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Polynomial optimization and non-negativity

I Let p, g1, ..., gm be polynomials

inf
x

p(x) s.t. g1(x) ≥ 0, . . . , gm(x) ≥ 0

= sup
λ

λ s.t. p(x)− λ ≥ 0 for all x such that g1(x) ≥ 0, . . . , gm(x) ≥ 0

I Certificate of non-negativity, example:
p − λ = σ0 +

∑m
i=1 σigi , σi are sums-of-squares (SOS)

→ necessary for positivity on compact sets ([Putinar '1993]),
corresponds to the SDP hierarchy by [Lasserre '2001]

→ lower bounds for optimization
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Certificates of non-negativity

[Artin '1927], [Pólya '1928], [Krivine '1964]-[Stengle '1974],
[Handelman '1988], [Schmüdgen '1991], [Putinar '1993],
[Reznick '1995], [Putinar and Vasilescu '1999], [Lasserre

'2001,2006,2015], [Powers '04], [Peña, Vera, Zuluaga '2005],
[Waki et al. '2006], [Nie et al. '06], [Demmel et al. '07],
[Marshall '10], [Nguyen and Powers '10], [Nie '10],
[Jeyakumar et al. '2014], [Dickinson and Povh '2015, 2018],
[Ahmadi and Hall '2017], [Ahmadi and Majumdar '2017],
[Dressler et al. '2017], [Peña, Vera, Zuluaga '2017], [Wang

'2018], [Mai, Lasserre, Magron '2020, 2022]

3 / 20



Anything to improve?

I Scalable: faster numerical solutions

I Universal: valid for (almost) any semialgebraic set

I Simple: easy to understand and implement for practitioners

Ideal solution: an automatic procedure to generate such certificates
for a problem and solver at hand.
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Observations about simple sets

I There are more certificates for simple sets (box, simplex, ball)

I Both lower and upper bounds when optimizing over simple sets

I Often easy to find a simple set that contains a given set
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Contributions

A universal and simple approach to express non-negativity on a
given set via non-negativity on a simple set

I Lift initial set and polynomial to Rn+m

I Construct a simple set that contains the lifting

I Use a certificate of non-negativity on the simple set

I Project the result back onto Rn

The process is automatic and universal, c.f. [Schweighofer '2002]
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Plan for the rest of the talk

I Universal lifting approach for compact sets

I Lower and upper bounds for PO on compact sets

I New scalable non-negativity certificates for compact sets

I Universal lifting approach for unbounded sets

I Certificates and PO for unbounded sets
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Main result for compact sets

Notation: Rd [x ] are polynomials of degree ≤ d with real coefficients;

Pd(S) ⊂ Rd [x ] (resp. P+
d (S) ⊂ Rd [x ]) are polynomials non-negative

(resp.positive) on S ; and e is the vector of all ones.

Theorem 1 (K.,Vera, Zuluaga)

Let S ={x ∈Rn : g1(x)≥0, . . . , gm(x)≥ 0} be non-empty and compact.
Let T⊂Rn×Rm

+ be any compact set such that {(x , g(x)) :x ∈S}⊆T . For
p ∈ P+(S) there is F ∈ P+

dmax
(T ) such that

p(x) = F (x , g(x)),

where dmax = max {2 deg g1, . . . , 2 deg gm, deg p}.

Proof: lift S to Rn+m via equalities obtaining a set
{x ∈Rn, u ∈ Rm

+ : (g1(x)−u1)2 = 0, . . . , (gm(x)−um)2 = 0} ∩ T
and use a representation from [Peña, Vera, Zuluaga '2008].
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Box and simplex as simple sets

Lift each set to the same set type in a higher dimension

I Box: Let L,M be such that S ⊆ {x ∈ Rn : L ≤ x ≤ M}:
T = {(x , u) : L ≤ x ≤ M, 0 ≤ u ≤ M̂}
for any M̂j ≥ ‖gj‖(1 + e>max{|M|, |L|})deg gj , j ∈ {1, . . . ,m}.

I Simplex: Let L,M be such that S⊆{x ∈Rn : x≥L, e>x≤ M}:
T = {(x , u) : L ≤ x , 0 ≤ u, e>x + e>u ≤ M̂}
for any M̂ ≥ M + (1 + M + e>(|L| − L))deg gj‖gj‖.

Do not lift a ball to a ball, can use a more efficient strategy
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Optimization on compact sets

inf
x

p(x) s.t. x ∈ S = sup
λ,F

λ s.t. p(x)− λ = F (x , g(x)),

F ∈ Pdmax(T ).

I Lower bound: use any certificate of non-negativity on T
→ certificates of non-negativity on box and simplex

I Upper bound: use any outer approximation for Pdmax(T )
→ Simplex: outer hierarchies for copositive tensors
→ Box, simplex: integral-based hierarchy [Lasserre '2011, 2020]
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Deriving new certificates

I Go beyond SOS

I Try to use polynomials with few terms (sparse in some sense)

I Combination with correlative or term sparsity possible
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Use Box: Non-SOS Schmudgen-type certificates

Proposition 1 (Schmudgen-type Certificates)

Let S ={x ∈Rn : g1(x)≥0, . . . , gm(x)≥ 0} ⊆ {x ∈ Rn : L≤ x ≤U}.
For p ∈ P+(S) there are r ≥ 0 and σα,β,γ ∈ K such that

p(x) =
∑

(α,β,γ)∈N2n+m
r

σα,β,γ(x)(x − L)α(U − x)βg(x)γ ,

and K can be any class of non-negative polynomials containing
non-negative constants.

Possible K with fewer terms than SOS:

I R+, c.f. [Dickinson and Povh '2018]

I DSOS, SDSOS, c.f. [Kuang et al. '2017]

I SONC, c.f. [Dressler, Iliman, de Wolff '2017]
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Use simplex: Semi-sparse Putinar-type Certificates

Proposition 2 (Putinar-type Certificates via Simplex)

Let S ={x ∈Rn : g1(x)≥0, . . . , gm(x)≥ 0} ⊆ {x : L≤ x , e>x ≤M}.
Let ĝ(x) = (x − L, g(x), M̂ − e>x − e>g(x)). For p ∈ P+(S) there
are SOS τ1, τ2 and univariate SOS σ1, . . . , σn+m+1 such that

p(x) = τ1(x) + τ2(x)(M̂2 − ‖ĝ(x)‖2) +
n+m+1∑
j=1

σj(ĝ(x)j)ĝ(x)j .

I Can view σj(ĝ(x)j) as SOS in variables of gj if needed
(“automatic” correlative sparsity)

I Can additionally use correlative or term sparsity for τ1, τ2
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Ball as a simple set

I Define a ball as Br := {x ∈ Rn : ‖x‖ ≤ r}
I Iteratively apply box and ball as simple sets

Proposition 3 (Thm.4 in [Roebers, Vera, Zuluaga ' 2021])

Let K ⊆ R[x ],K 6= R+ be one of the earlier considered non-SOS classes.
Let S ={x ∈Rn : g1(x)≥0, . . . , gm(x)≥ 0} ⊂ Br . For p ∈ P+(S) there are
τ0, τ1 ∈ K and univariate σ1, . . . , σm ∈ K such that

p(x) = τ0(r + x1, . . . , r + xn, r − x1, . . . , r − xn, r
2 − ‖x‖2)

+ τ1(r + x1, . . . , r + xn, r − x1, . . . , r − xn, r
2 − ‖x‖2)(r2 − ‖x‖2)

+
m∑
j=1

σj(Uj − gj(x))gj(x),

where Uj ≥ maxx∈Br gj(x) for each j = 1, . . . ,m.

14 / 20



Ball vs simplex for Putinar-like certificates

I Ball gives a simpler certificate than simplex when K is SOS

I Can incorporate additional sparsity in both certificates

I With a chordal extension, Proposition 3 gives a certificate with
correlative sparsity as in [Lasserre '2006], [Waki et al. '2006]
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Generalization for unbounded sets

Notation: p̃ ∈ Rd [x ] is the homogeneous component of the highest

degree in p; S̃ ={x ∈Rn : g̃1(x)≥0, . . . , g̃m(x)≥ 0}.

Theorem 2 (K.,Vera, Zuluaga)

Let S ={x ∈Rn : g1(x)≥0, . . . , gm(x)≥ 0}. For p ∈ P+(S) such that
p̃ ∈ P+(S̃) \ {0} there is F ∈ P+

dmax
(R2n+m) such that

(1 + e>y + e>z)dmax−deg pp(x) = F (y , z , g̊1(y , z), . . . , g̊m(y , z)),

where dmax = max {2 deg g1, . . . , 2 deg gm, deg p + deg p mod 2} and

g̊j(y , z) = (1 + e>y + e>z)dmax/2−deg gjgj(y − z), j = 1, . . . ,m.

If S ⊆ Rn
+, we can set z = 0.

Proof: lift S to R2n+m via equalities and use a representation on
unbounded sets with equalities from [Kuryatnikova '2019].
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Certificates for unbounded sets

I Certificate on unbounded sets from any certificate of
tensor-copositivity, e.g., Pólya’s theorem for a fixed r ∈ R+:

q(y , z , r)p(y − z) =
∑

(α,β,γ)∈N2n+m
r+2dmax

cα,β,γ(y − z)yαzβg(y − z)γ ,

where q is a known fixed polynomial, cα,β,γ can be from any class
of non-negative polynomials containing non-negative constants

I Known fixed denominator q: supλ λ s.t. p(x)− λ ∈ P(S)

→ [Artin '1927], [Krivine '1964]-[Stengle '1974]:
q(p − λ) = F =⇒ non-linearity in unknowns

→ We obtain: q(p − λ) = F =⇒ linear constraints
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Optimization over unbounded sets

I Lower bounds: substitute a certificate of copositivity

→ inner approximations of copositive tensors
[Vera, Pena, Zuluaga '07], [Bundfuss and Dür '2009],
[Luo and Qi '2018]

I Tight lower bound under p̃ ∈ P+(S̃) \ {0}

I Upper bounds: somewhat more loose but possible

→ outer approximations of copositive tensors
[Yildirim '2012], [Dong '2013], [Lasserre '2014]
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Questions for further research

I Numerical results for lower and upper bounds

→ promising results for related lower bounds in
[Kuang et al. '2017], [Dickinson and Povh '2018]

→ combination with correlative and term sparsity

I Degree bounds: constructive proofs allow to “track” the degree

The talk is based on preprints
https://arxiv.org/abs/1909.06689,
https://arxiv.org/abs/2110.10079
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Thank you for your attention!
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