Duality 000000000

Version tropicale du théorème de Putinar. Dualité et applications.

Nicolas Delanoue, Daouda Niang Diatta, Algassimmou Diallo

LARIS - Universite d'Angers - France Université Assane Seck de Ziguinchor - Sénégal

20 mars 2022

Brainstorming days on measure and polynomial optimization

00000000	00000000	00000000	0
Outline			

Positivstellensatz o●oooooo	Tropical algebra 00000000	Duality 00000000	Conclu O
Proposition			
f*	$f = \sup_{\lambda \in \mathbb{R}} \left\{ \lambda ext{such that} f \left(\lambda ext{such that} $	$(x) - \lambda \ge 0, \ \forall x \in K \}.$	(2)
Example			
	<i>y</i> <i>f</i> *	y = f(x)	
		X	

Positivstellensatz o●oooooo	Tropical algebra 0000000	Duality 00000000	Conclu O
Proposition			
f*	$= \sup_{\lambda \in \mathbb{R}} \{\lambda ext{ such that } f(x) \}$	$(x) - \lambda \ge 0, \ \forall x \in K \}.$	(2)
Example			
נ	γ f* λ	y = f(x)	
		X	

Positivstellensatz o●oooooo	Tropical algebra 00000000	Duality 00000000	Conclu O
Proposition			
f* :	$= \sup_{\lambda \in \mathbb{R}} \left\{ \lambda \; \; such that \; f \left(\; \; ight.$	$(x) - \lambda \ge 0, \ \forall x \in K \}.$	(2)
Example			
ې ƒ ٫	*	y = f(x)	
		X	

Positivstellensatz o●oooooo	Tropical algebra	Duality 00000000	Conclu o
Proposition	I.		
f	$f^* = \sup_{\lambda \in \mathbb{R}} \ \{ \lambda \ \ { m such that} \ f(\lambda) \}$	$(x) - \lambda \ge 0, \ \forall x \in K \}.$	(2)
Example			
	y f^* λ x^*	y = f(x)	

Positivstellensatz 0000000	Tropical algebra 0000000	Duality 00000000	Concl o
Proposit	ion		
	$f^* = \sup_{\lambda \in \mathbb{R}} \{\lambda \text{ such that } f(x) \}$	$(x) - \lambda \ge 0, \ \forall x \in K \}.$	(2)
Example			
	f^*_{λ}	y = f(x)	

Remarks

- (2) is a linear programming problem with infinite number of constraints.
- (2) is the dual of another one (end of the talk).
- Deciding whether a given real valued function is non-negative is fundamental.

Duality 000000000

Definition

A certificate of positivity for a real polynomial is an algebraic identity that gives an immediate proof of a positivity condition for the polynomial.

Example

Let

$$f(x,y) = 4x^4 + 4x^3y - 2x^2y^2 + 10y^4,$$

f can be written

$$f(x,y) = (2x^2 - 3y^2 + xy)^2 + (y^2 + 3xy)^2.$$

f is a sum of squares, therefore f is non-negative.

Definition

We denote by $\Sigma[x]$ the set of sum of squares (also denoted SOS).

Duality 000000000

Definition

In real algebraic geometry, a Positivstellensatz (German for "positive-locus-theorem") is a characterization of polynomials that are positive on a semialgebraic set K.

Theorem (Positivstellensatz dimension 1)

A real polynomial $p \in \mathbb{R}[x]$ is non-negative on \mathbb{R} if and only

 $f = \sigma_0$ with $\sigma_0 \in \Sigma[x]$.

Remarks

The previous theorem can be generalized in different ways :

- for some dimension and degrees,
- with constraints on the variables x (i.e. x ∈ K with K a basic semi-algebraic set).

Positivstellensatz	Tropical algebra	Duality	Conclusion
00000000			

Theorem (Positivstellensatz dimension 1 with constraints)

Let $p \in \mathbb{R}[x]$, p non-negative on K = [-1, 1] if and only if

$$p = \sigma_0 + (1 - x^2)\sigma_1$$
 with $\sigma_0, \sigma_1 \in \Sigma[x]$.

Remark

$$K = [-1, 1] = \{x \in \mathbb{R} \mid 1 - x^2 \ge 0\}$$

Example

$$f(x) = -x^4 - 2x^3 + x^2 + 2x + 1$$
 is non-negative on $[-1, 1]$ since $f(x) = \sigma_0 + (1 - x^2)\sigma_1$ with $\sigma_0 = x^2, \sigma_1 = (1 + x)^2$

Duality 000000000

Definition

A subset K of \mathbb{R}^n is a basic semi-algebraic set if it can be written as

$$K = \bigcap_{j=1}^{m} \{ x \in \mathbb{R}^n; g_j(x) \ge 0 \}$$
(3)

with $g_j \in \mathbb{R}[x_1, \ldots, x_n]$.

Examples

- $K_1 = [-1, 1]$ is a semi-algebraic set since $K_1 = \{x \in \mathbb{R} \mid 1 - x^2 \ge 0\}.$
- **2** The non-negative orthant in \mathbb{R}^n ,
- In the cone of positive semi-definite matrices,

•
$$\mathcal{K}_2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 - 4 \le 0 \text{ or } x \ge 0\}$$
 is a semi-algebraic set but NOT basic.

Putinar Theorem

Let $K = \{g_j \ge 0\}$ be a basic semi-algebraic set satisfying a compactness hypothesis α . $\forall x \in K, f(x) > 0$ if and only if

$$f = \sigma_0 + \sum_j \sigma_j g_j$$
 with $\sigma_i \in \Sigma[x]$.

Remarks

- Bounds on the degrees of σ_j ,
- As σ ∈ Σ[x] ⇔ Q(σ) ≥ 0, to decide whether a polynomial f is positive on K can be written as a convex problem.

Positivstellensatz	Tropical algebra	Duality	Conclusion
00000000	●0000000	00000000	O

Definition

The tropical semiring ($\mathbb{R} \cup \{-\infty\}, \oplus, \otimes$) is the semiring equipped with two binary operations :

- $x \oplus y = \max\{x, y\}$,
- $x \otimes y = x + y$.

Examples

•
$$2 \oplus 3 = 3$$
,

•
$$2 \otimes 3 = 5$$
.

Remarks

- $\bullet~$ The operations \oplus and \otimes are referred to as tropical addition and tropical multiplication respectively.
- The unit for \oplus is $-\infty$,
- the unit for \otimes is 0.

Duality 000000000

Tropical algebraic geometry

Tropical algebraic varieties^a

a. A. Chambert-Loir, *Quand la géométrie devient tropicale*, Pour la sciences 2018.

Positivstellensatz

Dynamic programming

- The Bellman short path algorithm can be seen as a linear dynamical system $x_{n+1} = Ax_n$ in $(\mathbb{R} \cup \{+\infty\}, \min, +)$.
- Optimal control (Hamilton-Jacobi-Bellman)^a

a. M. Akian et al, The Max-Plus Finite Element Method for Solving Deterministic Optimal Control Problems : Basic Properties and Convergence Analysis, SIAM Journal on Control and Optimization, 2006

Positivstellensatz	Tropical algebra	Duality	Conclusion
00000000	000●0000	00000000	O

Proposition

A real-valued function naturally extends to a valued function in $(\mathbb{R}\cup\{-\infty\},\oplus,\otimes).$

Corollary

- The set of real-valued functions is a tropical semiring,
- and one can write $f_1 \oplus f_2$ and $f_1 \otimes f_2$.

Duality 000000000

Tropical Theorem Putinar

Let $(g_i)_{i=1}^m$ be a family of continuous real-valued functions and $K = \{x \in \mathbb{R}^n \mid g_i(x) \ge 0, i = 1, ..., m\}$ compact, $\forall x \in K, f(x) > 0$ if and only if

$$f \oplus \bigoplus_{j=1}^{m} -(\sigma_j \otimes g_j) \ge \sigma_0, \text{ with } \sigma_i \in \mathcal{C}^+,$$
(4)

where \mathcal{C}^+ is the set of non-negative piecewise constant functions.

Comparison with the "classical" Putinar

$$f = \sigma_0 + \sum_{j=1}^m \sigma_j g_j \text{ with } \sigma_i \in \Sigma[x].$$

$$f + \sum_{j=1}^{m} -\sigma_j g_j = \sigma_0$$
 with $\sigma_i \in \Sigma[x]$.

Certificate of positivity

 $f \ge \sigma_0$ and $\sigma_0 \in \mathcal{C}^+$, therefore f positive.

Duality 000000000

Remarks

Suppose

- K is a compact subset of \mathbb{R}^n , $f: K \to \mathbb{R}$ positive,
- $[\sigma]:\mathbb{IR}\rightarrow\mathbb{IR}$ convergent inclusion function for f ,

Suppose

- K is a compact subset of \mathbb{R}^n , $f: K \to \mathbb{R}$ positive,
- $[\sigma]:\mathbb{IR}\rightarrow\mathbb{IR}$ convergent inclusion function for f ,

Suppose

- K is a compact subset of \mathbb{R}^n , $f: K \to \mathbb{R}$ positive,
- $[\sigma]:\mathbb{IR}\rightarrow\mathbb{IR}$ convergent inclusion function for f ,

Suppose

- K is a compact subset of \mathbb{R}^n , $f: K \to \mathbb{R}$ positive,
- $[\sigma]:\mathbb{IR}\rightarrow\mathbb{IR}$ convergent inclusion function for f ,

Positivstellensatz	Tropical algebra	Duality	Conclusion
		0000000	

As presented in the introduction,

$$f^* = \sup_{\lambda \in \mathbb{R}} \{ \lambda \text{ s.t. } f(x) - \lambda \ge 0, \ \forall x \in K \}.$$
(5)

Duality

Problem (5) is the dual of the following primal

$$\begin{array}{ll} \inf_{\mu\in\mathcal{M}(\mathcal{K})} & \int_{\mathcal{K}} f \mathrm{d}\mu, \\ \text{such that} & \int_{\mathcal{K}} \mathrm{d}\mu = 1 \text{ and } \mu \geq 0. \end{array}$$

where $\mathcal{M}(K)$ is the set of signed measures with K as support.

Remarks

- Positivstellensatz previously presented can reformulated by duality and let us write constraints on measures (and on their moments),
- On the other side, infinite dimensional convex programming can be relaxed and discretized from this duality ...

tivstellensatz	Tropical al	gebra Duality O OOOOOOO	Conclusion O
Generalized m	oment problem	<u>ן</u>	
	$\inf_{\mu\in\mathcal{M}^+(X)}$ such that	$egin{aligned} &\int_X arphi(x) d\mu \ &\int_X \psi(x) d\mu \leqq \gamma_\psi, orall \psi \in \Gamma. \end{aligned}$	(6)

Problem (6) can used to formalize and solve other problems :

- Finding the global minimum of a function on a subset of \mathbb{R}^n ,
- Computing the optimal value of the Kantorovitch transport problem,
- Computing the optimal value of an optimal control problem,
- Computing an upper bound on μ(S) over all measures μ satisfying some moment conditions,
- Evaluating an ergodic criterion associated with a Markov chain,

• . . .

Pos

Jean-Bernard Lasserre. Moments, Positive Polynomials and Their Applications. Imperial College Press optimization series. Imperial College Press, 2010.

itivstellensatz 000000	Tropical al	gebra Duality O OOOOOOO	Conclusio O	
Generalized m	oment problem	י ז		
	$\inf_{\mu\in\mathcal{M}^+(X)}$ such that	$egin{aligned} &\int_X arphi(x) d\mu \ &\int_X \psi(x) d\mu \leqq \gamma_\psi, orall \psi \in \Gamma. \end{aligned}$	(6)	

Problem (6) can used to formalize and solve other problems :

- Finding the global minimum of a function on a subset of \mathbb{R}^n ,
- Computing the optimal value of the Kantorovitch transport problem,
- Computing the optimal value of an optimal control problem,
- Computing an upper bound on μ(S) over all measures μ satisfying some moment conditions,
- Evaluating an ergodic criterion associated with a Markov chain,

• . . .

Pos

Jean-Bernard Lasserre. Moments, Positive Polynomials and Their Applications. Imperial College Press optimization series. Imperial College Press, 2010.

tivstellensatz	Tropical al	gebra Duality O OOOOOOO	Conclusion O
Generalized m	oment problem	<u>ן</u>	
	$\inf_{\mu\in\mathcal{M}^+(X)}$ such that	$egin{aligned} &\int_X arphi(x) d\mu \ &\int_X \psi(x) d\mu \leqq \gamma_\psi, orall \psi \in \Gamma. \end{aligned}$	(6)

Problem (6) can used to formalize and solve other problems :

- Finding the global minimum of a function on a subset of \mathbb{R}^n ,
- Computing the optimal value of the Kantorovitch transport problem,
- Computing the optimal value of an optimal control problem,
- Computing an upper bound on μ(S) over all measures μ satisfying some moment conditions,
- Evaluating an ergodic criterion associated with a Markov chain,

• . . .

Pos

Jean-Bernard Lasserre. Moments, Positive Polynomials and Their Applications. Imperial College Press optimization series. Imperial College Press, 2010.

Positivstellensatz	Tropical algebra	Duality	Conclusion
00000000		ooo●ooooo	0

Example

Transport problem

Positivstellensatz	Tropical algebra	Duality	Conclusion
0000000	0000000	०००●०००००	O

A solution

Positivstellensatz	Tropical algebra	Duality	Conclusion
		00000000	

Kantorovich optimal transport problem

Let μ and ν be two non negative measures on X and Y.

$$\mathcal{T}(\mu,\nu) = \inf_{\pi \in \mathcal{M}^+(X \times Y)} \int_{X \times Y} c(x,y) d\pi$$

such that $\pi_X = \mu,$
 $\pi_Y = \nu.$ (7)

Positivstellensatz

Duality 00000●000

Lemma

Let

- $\varphi:X \to \mathbb{R}$,
- $\{X_i\}_i$ a partition of X,
- $\mu \in \mathcal{M}^+(X)$,

• $\underline{\varphi}_i, \overline{\varphi}_i$ real numbers such that $\forall x \in X_i, \underline{\varphi}_i \leq \varphi(x) \leq \overline{\varphi}_i$, then

$$\sum_{i} \underline{\varphi}(X_{i})\mu(X_{i}) \leq \int_{X} \varphi(x) \mathrm{d}\mu(x) \leq \sum_{i} \overline{\varphi}(X_{i})\mu(X_{i}).$$

Duality 000000●00

Proposition - Relaxation

•
$$\mu \in \mathcal{M}^+(X), \ \nu \in \mathcal{M}^+(Y),$$

• $\{X_i\}_i, \{Y_j\}_j$ two partitions of X and Y,

•
$$\mu(X_i) \in [\underline{\mu}_i, \overline{\mu}_i], \nu(Y_j) \in [\underline{\nu}_j, \overline{\nu}_j],$$

•
$$\forall (x, y) \in X_i \times Y_j, \underline{c}_{ij} \leq c(x, y),$$

Let

then

$$\begin{aligned}
\Xi &= \min_{\pi_{ij} \in \mathbb{R}^n \otimes \mathbb{R}^m} \quad \sum_{i,j} \underline{c}_{ij} \pi_{ij} \\
\text{such that} \quad \forall i, \ \underline{\mu}_i \leq \sum_j \pi_{ij} \leq \overline{\mu}_i, \\
\forall j, \ \underline{\nu}_j \leq \sum_i \pi_{ij} \leq \overline{\nu}_j, \\
\forall i, \forall j, \ \pi_{ij} \geq \mathbf{0}. \\
\underline{\mathcal{T}} \leq \mathcal{T}(\mu, \nu).
\end{aligned}$$
(8)

Spatial discretization $\begin{array}{c} \nu(Y_{j}) \in [\underline{\nu}_{j}, \overline{\nu}_{j}] \\ \downarrow \\ \gamma_{1} \\ \gamma_{2} \\ \gamma_{3} \\ \gamma_{4} \\ \varepsilon^{21} \\ \varepsilon^{22} \\ \varepsilon^{23} \\ \varepsilon^{23} \\ \varepsilon^{21} \\ \varepsilon^{22} \\ \varepsilon^{23} \\$

N. Delanoue et al. Numerical enclosures of the optimal cost of the Kantorovitch's mass transportation problem. *Computational Optimization and Applications*, 63(3) :855-873, 2016.

Duality 00000000

Hierarchy - Control optimal $J^* = \min_{\mu,\nu \in \mathcal{M}_+} \quad \langle \mu, h \rangle + \langle \nu, H \rangle$ ۹. $\mathcal{L}'(\mu,\nu) = \delta_{(0,x_0)}$ s.t. 8 $\{X_i\}$ a partition of $[0, T] \times X \times U$, 7. $\{Y_k\}$ a partition of K, 6 $\mathcal{P} = \{\varphi\}$ a finite familly of functions of t, x. 5 4 $\underline{J} = \min_{\mu_i, \nu_k \in \mathbb{R}^+} \qquad \sum_{i \in I} \mu_i \underline{h}_i + \sum_{k \in K} \nu_k \underline{H}_k$ 3 2 1 tel que $\forall \varphi \in \mathcal{P} \quad \sum \mu_i \underline{\psi}_i + \sum \nu_k \underline{\varphi}_k \leq \varphi(0, x_0)$ k∈K $i \in I$ $\varphi(0, x_0) \leq \sum \mu_i \overline{\psi}_i + \sum \nu_k \overline{\varphi}_k,$ avec $\psi = -\frac{\partial \varphi}{\partial t} - \frac{\partial \varphi}{\partial x}f(t, x, u),$ then

Nicolas Delanoue, Mehdi Lhommeau, and Sébastien Lagrange, Nonlinear optimal control : A numerical scheme based on occupation measures and interval analysis. Computational Optimization and Applications, Springer Verlag, volume 77, pages 307-334, 2020, 10.1007/s10589-020-00198-8

Conclusion

- We have presented a Positivstellensatz based on tropical algebra.
- Interval analysis makes it effective by computing the σ_j functions,
- Some generalized moment problems has been be solved by ideas based on this approach : Kantorovitch transport, Optimal control, Quantum information (Gretsi 2022).

Perspective

- Propose a general approach to be able to discretize any Generalized Moment Problems.
- Our discretization is only spatial, can we reduce the dimension of the discretized problem by not only considering the moments of order 0 of μ on X_i? Spline ...

Merci pour votre attention.