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The problem

maximize (C,X)+b'y
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From polynomials to numbers

Consider
p(x) = (b(x)b(x)T, Y).
We want:
(Ai,X)=¢ i=1,...,m
Two approaches:
® Coefficient matching

* Sampling

1
TUDelft 3/23



Coefficient matching

Let {w,-},-'\i0 be a basis of polynomials up to degree d. Then

p(x) = (b(x)b(x)". Y)
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Sampling
d + 1 distinct points in R uniquely define a degree d polynomial:
40 +
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Sampling

Aset S={x1,...,xy} c R" is unisolvent for n-variate polynomials of
degree d if
p(x;)=0, i=1,....N < p=0.
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Sampling

Aset S={x1,...,xy} c R" is unisolvent for n-variate polynomials of
degree d if

p(x;)=0, i=1,....N < p=0.

Thus p(x) = (b(x)b(x)T, Y) if and only if p(x;) = (b(x;)b(x;)T, Y) for
i=1,...,N.

Note: Sampling is coefficient matching in the Lagrange basis {L;}
corresponding to S, which are the polynomials of degree d with

Li(x;) = dj
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Sampling versus coefficient matching

General coefficient matching:
pi = (B, Yi).
Sampling:

p(xi) = (bO)b(x)) T, Y).
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Sampling versus coefficient matching

General coefficient matching: Possibly sparsity
pi = (B, Yi).
Sampling: Low-rank structure

p(xi) = (bO)b(x)) T, Y).
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Clustered low-rank semidefinite program

Jo
maximize Y (C/, Y/) +(b,y)
j=1
subject to (AL, YV +Bly=c), j=1,....d,p=1,...,N,
Y/ >0, j=1,...,J,
with
L RO R
A1p=@ ZlAjp(/;ras)‘gEr,é
=1r,s=

and AL(I;r,s) of low rank.
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Our contribution

A solver which supports:
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Our contribution

A solver which supports:
* Primal-dual (SDPA, SDPT3, CSDP, SDPB, ...)
* Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))
* Exploit clusters (SDPB (2 PSD matrices per cluster))
* High precision (SDPA-GMP/QD/DD, SDPB)
* Parallel computations (SDPARA, SDPB, CSDP)
We further investigate:
e Combining samples and symmetry
® Finding good bases and samples

® Numerical experiments showing speed and stability
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Semidefinite programming solver

Main steps:
¢ Calculate the so-called Schur complement matrix
Spq = (APX_IAqa Y)
® Solve a system Dz = d, where S is a leading principal submatrix of
D.

® Use z to determine the increments of the variables

z
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Using the low-rank structure

Spq = Tr(ApX 1AGY)
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Using the low-rank structure

Spq = Tr(ApX 1AGY)
= Tr(apa;X_laqa; Y)

= Tr(a;X_laqaqT Yap)
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Using the low-rank structure

Spq = Tr(ApX 1AGY)
= Tr(apa;X_laqa; Y)
= Tr( ;X‘laqaqT Yap)
= (apTX_laq)(aqTYap)
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Using the clustering
Recall that A{, =0 if p is not contained in cluster j. Thus
ij iy-1pj
Spg = (AXTALY)
B {0 i #J
- iy-1pi S
(APX Ay, Y) i=j

Then Dz =d is given by

st o - o0 -B!

0 s .. 0 -B

: P : i lz=d
0 o - s -B/

(BHT (BT - (BHT 0
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Using the clustering

Let S=LL" be a Cholesky decomposition of S. The matrix D has the
decomposition

S -BY ( L o\(! 0 LT -L7'B
BT o) \BT™L"" 1J\o BTLTL1BJ\oO / ’
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Examples

* Three-point bound for the kissing number (Bachoc and Vallentin,
2007)
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Examples

* Three-point bound for the kissing number (Bachoc and Vallentin,
2007)
® Multivariate
® Symmetry
* Extensive previous computations (Bachoc and Vallentin,
2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera,
2018)
* Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)
® Polynomial matrix program
® Numerically difficult
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Results - Three-point bound for the kissing number
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Results - Three-point bound for the kissing number

® 20x faster computations for previously computed bounds
* computations up to degree 20 (up to 16 before)

® new kissing number bounds in dimension 11 < n <23 and
25<n<48
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Results - Binary sphere packing (n=2)

1 —— Binary sphere packing bound ||
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Results - Binary sphere packing (n=24)
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Results - Binary sphere packing (n=24)

bound

ratio rs/r
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Optimal limiting density
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Results - Binary sphere packing (n=24)

bound

ratio rs/r
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Results - Binary sphere packing (n=23)

bound

ratio rs/r
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Thank you!
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Bonus slide - lteratively improving samples and bases

Let V = (pi(x;));i be the Vandermonde matrix of a basis
p=(p1...,pn) with respect to the sample points {x;}. Consider the
QR decomposition V = QR.
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Bonus slide - lteratively improving samples and bases

Let V = (pi(x;));i be the Vandermonde matrix of a basis
p=(p1...,pn) with respect to the sample points {x;}. Consider the
QR decomposition V = QR. Then Q is the Vandermonde matrix of a
basis Rp with respect to the sample points {x;} and better conditioned
than V.

Let PVT = QR be a pivoted QR decomposition. Let S be the set of
samples corresponding to the first N pivots. Then V|s is relatively
well-conditioned.

z
TUDelft 23 /23



