Reducing non-negativity over general semialgebraic sets to non-negativity over simple sets

Olga Kuryatnikova

Joint work with Juan C. Vera (Tilburg University),
Luis F. Zuluaga (Lehigh University)

February 2023

Polynomial optimization and non-negativity

- Let p, g_{1}, \ldots, g_{m} be polynomials

$$
\begin{aligned}
& \inf _{x} p(x) \text { s.t. } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0 \\
= & \sup _{\lambda} \lambda \text { s.t. } p(x)-\lambda \geq 0 \text { for all } x \text { such that } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

Polynomial optimization and non-negativity

- Let p, g_{1}, \ldots, g_{m} be polynomials

$$
\begin{aligned}
& \inf _{x} p(x) \text { s.t. } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0 \\
= & \sup _{\lambda} \lambda \text { s.t. } p(x)-\lambda \geq 0 \text { for all } x \text { such that } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

Polynomial optimization and non-negativity

- Let p, g_{1}, \ldots, g_{m} be polynomials

$$
\begin{aligned}
& \inf _{x} p(x) \text { s.t. } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0 \\
= & \sup _{\lambda} \lambda \text { s.t. } p(x)-\lambda \geq 0 \text { for all } x \text { such that } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

- Certificate of non-negativity, example:

$$
p-\lambda=\sigma_{0}+\sum_{i=1}^{m} \sigma_{i} g_{i}, \quad \sigma_{i} \text { are sums-of-squares (SOS) }
$$

Polynomial optimization and non-negativity

- Let p, g_{1}, \ldots, g_{m} be polynomials

$$
\begin{aligned}
& \inf _{x} p(x) \text { s.t. } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0 \\
= & \sup _{\lambda} \lambda \text { s.t. } p(x)-\lambda \geq 0 \text { for all } x \text { such that } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

- Certificate of non-negativity, example:
$p-\lambda=\sigma_{0}+\sum_{i=1}^{m} \sigma_{i} g_{i}, \quad \sigma_{i}$ are sums-of-squares (SOS)
\rightarrow necessary for positivity on compact sets ([Putinar '1993]), corresponds to the SDP hierarchy by [LASSERRE '2001]

Polynomial optimization and non-negativity

- Let p, g_{1}, \ldots, g_{m} be polynomials

$$
\begin{aligned}
& \inf _{x} p(x) \text { s.t. } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0 \\
= & \sup _{\lambda} \lambda \text { s.t. } p(x)-\lambda \geq 0 \text { for all } x \text { such that } g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0
\end{aligned}
$$

- Certificate of non-negativity, example:
$p-\lambda=\sigma_{0}+\sum_{i=1}^{m} \sigma_{i} g_{i}, \quad \sigma_{i}$ are sums-of-squares (SOS)
\rightarrow necessary for positivity on compact sets ([Putinar '1993]), corresponds to the SDP hierarchy by [Lasserre '2001]
\rightarrow lower bounds for optimization

Certificates of non-negativity

[Artin '1927], [PóLyA '1928], [Krivine '1964]-[Stengle '1974], [Handelman '1988], [Schmüdgen '1991], [Putinar '1993], [Reznick '1995], [Putinar and Vasilescu '1999], [Lasserre '2001,2006,2015], [Powers '04], [Peña, Vera, Zuluaga '2005], [Waki et al. '2006], [Nie et al. '06], [Demmel et al. '07], [Marshall '10], [Nguyen and Powers '10], [Nie '10], [Jeyakumar et al. '2014], [Dickinson and Povh '2015, 2018], [Ahmadi and Hall '2017], [Ahmadi and Majumdar '2017], [Dressler et al. '2017], [Peña, Vera, Zuluaga '2017], [Wang '2018], [Mai, Lasserre, Magron '2020, 2022]

Anything to improve?

- Scalable: faster numerical solutions
- Universal: valid for (almost) any semialgebraic set
- Simple: easy to understand and implement for practitioners

Anything to improve?

- Scalable: faster numerical solutions
- Universal: valid for (almost) any semialgebraic set
- Simple: easy to understand and implement for practitioners

Ideal solution: an automatic procedure to generate such certificates for a problem and solver at hand.

Observations about simple sets

- There are more certificates for simple sets (box, simplex, ball)
- Both lower and upper bounds when optimizing over simple sets
- Often easy to find a simple set that contains a given set

Contributions

A universal and simple approach to express non-negativity on a given set via non-negativity on a simple set

Contributions

A universal and simple approach to express non-negativity on a given set via non-negativity on a simple set

- Lift initial set and polynomial to \mathbb{R}^{n+m}
- Construct a simple set that contains the lifting
- Use a certificate of non-negativity on the simple set
- Project the result back onto \mathbb{R}^{n}

Contributions

A universal and simple approach to express non-negativity on a given set via non-negativity on a simple set

- Lift initial set and polynomial to \mathbb{R}^{n+m}
- Construct a simple set that contains the lifting
- Use a certificate of non-negativity on the simple set
- Project the result back onto \mathbb{R}^{n}

The process is automatic and universal, c.f. [SCHWEIGHOFER '2002]

Plan for the rest of the talk

- Universal lifting approach for compact sets

Plan for the rest of the talk

- Universal lifting approach for compact sets
- Lower and upper bounds for PO on compact sets

Plan for the rest of the talk

- Universal lifting approach for compact sets
- Lower and upper bounds for PO on compact sets
- New scalable non-negativity certificates for compact sets

Plan for the rest of the talk

- Universal lifting approach for compact sets
- Lower and upper bounds for PO on compact sets
- New scalable non-negativity certificates for compact sets
- Universal lifting approach for unbounded sets

Plan for the rest of the talk

- Universal lifting approach for compact sets
- Lower and upper bounds for PO on compact sets
- New scalable non-negativity certificates for compact sets
- Universal lifting approach for unbounded sets
- Certificates and PO for unbounded sets

Main result for compact sets

Notation: $\mathbb{R}_{d}[x]$ are polynomials of degree $\leq d$ with real coefficients; $\mathcal{P}_{d}(S) \subset \mathbb{R}_{d}[x]$ (resp. $\left.\mathcal{P}_{d}^{+}(S) \subset \mathbb{R}_{d}[x]\right)$ are polynomials non-negative (resp.positive) on S; and e is the vector of all ones.

Theorem 1 (K., Vera, Zuluaga)

Let $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ be non-empty and compact. Let $T \subset \mathbb{R}^{n} \times \mathbb{R}_{+}^{m}$ be any compact set such that $\{(x, g(x)): x \in S\} \subseteq T$. For $p \in \mathcal{P}^{+}(S)$ there is $F \in \mathcal{P}_{d_{\text {max }}}^{+}(T)$ such that

$$
p(x)=F(x, g(x)),
$$

where $d_{\text {max }}=\max \left\{2 \operatorname{deg} g_{1}, \ldots, 2 \operatorname{deg} g_{m}, \operatorname{deg} p\right\}$.

Main result for compact sets

Notation: $\mathbb{R}_{d}[x]$ are polynomials of degree $\leq d$ with real coefficients; $\mathcal{P}_{d}(S) \subset \mathbb{R}_{d}[x]$ (resp. $\left.\mathcal{P}_{d}^{+}(S) \subset \mathbb{R}_{d}[x]\right)$ are polynomials non-negative (resp.positive) on S; and e is the vector of all ones.

Theorem 1 (K.,Vera, Zuluaga)

Let $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$ be non-empty and compact. Let $T \subset \mathbb{R}^{n} \times \mathbb{R}_{+}^{m}$ be any compact set such that $\{(x, g(x)): x \in S\} \subseteq T$. For $p \in \mathcal{P}^{+}(S)$ there is $F \in \mathcal{P}_{d_{\text {max }}}^{+}(T)$ such that

$$
p(x)=F(x, g(x)),
$$

where $d_{\max }=\max \left\{2 \operatorname{deg} g_{1}, \ldots, 2 \operatorname{deg} g_{m}, \operatorname{deg} p\right\}$.

Proof: lift S to \mathbb{R}^{n+m} via equalities obtaining a set $\left\{x \in \mathbb{R}^{n}, u \in \mathbb{R}_{+}^{m}:\left(g_{1}(x)-u_{1}\right)^{2}=0, \ldots,\left(g_{m}(x)-u_{m}\right)^{2}=0\right\} \cap T$ and use a representation from [Peña, Vera, Zuluaga '2008].

Box and simplex as simple sets

Lift each set to the same set type in a higher dimension

- Box: Let L, M be such that $S \subseteq\left\{x \in \mathbb{R}^{n}: L \leq x \leq M\right\}$: $T=\{(x, u): L \leq x \leq M, 0 \leq u \leq \hat{M}\}$ for any $\hat{M}_{j} \geq\left\|g_{j}\right\|\left(1+e^{\top} \max \{|M|,|L|\}\right)^{\operatorname{deg}} g_{j}, j \in\{1, \ldots, m\}$.

Box and simplex as simple sets

Lift each set to the same set type in a higher dimension

- Box: Let L, M be such that $S \subseteq\left\{x \in \mathbb{R}^{n}: L \leq x \leq M\right\}$: $T=\{(x, u): L \leq x \leq M, 0 \leq u \leq \hat{M}\}$ for any $\hat{M}_{j} \geq\left\|g_{j}\right\|\left(1+e^{\top} \max \{|M|,|L|\}\right)^{\operatorname{deg} g_{j}}, j \in\{1, \ldots, m\}$.
- Simplex: Let L, M be such that $S \subseteq\left\{x \in \mathbb{R}^{n}: x \geq L, e^{\top} x \leq M\right\}$: $T=\left\{(x, u): L \leq x, 0 \leq u, e^{\top} x+e^{\top} u \leq \hat{M}\right\}$ for any $\hat{M} \geq M+\left(1+M+e^{\top}(|L|-L)\right)^{\operatorname{deg} g_{j}}\left\|g_{j}\right\|$.

Box and simplex as simple sets

Lift each set to the same set type in a higher dimension

- Box: Let L, M be such that $S \subseteq\left\{x \in \mathbb{R}^{n}: L \leq x \leq M\right\}$: $T=\{(x, u): L \leq x \leq M, 0 \leq u \leq \hat{M}\}$ for any $\hat{M}_{j} \geq\left\|g_{j}\right\|\left(1+e^{\top} \max \{|M|,|L|\}\right)^{\operatorname{deg}} g_{j}, j \in\{1, \ldots, m\}$.
- Simplex: Let L, M be such that $S \subseteq\left\{x \in \mathbb{R}^{n}: x \geq L, e^{\top} x \leq M\right\}$: $T=\left\{(x, u): L \leq x, 0 \leq u, e^{\top} x+e^{\top} u \leq \hat{M}\right\}$ for any $\hat{M} \geq M+\left(1+M+e^{\top}(|L|-L)\right)^{\operatorname{deg} g_{j}}\left\|g_{j}\right\|$.

Do not lift a ball to a ball, can use a more efficient strategy

Optimization on compact sets

$$
\begin{gathered}
\inf _{x} p(x) \text { s.t. } x \in S=\sup _{\lambda, F} \lambda \text { s.t. } p(x)-\lambda=F(x, g(x)) \\
F \in \mathcal{P}_{d_{\max }}(T)
\end{gathered}
$$

- Lower bound: use any certificate of non-negativity on T \rightarrow certificates of non-negativity on box and simplex

Optimization on compact sets

$$
\begin{gathered}
\inf _{x} p(x) \text { s.t. } x \in S=\sup _{\lambda, F} \lambda \text { s.t. } p(x)-\lambda=F(x, g(x)), \\
F \in \mathcal{P}_{d_{\max }}(T) .
\end{gathered}
$$

- Lower bound: use any certificate of non-negativity on T \rightarrow certificates of non-negativity on box and simplex
- Upper bound: use any outer approximation for $\mathcal{P}_{d_{\text {max }}}(T)$
\rightarrow Simplex: outer hierarchies for copositive tensors
\rightarrow Box, simplex: integral-based hierarchy [LASSERRE '2011, 2020]

Deriving new certificates

- Go beyond SOS
- Try to use polynomials with few terms (sparse in some sense)
- Combination with correlative or term sparsity possible

Use Box: Non-SOS Schmudgen-type certificates

Proposition 1 (Schmudgen-type Certificates)
Let $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \subseteq\left\{x \in \mathbb{R}^{n}: L \leq x \leq U\right\}$. For $p \in \mathcal{P}^{+}(S)$ there are $r \geq 0$ and $\sigma_{\alpha, \beta, \gamma} \in \mathcal{K}$ such that

$$
p(x)=\sum_{(\alpha, \beta, \gamma) \in \mathbb{N}_{r}^{2 n+m}} \sigma_{\alpha, \beta, \gamma}(x)(x-L)^{\alpha}(U-x)^{\beta} g(x)^{\gamma}
$$

and \mathcal{K} can be any class of non-negative polynomials containing non-negative constants.

Use Box: Non-SOS Schmudgen-type certificates

Proposition 1 (Schmudgen-type Certificates)

Let $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \subseteq\left\{x \in \mathbb{R}^{n}: L \leq x \leq U\right\}$. For $p \in \mathcal{P}^{+}(S)$ there are $r \geq 0$ and $\sigma_{\alpha, \beta, \gamma} \in \mathcal{K}$ such that

$$
p(x)=\sum_{(\alpha, \beta, \gamma) \in \mathbb{N}_{r}^{2 n+m}} \sigma_{\alpha, \beta, \gamma}(x)(x-L)^{\alpha}(U-x)^{\beta} g(x)^{\gamma}
$$

and \mathcal{K} can be any class of non-negative polynomials containing non-negative constants.

Possible \mathcal{K} with fewer terms than SOS:

- \mathbb{R}_{+}, c.f. [Dickinson and Povh '2018]
- DSOS, SDSOS, c.f. [Kuang et al. '2017]
- SONC, c.f. [Dressler, Iliman, de Wolff '2017]

Use simplex: Semi-sparse Putinar-type Certificates

Proposition 2 (Putinar-type Certificates via Simplex)

Let $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \subseteq\left\{x: L \leq x, e^{\top} x \leq M\right\}$. Let $\hat{g}(x)=\left(x-L, g(x), \widehat{M}-e^{\top} x-e^{\top} g(x)\right)$. For $p \in \mathcal{P}^{+}(S)$ there are SOS τ_{1}, τ_{2} and univariate SOS $\sigma_{1}, \ldots, \sigma_{n+m+1}$ such that

$$
\left.p(x)=\tau_{1}(x)+\tau_{2}(x)\left(\widehat{M}^{2}-\|\hat{g}(x)\|^{2}\right)+\sum_{j=1}^{n+m+1} \sigma_{j}\left(\hat{g}(x)_{j}\right) \hat{\mathrm{g}}(x)\right)_{j} .
$$

- Can view $\sigma_{j}\left(\hat{g}(x)_{j}\right)$ as SOS in variables of g_{j} if needed ("automatic" correlative sparsity)
- Can additionally use correlative or term sparsity for τ_{1}, τ_{2}

Ball as a simple set

- Define a ball as $\mathcal{B}_{r}:=\left\{x \in \mathbb{R}^{n}:\|x\| \leq r\right\}$
- Iteratively apply box and ball as simple sets

Proposition 3 (Thm. 4 in [Roebers, Vera, Zuluaga ' 2021])

Let $\mathcal{K} \subseteq \mathbb{R}[x], \mathcal{K} \neq \mathbb{R}_{+}$be one of the earlier considered non-SOS classes. Let $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\} \subset \mathcal{B}_{r}$. For $p \in \mathcal{P}^{+}(S)$ there are $\tau_{0}, \tau_{1} \in \mathcal{K}$ and univariate $\sigma_{1}, \ldots, \sigma_{m} \in \mathcal{K}$ such that

$$
\begin{aligned}
p(x)= & \tau_{0}\left(r+x_{1}, \ldots, r+x_{n}, r-x_{1}, \ldots, r-x_{n}, r^{2}-\|x\|^{2}\right) \\
& +\tau_{1}\left(r+x_{1}, \ldots, r+x_{n}, r-x_{1}, \ldots, r-x_{n}, r^{2}-\|x\|^{2}\right)\left(r^{2}-\|x\|^{2}\right) \\
& +\sum_{j=1}^{m} \sigma_{j}\left(U_{j}-g_{j}(x)\right) g_{j}(x)
\end{aligned}
$$

where $U_{j} \geq \max _{x \in \mathcal{B}_{r}} g_{j}(x)$ for each $j=1, \ldots, m$.

Ball vs simplex for Putinar-like certificates

- Ball gives a simpler certificate than simplex when \mathcal{K} is SOS
- Can incorporate additional sparsity in both certificates
- With a chordal extension, Proposition 3 gives a certificate with correlative sparsity as in [LASSERRE '2006], [WAKi Et AL. '2006]

Generalization for unbounded sets

Notation: $\tilde{p} \in \mathbb{R}_{d}[x]$ is the homogeneous component of the highest degree in $p ; \tilde{S}=\left\{x \in \mathbb{R}^{n}: \tilde{g}_{1}(x) \geq 0, \ldots, \tilde{g}_{m}(x) \geq 0\right\}$.

Theorem 2 (K.,Vera, Zuluaga)

Let $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$. For $p \in \mathcal{P}^{+}(S)$ such that $\tilde{p} \in \mathcal{P}^{+}(\tilde{S}) \backslash\{0\}$ there is $F \in \mathcal{P}_{d_{\text {max }}}^{+}\left(\mathbb{R}^{2 n+m}\right)$ such that

$$
\left(1+e^{\top} y+e^{\top} z\right)^{d_{\max }-\operatorname{deg} p} p(x)=F\left(y, z,,_{g_{1}}(y, z), \ldots, \stackrel{\circ}{g}_{m}(y, z)\right),
$$

where $d_{\text {max }}=\max \left\{2 \operatorname{deg} g_{1}, \ldots, 2 \operatorname{deg} g_{m}, \operatorname{deg} p+\operatorname{deg} p \bmod 2\right\}$ and $\stackrel{\circ}{g}_{j}(y, z)=\left(1+e^{\top} y+e^{\top} z\right)^{d_{\text {max }} / 2-\operatorname{deg} g_{j}} g_{j}(y-z), j=1, \ldots, m$.

Generalization for unbounded sets

Notation: $\tilde{p} \in \mathbb{R}_{d}[x]$ is the homogeneous component of the highest degree in $p ; \tilde{S}=\left\{x \in \mathbb{R}^{n}: \tilde{g}_{1}(x) \geq 0, \ldots, \tilde{g}_{m}(x) \geq 0\right\}$.

Theorem 2 (K.,Vera, Zuluaga)

Let $S=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, \ldots, g_{m}(x) \geq 0\right\}$. For $p \in \mathcal{P}^{+}(S)$ such that $\tilde{p} \in \mathcal{P}^{+}(\tilde{S}) \backslash\{0\}$ there is $F \in \mathcal{P}_{d_{\text {max }}}^{+}\left(\mathbb{R}^{2 n+m}\right)$ such that

$$
\left(1+e^{\top} y+e^{\top} z\right)^{d_{\max }-\operatorname{deg} p} p(x)=F\left(y, z, \stackrel{\circ}{g}_{1}(y, z), \ldots, \dot{g}_{m}(y, z)\right),
$$

where $d_{\text {max }}=\max \left\{2 \operatorname{deg} g_{1}, \ldots, 2 \operatorname{deg} g_{m}, \operatorname{deg} p+\operatorname{deg} p \bmod 2\right\}$ and $\stackrel{\circ}{g}_{j}(y, z)=\left(1+e^{\top} y+e^{\top} z\right)^{d_{\text {max }} / 2-\operatorname{deg} g_{j}} g_{j}(y-z), j=1, \ldots, m$.

If $S \subseteq \mathbb{R}_{+}^{n}$, we can set $z=0$.
Proof: lift S to $\mathbb{R}^{2 n+m}$ via equalities and use a representation on unbounded sets with equalities from [Kuryatnikova '2019].

Certificates for unbounded sets

- Certificate on unbounded sets from any certificate of tensor-copositivity, e.g., Pólya's theorem for a fixed $r \in \mathbb{R}_{+}$:

$$
\begin{aligned}
& q(y, z, r) p(y-z)=\quad \sum \quad c_{\alpha, \beta, \gamma}(y-z) y^{\alpha} z^{\beta} g(y-z)^{\gamma}, \\
& (\alpha, \beta, \gamma) \in \mathbb{N}_{r+2 d_{\text {max }}}^{2 n+m}
\end{aligned}
$$

where q is a known fixed polynomial, $c_{\alpha, \beta, \gamma}$ can be from any class of non-negative polynomials containing non-negative constants

Certificates for unbounded sets

- Certificate on unbounded sets from any certificate of tensor-copositivity, e.g., Pólya's theorem for a fixed $r \in \mathbb{R}_{+}$:

$$
q(y, z, r) p(y-z)=\sum_{(\alpha, \beta, \gamma) \in \mathbb{N}_{r+2 d_{\max }^{2 n+m}}} c_{\alpha, \beta, \gamma}(y-z) y^{\alpha} z^{\beta} g(y-z)^{\gamma}
$$

where q is a known fixed polynomial, $c_{\alpha, \beta, \gamma}$ can be from any class of non-negative polynomials containing non-negative constants

- Known fixed denominator q :

Certificates for unbounded sets

- Certificate on unbounded sets from any certificate of tensor-copositivity, e.g., Pólya's theorem for a fixed $r \in \mathbb{R}_{+}$:

$$
q(y, z, r) p(y-z)=\sum_{(\alpha, \beta, \gamma) \in \mathbb{N}_{r+2 d_{\max }^{2 n+m}}} c_{\alpha, \beta, \gamma}(y-z) y^{\alpha} z^{\beta} g(y-z)^{\gamma}
$$

where q is a known fixed polynomial, $c_{\alpha, \beta, \gamma}$ can be from any class of non-negative polynomials containing non-negative constants

- Known fixed denominator q : $\sup _{\lambda} \lambda$ s.t. $p(x)-\lambda \in \mathcal{P}(S)$
\rightarrow [Artin '1927], [Krivine '1964]-[STEngle '1974]: $q(p-\lambda)=F \Longrightarrow$ non-linearity in unknowns
\rightarrow We obtain: $q(p-\lambda)=F \Longrightarrow$ linear constraints

Optimization over unbounded sets

- Lower bounds: substitute a certificate of copositivity
\rightarrow inner approximations of copositive tensors [Vera, Pena, Zuluaga '07], [Bundfuss and Dür '2009], [Luo and Qi '2018]
- Tight lower bound under $\tilde{p} \in \mathcal{P}^{+}(\tilde{S}) \backslash\{0\}$

Optimization over unbounded sets

- Lower bounds: substitute a certificate of copositivity
\rightarrow inner approximations of copositive tensors [Vera, Pena, Zuluaga '07], [Bundfuss and Dür '2009], [Luo and Qi '2018]
- Tight lower bound under $\tilde{p} \in \mathcal{P}^{+}(\tilde{S}) \backslash\{0\}$
- Upper bounds: somewhat more loose but possible
\rightarrow outer approximations of copositive tensors
[Yildirim '2012], [Dong '2013], [LasSERRE '2014]

Questions for further research

- Numerical results for lower and upper bounds
\rightarrow promising results for related lower bounds in [Kuang et al. '2017], [Dickinson and Povh '2018]
\rightarrow combination with correlative and term sparsity
- Degree bounds: constructive proofs allow to "track" the degree

The talk is based on preprints
https://arxiv.org/abs/1909.06689,
https://arxiv.org/abs/2110.10079

Thank you for your attention!

