
A specialized SDP solver for sums-of-squares problems
in discrete geometry

Nando Leijenhorst

Joint work with David de Laat

Delft University of Technology, The Netherlands

January 18, 2022



The problem

maximize ⟨C ,X ⟩ + bTy

subject to pX ,y(x) ≥ 0 ∀x ∈ S

2 / 23



The problem

maximize

⟨C ,X ⟩ +

bTy

subject to ∑
i

yipi(x) ≥ 0 − 1 ≤ x ≤ 1

2 / 23



The problem

maximize ⟨C ,X ⟩

+ bTy

subject to ∑
i

⟨Xi ,Yi(u, v , t)⟩ ≥ 0
⎛
⎜
⎝

1 u v
u 1 t
v t 1

⎞
⎟
⎠
⪰ 0

2 / 23



The problem

maximize ⟨C ,X ⟩ + bTy

subject to pX ,y(x) = ∑
i

gi(x)si(x)

2 / 23



The problem

maximize ⟨C ,X ⟩ + bTy

subject to pX ,y(x) = ∑
i

gi(x)⟨b(x)b(x)
T,Yi ⟩

2 / 23



From polynomials to numbers

Consider
p(x) = ⟨b(x)b(x)T ,Y ⟩.

We want:
⟨Ai ,X ⟩ = ci i = 1, . . . ,m

Two approaches:

● Coefficient matching

● Sampling

3 / 23



Coefficient matching

Let {wi}
N
i=0 be a basis of polynomials up to degree d . Then

∑
i

piwi(x) =

p(x) = ⟨b(x)b(x)T ,Y ⟩

= ∑
i

⟨Ai ,Y ⟩wi(x)

⇐⇒

pi = ⟨Ai ,Y ⟩, i = 0, . . . ,N

4 / 23



Coefficient matching

Let {wi}
N
i=0 be a basis of polynomials up to degree d . Then

∑
i

piwi(x) = p(x) = ⟨b(x)b(x)
T ,Y ⟩ = ∑

i

⟨Ai ,Y ⟩wi(x)

⇐⇒

pi = ⟨Ai ,Y ⟩, i = 0, . . . ,N

4 / 23



Coefficient matching

Let {wi}
N
i=0 be a basis of polynomials up to degree d . Then

∑
i

piwi(x) = p(x) = ⟨b(x)b(x)
T ,Y ⟩ = ∑

i

⟨Ai ,Y ⟩wi(x)

⇐⇒

pi = ⟨Ai ,Y ⟩, i = 0, . . . ,N

4 / 23



Coefficient matching

Let {wi}
N
i=0 be a basis of polynomials up to degree d . Then

∑
i

piwi(x) = p(x) = ⟨b(x)b(x)
T ,Y ⟩ = ∑

i

⟨Ai ,Y ⟩wi(x)

⇐⇒

pi = ⟨Ai ,Y ⟩, i = 0, . . . ,N

4 / 23



Sampling

d + 1 distinct points in R uniquely define a degree d polynomial:

−5 −4 −3 −2 −1 1 2 3 4 5

−40

−30

−20

−10

10

20

30

40

5 / 23



Sampling

d + 1 distinct points in R uniquely define a degree d polynomial:

−5 −4 −3 −2 −1 1 2 3 4 5

−40

−30

−20

−10

10

20

30

40

5 / 23



Sampling

A set S = {x1, . . . , xN} ⊂ Rn is unisolvent for n-variate polynomials of
degree d if

p(xi) = 0, i = 1, . . . ,N ⇐⇒ p = 0.

Thus p(x) = ⟨b(x)b(x)T ,Y ⟩ if and only if p(xi) = ⟨b(xi)b(xi)
T ,Y ⟩ for

i = 1, . . . ,N.
Note: Sampling is coefficient matching in the Lagrange basis {Li}
corresponding to S , which are the polynomials of degree d with

Li(xj) = δij

6 / 23



Sampling

A set S = {x1, . . . , xN} ⊂ Rn is unisolvent for n-variate polynomials of
degree d if

p(xi) = 0, i = 1, . . . ,N ⇐⇒ p = 0.

Thus p(x) = ⟨b(x)b(x)T ,Y ⟩ if and only if p(xi) = ⟨b(xi)b(xi)
T ,Y ⟩ for

i = 1, . . . ,N.

Note: Sampling is coefficient matching in the Lagrange basis {Li}
corresponding to S , which are the polynomials of degree d with

Li(xj) = δij

6 / 23



Sampling

A set S = {x1, . . . , xN} ⊂ Rn is unisolvent for n-variate polynomials of
degree d if

p(xi) = 0, i = 1, . . . ,N ⇐⇒ p = 0.

Thus p(x) = ⟨b(x)b(x)T ,Y ⟩ if and only if p(xi) = ⟨b(xi)b(xi)
T ,Y ⟩ for

i = 1, . . . ,N.
Note: Sampling is coefficient matching in the Lagrange basis {Li}
corresponding to S , which are the polynomials of degree d with

Li(xj) = δij

6 / 23



Sampling versus coefficient matching

General coefficient matching:

Possibly sparsity

pi = ⟨Bi ,Yi ⟩.

Sampling:

Low-rank structure

p(xi) = ⟨b(xi)b(xi)
T ,Y ⟩.

7 / 23



Sampling versus coefficient matching

General coefficient matching: Possibly sparsity

pi = ⟨Bi ,Yi ⟩.

Sampling: Low-rank structure

p(xi) = ⟨b(xi)b(xi)
T ,Y ⟩.

7 / 23



Clustered low-rank semidefinite program

maximize
J

∑
j=1

⟨C j ,Y j
⟩ + ⟨b, y⟩

subject to ⟨Aj
p,Y

j⟩ +B j
py = c

j
p, j = 1, . . . , J,p = 1, . . . ,NJ

Y j
⪰ 0, j = 1, . . . , J,

with

Aj
p =

Lj

⊕
l=1

Rj(l)

∑
r ,s=1

Aj
p(l ; r , s) ⊗ E

Rj(l)
r ,s

and Aj
p(l ; r , s) of low rank.

8 / 23



Our contribution

A solver which supports:

● Primal-dual (SDPA, SDPT3, CSDP, SDPB, . . . )

● Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

● Exploit clusters (SDPB (2 PSD matrices per cluster))

● High precision (SDPA-GMP/QD/DD, SDPB)

● Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

● Combining samples and symmetry

● Finding good bases and samples

● Numerical experiments showing speed and stability

9 / 23



Our contribution

A solver which supports:

● Primal-dual (SDPA, SDPT3, CSDP, SDPB, . . . )

● Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

● Exploit clusters (SDPB (2 PSD matrices per cluster))

● High precision (SDPA-GMP/QD/DD, SDPB)

● Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

● Combining samples and symmetry

● Finding good bases and samples

● Numerical experiments showing speed and stability

9 / 23



Our contribution

A solver which supports:

● Primal-dual (SDPA, SDPT3, CSDP, SDPB, . . . )

● Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

● Exploit clusters (SDPB (2 PSD matrices per cluster))

● High precision (SDPA-GMP/QD/DD, SDPB)

● Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

● Combining samples and symmetry

● Finding good bases and samples

● Numerical experiments showing speed and stability

9 / 23



Our contribution

A solver which supports:

● Primal-dual (SDPA, SDPT3, CSDP, SDPB, . . . )

● Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

● Exploit clusters (SDPB (2 PSD matrices per cluster))

● High precision (SDPA-GMP/QD/DD, SDPB)

● Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

● Combining samples and symmetry

● Finding good bases and samples

● Numerical experiments showing speed and stability

9 / 23



Our contribution

A solver which supports:

● Primal-dual (SDPA, SDPT3, CSDP, SDPB, . . . )

● Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

● Exploit clusters (SDPB (2 PSD matrices per cluster))

● High precision (SDPA-GMP/QD/DD, SDPB)

● Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

● Combining samples and symmetry

● Finding good bases and samples

● Numerical experiments showing speed and stability

9 / 23



Our contribution

A solver which supports:

● Primal-dual (SDPA, SDPT3, CSDP, SDPB, . . . )

● Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

● Exploit clusters (SDPB (2 PSD matrices per cluster))

● High precision (SDPA-GMP/QD/DD, SDPB)

● Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

● Combining samples and symmetry

● Finding good bases and samples

● Numerical experiments showing speed and stability

9 / 23



Our contribution

A solver which supports:

● Primal-dual (SDPA, SDPT3, CSDP, SDPB, . . . )

● Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

● Exploit clusters (SDPB (2 PSD matrices per cluster))

● High precision (SDPA-GMP/QD/DD, SDPB)

● Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

● Combining samples and symmetry

● Finding good bases and samples

● Numerical experiments showing speed and stability

9 / 23



Our contribution

A solver which supports:

● Primal-dual (SDPA, SDPT3, CSDP, SDPB, . . . )

● Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

● Exploit clusters (SDPB (2 PSD matrices per cluster))

● High precision (SDPA-GMP/QD/DD, SDPB)

● Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

● Combining samples and symmetry

● Finding good bases and samples

● Numerical experiments showing speed and stability

9 / 23



Our contribution

A solver which supports:

● Primal-dual (SDPA, SDPT3, CSDP, SDPB, . . . )

● Exploit low-rank structures (DSDP, SDPT3, SDPB (only rank 1))

● Exploit clusters (SDPB (2 PSD matrices per cluster))

● High precision (SDPA-GMP/QD/DD, SDPB)

● Parallel computations (SDPARA, SDPB, CSDP)

We further investigate:

● Combining samples and symmetry

● Finding good bases and samples

● Numerical experiments showing speed and stability

9 / 23



Semidefinite programming solver

Main steps:

● Calculate the so-called Schur complement matrix
Spq = ⟨ApX

−1Aq,Y ⟩

● Solve a system Dz = d , where S is a leading principal submatrix of
D.

● Use z to determine the increments of the variables

10 / 23



Using the low-rank structure

Spq = Tr(ApX
−1AqY )

= Tr(apa
T
p X

−1aqa
T
q Y )

= Tr(aTp X
−1aqa

T
q Yap)

= (aTp X
−1aq)(a

T
q Yap)

11 / 23



Using the low-rank structure

Spq = Tr(ApX
−1AqY )

= Tr(apa
T
p X

−1aqa
T
q Y )

= Tr(aTp X
−1aqa

T
q Yap)

= (aTp X
−1aq)(a

T
q Yap)

11 / 23



Using the low-rank structure

Spq = Tr(ApX
−1AqY )

= Tr(apa
T
p X

−1aqa
T
q Y )

= Tr(aTp X
−1aqa

T
q Yap)

= (aTp X
−1aq)(a

T
q Yap)

11 / 23



Using the low-rank structure

Spq = Tr(ApX
−1AqY )

= Tr(apa
T
p X

−1aqa
T
q Y )

= Tr(aTp X
−1aqa

T
q Yap)

= (aTp X
−1aq)(a

T
q Yap)

11 / 23



Using the clustering

Recall that Aj
p = 0 if p is not contained in cluster j . Thus

S ij
pq = ⟨A

i
pX
−1Aj

q,Y ⟩

=

⎧⎪⎪
⎨
⎪⎪⎩

0 i ≠ j

⟨Ai
pX
−1Ai

q,Y ⟩ i = j

Then Dz = d is given by

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S1 0 ⋯ 0 −B1

0 S2 ⋯ 0 −B2

⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ SJ −BJ

(B1)T (B2)T ⋯ (BJ)T 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

z = d

12 / 23



Using the clustering

Let S = LLT be a Cholesky decomposition of S . The matrix D has the
decomposition

(
S −B

BT 0
) = (

L 0

BTL−T I
)(

I 0

0 BTL−TL−1B
)(

LT −L−1B
0 I

) ,

13 / 23



Examples

● Three-point bound for the kissing number (Bachoc and Vallentin,
2007)

● Multivariate
● Symmetry
● Extensive previous computations (Bachoc and Vallentin,

2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera,
2018)

● Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)

● Polynomial matrix program
● Numerically difficult

14 / 23



Examples

● Three-point bound for the kissing number (Bachoc and Vallentin,
2007)
● Multivariate

● Symmetry
● Extensive previous computations (Bachoc and Vallentin,

2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera,
2018)

● Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)

● Polynomial matrix program
● Numerically difficult

14 / 23



Examples

● Three-point bound for the kissing number (Bachoc and Vallentin,
2007)
● Multivariate
● Symmetry

● Extensive previous computations (Bachoc and Vallentin,
2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera,
2018)

● Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)

● Polynomial matrix program
● Numerically difficult

14 / 23



Examples

● Three-point bound for the kissing number (Bachoc and Vallentin,
2007)
● Multivariate
● Symmetry
● Extensive previous computations (Bachoc and Vallentin,

2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera,
2018)

● Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)

● Polynomial matrix program
● Numerically difficult

14 / 23



Examples

● Three-point bound for the kissing number (Bachoc and Vallentin,
2007)
● Multivariate
● Symmetry
● Extensive previous computations (Bachoc and Vallentin,

2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera,
2018)

● Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)

● Polynomial matrix program
● Numerically difficult

14 / 23



Examples

● Three-point bound for the kissing number (Bachoc and Vallentin,
2007)
● Multivariate
● Symmetry
● Extensive previous computations (Bachoc and Vallentin,

2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera,
2018)

● Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)
● Polynomial matrix program

● Numerically difficult

14 / 23



Examples

● Three-point bound for the kissing number (Bachoc and Vallentin,
2007)
● Multivariate
● Symmetry
● Extensive previous computations (Bachoc and Vallentin,

2009),(Mittelman and Vallentin, 2010),(Machado and Oliviera,
2018)

● Binary sphere packing (de Laat, Oliviera, and Vallentin, 2014)
● Polynomial matrix program
● Numerically difficult

14 / 23



Results - Three-point bound for the kissing number

10 20

0

1

2

3

4

6 8 12 14 16 18

d

ti
m
e
in

d
ay
s

SDPA-GMP
ClusteredLowRankSolver

15 / 23



Results - Three-point bound for the kissing number

● 20× faster computations for previously computed bounds

● computations up to degree 20 (up to 16 before)

● new kissing number bounds in dimension 11 ≤ n ≤ 23 and
25 ≤ n ≤ 48

16 / 23



Results - Binary sphere packing (n=2)

0 0.2 0.4 0.6 0.8 1
0.9

0.95

1

ratio rs/rl

b
ou

n
d

Binary sphere packing bound
Florian’s bound

17 / 23



Results - Binary sphere packing (n=24)

0 0.2 0.4 0.6 0.8 1

2

2.5

3

3.5

⋅10−3

ratio rs/rl

b
ou

n
d

18 / 23



Results - Binary sphere packing (n=24)

0 0.2 0.4 0.6 0.8 1

2

2.5

3

3.5

⋅10−3

ratio rs/rl

b
ou

n
d

18 / 23



Optimal limiting density

19 / 23



Results - Binary sphere packing (n=24)

0 0.2 0.4 0.6 0.8 1

2

3

4
⋅10−3

ratio rs/rl

b
ou

n
d

20 / 23



Results - Binary sphere packing (n=23)

0 0.2 0.4 0.6 0.8 1

3

4

5

⋅10−3

ratio rs/rl

b
ou

n
d

21 / 23



Thank you!

22 / 23



Bonus slide - Iteratively improving samples and bases

Let V = (pi(xj))ji be the Vandermonde matrix of a basis
p = (p1 . . . ,pN) with respect to the sample points {xj}. Consider the
QR decomposition V = QR.

Then Q is the Vandermonde matrix of a
basis Rp with respect to the sample points {xj} and better conditioned
than V .

Let PV T = QR be a pivoted QR decomposition. Let S be the set of
samples corresponding to the first N pivots. Then V ∣S is relatively
well-conditioned.

23 / 23



Bonus slide - Iteratively improving samples and bases

Let V = (pi(xj))ji be the Vandermonde matrix of a basis
p = (p1 . . . ,pN) with respect to the sample points {xj}. Consider the
QR decomposition V = QR. Then Q is the Vandermonde matrix of a
basis Rp with respect to the sample points {xj} and better conditioned
than V .

Let PV T = QR be a pivoted QR decomposition. Let S be the set of
samples corresponding to the first N pivots. Then V ∣S is relatively
well-conditioned.

23 / 23



Bonus slide - Iteratively improving samples and bases

Let V = (pi(xj))ji be the Vandermonde matrix of a basis
p = (p1 . . . ,pN) with respect to the sample points {xj}. Consider the
QR decomposition V = QR. Then Q is the Vandermonde matrix of a
basis Rp with respect to the sample points {xj} and better conditioned
than V .

Let PV T = QR be a pivoted QR decomposition. Let S be the set of
samples corresponding to the first N pivots. Then V ∣S is relatively
well-conditioned.

23 / 23


