
Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Qualcomm Technologies Inc.

pletourn@qti.qualcomm.com

Pierre-David Letourneau, Principal Engineer
M. Harper Langston, Principal Engineer
Dalton Jones, Senior Engineer
Mitchell Harris, Intern
Matthew Morse, Senior Engineer

10/30/2023

FM-GPS
An Efficient Framework for Global Non-
Convex Polynomial Optimization

Systems Meeting



A
genda

1.Very brief recapitulation of Polynomial Optimization (PO)

2.FM-GPS : An Efficient Framework for Global
Non-Convex Polynomial Optimization

3.Discussion of Results and Proofs

4.Numerical Algorithms

5.Numerical Results

6.Conclusion



Polynomial Optimization 
(PO)

Problem Statement
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Fundamental Problem of
Polynomial Optimization

Source sample text

Problem Statement

Given a polynomials of degree d in D dimensions

Compute the global minimum value and find a global 
minimum location of the problem
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Why is PO Difficult?

Source sample text

Problem Statement

Challenges:
1. Non-convex objective

• Multiple local minima
• Failure of descent methods

2. Non-convex / disconnected domain
• Multiple connected components
• Non-convex feasible region

3. Scale
• Expensive descriptions (many parameters/coefficients)
• Dimension



FM-GPS

An efficient framework for global non-convex optimization
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General Idea

Source sample text

FM-GPS

Traditional Lasserre SDP 
relaxation

• Convex relaxation
• General measures
• Semi-definite constraints 

(approximation/relaxation)
• Convex (Semi-Definite Program)

FM-GPS

• Exact reformulation
• Convex combinations of 

product measures
• Exact reformulation (no 

approximation)
• Non-linear
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Reformulation

Source sample text

FM-GPS
Problem:

• Nonlinear Objective
• Semi-definite constraints
• Scalar (linear & nonlinear) constraints

Computations:
• Memory cost linear (O(N)) in dimension (D), degree (d) independently
• Memory cost at most quadratic (O(N2)) in nonzero constraint coefficients
• Computational cost of each iteration at most polynomial in degree and dimension 

o(min(Dd, dD) )
• Essentially no spurious local minima

FM-GPS Reformulation



Results and Proofs

Discussion
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Characterization of product measures

Source sample text

FM-GPS

Product measures supported over compact sets can be 
characterized efficiently using semi-definite constraints

A consequence of the fact that 1D moment problem may be solved 
efficiently (not true in higher dimensions. See, e.g., Nie-Schweighofer),
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Theoretical Underpinnings

Source sample text

FM-GPS

The FM-GPS reformulation has the same optimal value
as the original problem and does not possess spurious local minima

• "Every local minimum is essentially a global minimum"
• We can use local descent techniques to find a global minimum!
• Caveat: high-order stationary points
• Similar re-formulation/conclusions for semi-algebraic sets (upcoming paper)
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Equal optimal value

Source sample text

FM-GPS

The feasible set of the 
reformulated problem 
corresponds to convex 

combinations of product 
measures

The original formulation and the FM-GPS re-formulation have 
the same global optimal value

The feasible set contains Dirac 
deltas supported over the 

optimal set
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Local minima are global minima

Source sample text

FM-GPS

For every non-optimal point of the re-formulation, there exists 
a non-increasing feasible path

Consider L=2,

The descent path is explicit and constructed as part of the 
proof

Only one non-trivial measure. Can 
reach the global minimum directly

Caveat: high-order stationary point

Two non-trivial measures. Can 
reach the one with lowest value
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Geometrical intuition

Source sample text

FM-GPS

• For L=2, may only descend 
along 1D faces.

• Non-trivial descent direction 
if not-orthogonal to the 
linear objective vector

• Can always reach a 
minimum by following path 
composed of L-D faces

• Similar to the simplex 
method

Descent on Boundary
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Geometrical intuition

Source sample text

FM-GPS

Descent on Boundary
(Rare pathology)

• May only occur once

• Can be easily resolved by 
moving to the boundary

• Never encountered in 
practice
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More details on Mathematical
Underpinnings and Theory

Source sample text

Reference  

https://arxiv.org/abs/2308.16731

https://arxiv.org/abs/2308.16731
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More details on Mathematical
Underpinnings and Theory

Source sample text

Reference  

https://arxiv.org/abs/2311.02037

https://arxiv.org/abs/2311.02037


Numerical Algorithms
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Overview

Source sample text

Algorithm

The FM-GPS reformulation can be solved using any 
appropriate nonlinear solver backend

We have two (2) implementation:

C/C++
• Built from scratch
• Uses only Eigen package
• Higher-performance
• More difficult to use
• Text-based API

Numerical Algorithm:
• Burer-Monteiro for semi-

definite constraints
• L-BFGS/GD with line search for 

descent
• Explicit expressions for functions 

and gradients

Julia
• Uses packages:

• Nonconvex.jl
• DynamicPolynomials.jl
• Forwarddiff.jl

• Lower-performance
• Easier to use

Numerical Algorithm:
• Burer-Monteiro for semi-

definite constraints
• IPOPT (Interior Point) solver as 

backend
• Automatic differentiation for 

gradient computations
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The FM-GPS reformulation can be 
solved using any appropriate nonlinear solver backend



Numerical Results
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Hypercube

Source sample text

Numerical 
Optimization

Sparse Polynomial Dense Polynomial

• Oscillatory
• Symmetric
• Sparse coefficients (Chebyshev)
• Multimodal (4D local minima)

• Oscillatory
• Asymmetric
• Dense coefficients (O(D4))
• Multimodal (2D local minima)
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Hypercube 

Scaling & Accuracy
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Numerical 
Optimization

Scaling

Accuracy (optimal value)

Scaling is polynomial in 
dimension (O(D2))

Computed minimum 
value is accurate to 5 

digits of accuracy 
(solver threshold: 10-2)
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Hypercube 

Scaling & Accuracy

Source sample text

Numerical 
Optimization

Scaling

Accuracy (optimal value)

Scaling is polynomial in 
dimension (O(D4))

Computed minimum value 
is accurate to 3 digits of 
accuracy (threshold: 10-2)
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Constrained optimization

Source sample text

Numerical 
Optimization

Connected Nonconvex 
Domain

Disconnected Domain

• Concave objective
• Non-convex feasible region
• Sparse coefficients
• 2 local minima, 1 global minimum

• Concave objective
• Disconnected feasible region
• >2D local minima, 1 global 

minimum
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Constrained Optimization

Scaling & Accuracy

Source sample text

Numerical 
Optimization

Scaling

Accuracy (optimal value)

• Scaling is polynomial in dimension (O(D2))
• Computed minimum value is accurate to 5 

digits of accuracy (threshold: 10-2)
• Solution on boundary. Feasible to 3 digits 

(threshold: 10-2)

Accuracy (constraint value)
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Constrained Optimization

Scaling & Accuracy

Source sample text

Numerical 
Optimization

Scaling

Accuracy (optimal value)

• Scaling is polynomial in dimension (O(D4))
• Computed minimum value is accurate to 4 

digits of accuracy (threshold: 10-2)
• Solution on boundary. All feasible.

Accuracy (constraint value)



Conclusion
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What we can now do

Source sample text

Conclusion 

• Efficient reformulation
• Exact reformulation
• No spurious local minima
• Low memory and computational complexity
• Efficient and scalable

• Numerical demonstrations
• Solved previously intractable problems
• Unconstrained (hypercube) and constrained optimization
• Tractable empirical scaling

Q-OPT References:
o Letourneau, Pierre-David, et al. "An Efficient Framework for Global Non-Convex Polynomial 

Optimization over the Hypercube." arXiv preprint arXiv:2308.16731 (2023). (Submitted Springer Global 
Optimization)

o Harris, Mitchell, et al. "An Efficient Framework for Global Non-Convex Polynomial Optimization with 
Nonlinear Polynomial Constraints." arXiv preprint arXiv:2311.02037 (2023)

FM-GPS is a novel framework for PO with 
the potential to be a game-changing optimization tool
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What remains to be done

Source sample text

Conclusion 

• Stationary points
• Combinatorial problems
• More efficient implementation

• Parallelism
• Backend solver
• Leveraging sparsity & hierarchy

• Integration within Qualcomm's teams

Future Work
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