A specialized SDP solver for sums-of-squares problems in discrete geometry

Nando Leijenhorst
Joint work with David de Laat

Delft University of Technology, The Netherlands

January 18, 2022

The problem

$$
\begin{array}{ll}
\operatorname{maximize} & \langle C, X\rangle+b^{\top} y \\
\text { subject to } & p_{X, y}(x) \geq 0 \quad \forall x \in S
\end{array}
$$

The problem

$$
\begin{array}{lc}
\operatorname{maximize} & b^{\top} y \\
\text { subject to } & \sum_{i} y_{i} p_{i}(x) \geq 0 \quad-1 \leq x \leq 1
\end{array}
$$

The problem

maximize $\langle C, X\rangle$
subject to $\quad \sum_{i}\left\langle X_{i}, Y_{i}(u, v, t)\right\rangle \geq 0 \quad\left(\begin{array}{lll}1 & u & v \\ u & 1 & t \\ v & t & 1\end{array}\right) \geq 0$

The problem

$$
\begin{array}{ll}
\operatorname{maximize} & \langle C, X\rangle+b^{\top} y \\
\text { subject to } & p_{X, y}(x)=\sum_{i} g_{i}(x) s_{i}(x)
\end{array}
$$

The problem

maximize $\langle C, X\rangle+b^{\top} y$
subject to $\quad p_{X, y}(x)=\sum_{i} g_{i}(x)\left\langle b(x) b(x)^{\top}, Y_{i}\right\rangle$

From polynomials to numbers

Consider

$$
p(x)=\left\langle b(x) b(x)^{T}, Y\right\rangle
$$

We want:

$$
\left\langle A_{i}, X\right\rangle=c_{i} \quad i=1, \ldots, m
$$

Two approaches:

- Coefficient matching
- Sampling

Coefficient matching

Let $\left\{w_{i}\right\}_{i=0}^{N}$ be a basis of polynomials up to degree d. Then

$$
p(x)=\left\langle b(x) b(x)^{T}, Y\right\rangle
$$

Coefficient matching

Let $\left\{w_{i}\right\}_{i=0}^{N}$ be a basis of polynomials up to degree d. Then

$$
\sum_{i} p_{i} w_{i}(x)=p(x)=\left\langle b(x) b(x)^{T}, Y\right\rangle=\sum_{i}\left\langle A_{i}, Y\right\rangle w_{i}(x)
$$

Coefficient matching

Let $\left\{w_{i}\right\}_{i=0}^{N}$ be a basis of polynomials up to degree d. Then

$$
\sum_{i} p_{i} w_{i}(x)=p(x)=\left\langle b(x) b(x)^{T}, Y\right\rangle=\sum_{i}\left\langle A_{i}, Y\right\rangle w_{i}(x)
$$

Coefficient matching

Let $\left\{w_{i}\right\}_{i=0}^{N}$ be a basis of polynomials up to degree d. Then

$$
\begin{gathered}
\sum_{i} p_{i} w_{i}(x)=p(x)=\left\langle b(x) b(x)^{T}, Y\right\rangle=\sum_{i}\left\langle A_{i}, Y\right\rangle w_{i}(x) \\
\Longleftrightarrow \\
p_{i}=\left\langle A_{i}, Y\right\rangle, \quad i=0, \ldots, N
\end{gathered}
$$

Sampling

$d+1$ distinct points in \mathbb{R} uniquely define a degree d polynomial:

Sampling

$d+1$ distinct points in \mathbb{R} uniquely define a degree d polynomial:

Sampling

A set $S=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ is unisolvent for n-variate polynomials of degree d if

$$
p\left(x_{i}\right)=0, \quad i=1, \ldots, N \Longleftrightarrow p=0 .
$$

Sampling

A set $S=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ is unisolvent for n-variate polynomials of degree d if

$$
p\left(x_{i}\right)=0, \quad i=1, \ldots, N \Longleftrightarrow p=0 .
$$

Thus $p(x)=\left\langle b(x) b(x)^{T}, Y\right\rangle$ if and only if $p\left(x_{i}\right)=\left\langle b\left(x_{i}\right) b\left(x_{i}\right)^{T}, Y\right\rangle$ for $i=1, \ldots, N$.

Sampling

A set $S=\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{R}^{n}$ is unisolvent for n-variate polynomials of degree d if

$$
p\left(x_{i}\right)=0, \quad i=1, \ldots, N \Longleftrightarrow p=0 .
$$

Thus $p(x)=\left\langle b(x) b(x)^{T}, Y\right\rangle$ if and only if $p\left(x_{i}\right)=\left\langle b\left(x_{i}\right) b\left(x_{i}\right)^{T}, Y\right\rangle$ for $i=1, \ldots, N$.
Note: Sampling is coefficient matching in the Lagrange basis $\left\{L_{i}\right\}$ corresponding to S, which are the polynomials of degree d with

$$
L_{i}\left(x_{j}\right)=\delta_{i j}
$$

Sampling versus coefficient matching

General coefficient matching:

$$
p_{i}=\left\langle B_{i}, Y_{i}\right\rangle .
$$

Sampling:

$$
p\left(x_{i}\right)=\left\langle b\left(x_{i}\right) b\left(x_{i}\right)^{T}, Y\right\rangle
$$

Sampling versus coefficient matching

General coefficient matching: Possibly sparsity

$$
p_{i}=\left\langle B_{i}, Y_{i}\right\rangle .
$$

Sampling: Low-rank structure

$$
p\left(x_{i}\right)=\left\langle b\left(x_{i}\right) b\left(x_{i}\right)^{T}, Y\right\rangle
$$

Clustered low-rank semidefinite program

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{j=1}^{J}\left\langle C^{j}, Y^{j}\right\rangle+\langle b, y\rangle & \\
\text { subject to } & \left\langle A_{p}^{j}, Y^{j}\right\rangle+B_{p}^{j} y=c_{p}^{j}, & j=1, \ldots, J, p=1, \ldots, N_{J} \\
& Y^{j} \geq 0, & j=1, \ldots, J,
\end{array}
$$

with

$$
A_{p}^{j}=\bigoplus_{I=1}^{L_{j}} \sum_{r, s=1}^{R_{j}(I)} A_{p}^{j}(I ; r, s) \otimes E_{r, s}^{R_{j}(I)}
$$

and $A_{p}^{j}(I ; r, s)$ of low rank.

Our contribution

A solver which supports:

Our contribution

A solver which supports:

- Primal-dual (SDPA, SDPT3, CSDP, SDPB, ...)

Our contribution

A solver which supports:

- Primal-dual (SDPA, SDPT3, CSDP, SDPB, ...)
- Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

Our contribution

A solver which supports:

- Primal-dual (SDPA, SDPT3, CSDP, SDPB, ...)
- Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))
- Exploit clusters (SDPB (2 PSD matrices per cluster))

Our contribution

A solver which supports:

- Primal-dual (SDPA, SDPT3, CSDP, SDPB, ...)
- Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))
- Exploit clusters (SDPB (2 PSD matrices per cluster))
- High precision (SDPA-GMP/QD/DD, SDPB)

Our contribution

A solver which supports:

- Primal-dual (SDPA, SDPT3, CSDP, SDPB, ...)
- Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))
- Exploit clusters (SDPB (2 PSD matrices per cluster))
- High precision (SDPA-GMP/QD/DD, SDPB)
- Parallel computations (SDPARA, SDPB, CSDP)

Our contribution

A solver which supports:

- Primal-dual (SDPA, SDPT3, CSDP, SDPB, ...)
- Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))
- Exploit clusters (SDPB (2 PSD matrices per cluster))
- High precision (SDPA-GMP/QD/DD, SDPB)
- Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

- Combining samples and symmetry

Our contribution

A solver which supports:

- Primal-dual (SDPA, SDPT3, CSDP, SDPB, ...)
- Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))
- Exploit clusters (SDPB (2 PSD matrices per cluster))
- High precision (SDPA-GMP/QD/DD, SDPB)
- Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

- Combining samples and symmetry
- Finding good bases and samples

Our contribution

A solver which supports:

- Primal-dual (SDPA, SDPT3, CSDP, SDPB, ...)
- Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))
- Exploit clusters (SDPB (2 PSD matrices per cluster))
- High precision (SDPA-GMP/QD/DD, SDPB)
- Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

- Combining samples and symmetry
- Finding good bases and samples
- Numerical experiments showing speed and stability

Semidefinite programming solver

Main steps:

- Calculate the so-called Schur complement matrix

$$
S_{p q}=\left\langle A_{p} X^{-1} A_{q}, Y\right\rangle
$$

- Solve a system $D z=d$, where S is a leading principal submatrix of D.
- Use z to determine the increments of the variables

Using the low-rank structure

$$
S_{p q}=\operatorname{Tr}\left(A_{p} X^{-1} A_{q} Y\right)
$$

Using the low-rank structure

$$
\begin{aligned}
S_{p q} & =\operatorname{Tr}\left(A_{p} X^{-1} A_{q} Y\right) \\
& =\operatorname{Tr}\left(a_{p} a_{p}^{T} X^{-1} a_{q} a_{q}^{T} Y\right)
\end{aligned}
$$

Using the low-rank structure

$$
\begin{aligned}
S_{p q} & =\operatorname{Tr}\left(A_{p} X^{-1} A_{q} Y\right) \\
& =\operatorname{Tr}\left(a_{p} a_{p}^{T} X^{-1} a_{q} a_{q}^{T} Y\right) \\
& =\operatorname{Tr}\left(a_{p}^{T} X^{-1} a_{q} a_{q}^{T} Y a_{p}\right)
\end{aligned}
$$

Using the low-rank structure

$$
\begin{aligned}
S_{p q} & =\operatorname{Tr}\left(A_{p} X^{-1} A_{q} Y\right) \\
& =\operatorname{Tr}\left(a_{p} a_{p}^{T} X^{-1} a_{q} a_{q}^{T} Y\right) \\
& =\operatorname{Tr}\left(a_{p}^{T} X^{-1} a_{q} a_{q}^{T} Y a_{p}\right) \\
& =\left(a_{p}^{T} X^{-1} a_{q}\right)\left(a_{q}^{T} Y a_{p}\right)
\end{aligned}
$$

Using the clustering

Recall that $A_{p}^{j}=0$ if p is not contained in cluster j. Thus

$$
\begin{aligned}
S_{p q}^{i j} & =\left\langle A_{p}^{i} X^{-1} A_{q}^{j}, Y\right\rangle \\
& = \begin{cases}0 & i \neq j \\
\left\langle A_{p}^{i} X^{-1} A_{q}^{i}, Y\right\rangle & i=j\end{cases}
\end{aligned}
$$

Then $D z=d$ is given by

$$
\left(\begin{array}{ccccc}
S^{1} & 0 & \cdots & 0 & -B^{1} \\
0 & S^{2} & \cdots & 0 & -B^{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & S^{J} & -B^{J} \\
\left(B^{1}\right)^{\top} & \left(B^{2}\right)^{\top} & \cdots & \left(B^{J}\right)^{\top} & 0
\end{array}\right) z=d
$$

Using the clustering

Let $S=L L^{T}$ be a Cholesky decomposition of S. The matrix D has the decomposition

$$
\left(\begin{array}{cc}
S & -B \\
B^{\top} & 0
\end{array}\right)=\left(\begin{array}{cc}
L & 0 \\
B^{\top} L^{-\top} & I
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & B^{\top} L^{-\top} L^{-1} B
\end{array}\right)\left(\begin{array}{cc}
L^{\top} & -L^{-1} B \\
0 & I
\end{array}\right)
$$

Examples

- Three-point bound for the kissing number (Bachoc and Vallentin, 2007)

Examples

- Three-point bound for the kissing number (Bachoc and Vallentin, 2007)
- Multivariate

Examples

- Three-point bound for the kissing number (Bachoc and Vallentin, 2007)
- Multivariate
- Symmetry

Examples

- Three-point bound for the kissing number (Bachoc and Vallentin, 2007)
- Multivariate
- Symmetry
- Extensive previous computations (Bachoc and Vallentin, 2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera, 2018)

Examples

- Three-point bound for the kissing number (Bachoc and Vallentin, 2007)
- Multivariate
- Symmetry
- Extensive previous computations (Bachoc and Vallentin, 2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera, 2018)
- Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)

Examples

- Three-point bound for the kissing number (Bachoc and Vallentin, 2007)
- Multivariate
- Symmetry
- Extensive previous computations (Bachoc and Vallentin, 2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera, 2018)
- Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)
- Polynomial matrix program

Examples

- Three-point bound for the kissing number (Bachoc and Vallentin, 2007)
- Multivariate
- Symmetry
- Extensive previous computations (Bachoc and Vallentin, 2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera, 2018)
- Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)
- Polynomial matrix program
- Numerically difficult

Results - Three-point bound for the kissing number

Results - Three-point bound for the kissing number

- $20 \times$ faster computations for previously computed bounds
- computations up to degree 20 (up to 16 before)
- new kissing number bounds in dimension $11 \leq n \leq 23$ and $25 \leq n \leq 48$

Results - Binary sphere packing ($\mathrm{n}=2$)

Results - Binary sphere packing $(\mathrm{n}=24)$

Results - Binary sphere packing $(\mathrm{n}=24)$

Optimal limiting density

Results - Binary sphere packing $(\mathrm{n}=24)$

Results - Binary sphere packing $(\mathrm{n}=23)$

Thank you!

Bonus slide - Iteratively improving samples and bases

Let $V=\left(p_{i}\left(x_{j}\right)\right)_{j i}$ be the Vandermonde matrix of a basis $p=\left(p_{1} \ldots, p_{N}\right)$ with respect to the sample points $\left\{x_{j}\right\}$. Consider the $Q R$ decomposition $V=Q R$.

Bonus slide - Iteratively improving samples and bases

Let $V=\left(p_{i}\left(x_{j}\right)\right)_{j i}$ be the Vandermonde matrix of a basis $p=\left(p_{1} \ldots, p_{N}\right)$ with respect to the sample points $\left\{x_{j}\right\}$. Consider the $Q R$ decomposition $V=Q R$. Then Q is the Vandermonde matrix of a basis $R p$ with respect to the sample points $\left\{x_{j}\right\}$ and better conditioned than V.

Bonus slide - Iteratively improving samples and bases

Let $V=\left(p_{i}\left(x_{j}\right)\right)_{j i}$ be the Vandermonde matrix of a basis $p=\left(p_{1} \ldots, p_{N}\right)$ with respect to the sample points $\left\{x_{j}\right\}$. Consider the $Q R$ decomposition $V=Q R$. Then Q is the Vandermonde matrix of a basis $R p$ with respect to the sample points $\left\{x_{j}\right\}$ and better conditioned than V.

Let $P V^{T}=Q R$ be a pivoted $Q R$ decomposition. Let S be the set of samples corresponding to the first N pivots. Then $\left.V\right|_{S}$ is relatively well-conditioned.

