the X with largest gap $f^*_X - \sup\{\gamma \mid f - \gamma \text{ is } X\text{-SAGE}\}$.

<table>
<thead>
<tr>
<th>r</th>
<th>A_{nat}</th>
<th>A_{int}</th>
<th>A_{naive}</th>
<th>A_{nat}</th>
<th>A_{int}</th>
<th>A_{naive}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18.1596</td>
<td>18.1596</td>
<td>18.1596</td>
<td>0.0344</td>
<td>0.0301</td>
<td>0.0321</td>
</tr>
<tr>
<td>1</td>
<td>18.7188</td>
<td>22.8321</td>
<td>22.8321</td>
<td>1.0541</td>
<td>1.1123</td>
<td>3.4648</td>
</tr>
<tr>
<td>2</td>
<td>19.7375</td>
<td>-</td>
<td>-</td>
<td>49.2000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Moment-SOS approaches

- Lasserre hierarchy via YALMIP: 572 s, computes $f^*_X \approx 22.8$
- TSSOS via TSSOS.jl: 567 s, computes $f^*_X \approx 22.8$.
Minimizing the polynomial from the CRN example

We were interested in injectivity of the CRN dynamics map.

- Checked if a certain polynomial p was > 0 on 2,500 subsets of \mathbb{R}_+^9.
 p was degree 6 and had about 50 terms.

- We signomialized $f(x) = p(\exp x)$, considered 2,500 different “X.”

Here: consider the X with largest gap $f^*_X - \sup\{\gamma \mid f - \gamma \text{ is X-SAGE}\}$.

<table>
<thead>
<tr>
<th>r</th>
<th>A_{nat}</th>
<th>A_{int}</th>
<th>A_{naive}</th>
<th>A_{nat}</th>
<th>A_{int}</th>
<th>A_{naive}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18.1596</td>
<td>18.1596</td>
<td>18.1596</td>
<td>0.0344</td>
<td>0.0301</td>
<td>0.0321</td>
</tr>
<tr>
<td>1</td>
<td>18.7188</td>
<td>22.8321</td>
<td>22.8321</td>
<td>1.0541</td>
<td>1.1123</td>
<td>3.4648</td>
</tr>
<tr>
<td>2</td>
<td>19.7375</td>
<td>-</td>
<td>-</td>
<td>49.2000</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Moment-SOS approaches

- Lasserre hierarchy via YALMIP: 572 s, computes $f^*_X \approx 22.8$

- TSSOS via TSSOS.jl: 567 s, computes $f^*_X \approx 22.8$.
Recap

1. Introduced a new Positivstellensatz.
 Respects the structure of signomial rings.
 The most general signomial Positivstellensatz to-date.

2. Derived a canonical hierarchy based on A-degree.

3. Demonstrated the hierarchy’s practicality.
 Competitive with BARON, ANTIGONE, LINDO on a hard SP.
 Much faster than Moment-SOS methods on high-degree sparse POP.

Thank you!
Recap

1. Introduced a new Positivstellensatz.
 Respects the structure of signomial rings.
 The most general signomial Positivstellensatz to-date.

2. Derived a *canonical hierarchy* based on A-degree.

3. Demonstrated the hierarchy’s practicality.
 Competitive with BARON, ANTIGONE, LINDO on a hard SP.
 Much faster than Moment-SOS methods on high-degree sparse POP.

Thank you!
Recap

1. Introduced a new Positivstellensatz.
 Respects the structure of signomial rings.
 The most general signomial Positivstellensatz to-date.

2. Derived a *canonical hierarchy* based on A-degree.

3. Demonstrated the hierarchy’s practicality.
 Competitive with BARON, ANTIGONE, LINDO on a hard SP.
 Much faster than Moment-SOS methods on high-degree sparse POP.

Thank you!
Recap

1. Introduced a new Positivstellensatz.
 Respects the structure of signomial rings.
 The most general signomial Positivstellensatz to-date.

2. Derived a *canonical hierarchy* based on A-degree.

3. Demonstrated the hierarchy’s practicality.
 Competitive with BARON, ANTIGONE, LINDO on a hard SP.
 Much faster than Moment-SOS methods on high-degree sparse POP.

Thank you!
References

Application of signomial programming to aircraft design.

Optimal design of pitched laminated wood beams.

[14] Hojjat Adeli and Osama Kamal.
Efficient optimization of space trusses.

Optimum design of composite hybrid plate girders.
Second-order method of generalized geometric programming for spatial frame optimization.

[17] Lukas Wachter, Orcun Karaca, Georgios Darivianakis, and Themistoklis Charalambous.
A convex relaxation approach for the optimized pulse pattern problem, 2020.

[18] Philippe Kirschen and Edward Burnell.
Hyperloop system optimization, 2021.

Nonconvex Optimization for Communication Networks, pages 137–196.

On an extension of pólya’s positivstellensatz.
Extra slides