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What are spectrahedra?

Sd = {d × d real symmetric matrices}

SdC = {d × d complex symmetric matrices}

The convex cone of positive semidefinite matrices :

Sd< = {A ∈ Sd : A < 0} = {A ∈ Sd : vTAv ≥ 0, v ∈ Rd}

A spectrahedron is the slice of Sd< by an affine-linear subspace

LA = {A(x) := A0 + A1x1 + · · ·+ Anxn : x ∈ Rn} ⊆ Sd :

SA = Sd< ∩ LA ' {x ∈ Rn : A(x) < 0}

In particular, spectrahedra are convex sets.



Examples
A spectrahedron is a “nonlinear” generalization of a polyhedron:
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Spectrahedra, Sums Of Squares
and optimization

• Sum of squares representations of a real polynomial

1 + 2t + 3t2 + 5t4 = (1 t t2)A

(
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)
, A =

(
1 1 a
1 3− 2a 0
a 0 5

)
< 0

• Semidefine programming

min
x∈SA
〈`, x〉 = min{〈`, x〉 : x ∈ Rn, A0 + A1x1 + · · ·+ Anxn < 0}

Spectrahedra
(polyhedra)

are feasible regions of semidefinite
(linear)

programs

Particular case: SOS approach to polynomial optimization

min
t∈Rm

f (t) ≥ max

λ ∈ R : f (t)− λ =
(
1 t1 . . .

)
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1
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...

 ,A < 0





Smoother than polyhedra but not enough...

Tetrahedron
Elliptope

(a.k.a. Somosa) Pillow

3D spectrahedra (in general) carry singular points.

In semidefinite programming, there is a positive chance that a
linear 〈`, x〉, x ∈ S , attains minimum at a singular point of S .

General Problem

Determine the number of singular points that a general S can have.



Homogeneous/projective setting

����Affine- Linear space LA ⊆ Sd :

LA = {A(x) = A0x0 + A1x1 + · · ·+ xnAn : x ∈ Rn+1}.

Spectrahedral cone:

LA ∩ Sd< ' {x ∈ Rn+1 : A(x) < 0}

Assumption

A(x) � 0 for some x ∈ Rn+1

(LA ∩ Sd<⊂Rn+1 is full-dimensional)

⇒ can take A0 = 1

(orthogonal congruence applied to LA)

Projective spectrahedron:

SA = P(L ∩ Sd<) ' {[x] ∈ RPn : A(x) < 0 or −A(x) < 0}



(Algebraic) Boundary of spectrahedra
The Euclidean boundary of SA ⊂ RPn:

∂SA = {[x] ∈ SA : det(A(x)) = 0}

For generic A1, . . . ,An ∈ Sd the Zariski closure of ∂SA ⊂ CPn is a
degree d hypersurface, called (spectrahedral) symmetroid:

XA = {[x] ∈ CPn : det(1x0 + A1x1 + · · ·+ Anxn) = 0}

SA ⊂ RPn is a polyhedron
(A1,...,An are diagonal)

⇒ XA ⊂ CPn is a set of hyperplanes.



Singular points
The variety Σ ⊂ P(SdC) of matrices of corank ≥ 2 has codimension 3.

For n ≥ 3 any symmetroid

XA = {[x] ∈ CPn : det(1x0 + A1x1 + · · ·+ Anxn) = 0}

contains points of corank ≥ 2 =⇒ XA is singular.

n=3 : surface XA ⊂ CP3 defined by generic A1,A2,A3 ∈ Sd has

(
d + 1

3

)
= #Sing(XA) = #LA ∩ Σ = deg(Σ) (

3+1
3

)
= 4

singular points, which are all nodal (of multiplicity 2).

Combinatorial type (ρ, σ), σ ≤ ρ

ρ = #(Sing(XA) ∩ RP3) is the number of real singularities of XA.

σ = #(Sing(XA) ∩ ∂SA) is the number of singularities on ∂SA ⊂ XA.



n=3 Reality questions
For generic A1,A2,A3 ∈ Sd one has

σ := #(Sing(XA) ∩ ∂SA) ≤ ρ := #(Sing(XA) ∩ RP3) ≤
(
d + 1

3

)
,

0 ≤ σ is even, ρ has the same parity as
(d+1

3

)
and

0 < ρ (for all XA with fixed d) unless d = −1, 0, 1 mod 8.

d=3: can have either (ρ, σ) = (4, 4) or (ρ, σ) = (2, 2).

Degtyarev and Itenberg, 2011: (ρ, σ) is a combinatorial type of a

(generic) quartic d=4 spectrahedron iff 0 ≤ σ ≤ ρ ≤ 10 =
(4+1

3

)
,

both are even and 2 ≤ ρ.

Ottem, Ranestad, Sturmfels and Vinzant, 2015: alternative proof.

Question 17 in “3264 Questions about Symmetric Matrices” (Sturmfels)

Classify combinatorial types of quintic spectrahedra in R3.
Can you realize all 20 =

(5+1
3

)
complex singular points of the

quintic symmetroid in the boundary of its spectrahedron?



Main result: classification for d = 5

Brysiewicz, K. and Kummer, 2021

(ρ, σ) is a combinatorial type of a generic quintic (d = 5) spec-
trahedron iff 0 ≤ σ ≤ ρ ≤ 20, both are even and 2 ≤ ρ.

Proof strategy:

• Understand restrictions on (ρ, σ) 65 possible types

• Find explicit representatives for each (ρ, σ) numerically

• Certify the numerical answers

(ρ, σ) = (20, 20) (ρ, σ) = (20, 0)



Numerical algebraic geometry

Singular points of XA ⊂ CP3 are (projective) zeros of the system:

FA :
∂

∂xi
det(x01 + x1A1 + x2A2 + x3A3) = 0, i = 0, . . . , 3.

For generic complex matrices A1,A2,A3 ∈ S5
C, FA has 20 zeros.

If we know solutions to a reference system FA′ , can solve the
desired system FA using the method of homotopy continuation:

A'

A



Neighboring types
How to find XA ⊂ CP3 with desired combinatorial types?

Generically, the type can change in one of the following 4 ways:

(+,+): (ρ, σ)→ (ρ+2, σ+2)

(−,−): (ρ, σ)→ (ρ−2, σ−2)

(+, 0): (ρ, σ)→ (ρ+ 2, σ)

(−, 0): (ρ, σ)→ (ρ− 2, σ)
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If we are able to find all possible

neighboring types for each (ρ, σ),

then all 65 types can be found.

We achieve this goal using

the hill-climbing algorithm



Hill-climbing algorithm
Given A1,A2,A3 ∈ S5, define the sets

• SR+(A): definite real nodes A(x) ∈ S5 of XA ⊂ CP3

• SR−(A): indefinite real nodes A(x) ∈ S5 of XA ⊂ CP3

• SC+(A): non-real nodes A(x) with definite real part Re(A(x))
• SC−(A): non-real nodes A(x) with indefinite Re(A(x))

If XA′ has type (ρ, σ), go for the 4 neighboring types as follows:

• randomly sample a few A near A′,
• for each neighboring type that is not found in the sample,

as a new A′ choose that sampled A with the smallest:

(−,−) : min{‖A(x)−A(x̃)‖ : A(x), A(x̃) ∈ SR+(A)}
(−, 0) : min{‖A(x)−A(x̃)‖ : A(x), A(x̃) ∈ SR−(A)}

(+,+) : min{‖Im(A(x))‖ : A(x) ∈ SC+(A)}
(+, 0) : min{‖Im(A(x))‖ : A(x) ∈ SC−(A)}

• keep repeating until all neighboring types of (ρ, σ) are found...



65 combinatorial types



Random spectrahedra

A random spectrahedron SA = P(LA ∩ Sd<) is given by a (random)

LA =
{
1x0 + A1x1 + · · ·+ xnAn : x ∈ Rn+1

}
,

where matrices A1, . . . ,An ∼ GOE(d) are sampled independently
from the Gaussian Orthogonal Ensemble

dµGOE(d)(A) :=
1

Zd
exp

(
−1

4
TrA2

)
dA, dA =

∏
1≤i≤j≤d

daij .

Remark

The measure µGOE(d) is invariant under A 7→ gTAg , g ∈ O(d).

The space VA := Span(A1, . . . ,An) is distributed uniformly in the
Grassmannian Grn(Sd) of n-planes in Sd .



Expected number of singular points

Observation: With probability 1 the random spectrahedron SA has
at most σA ≤ ρA ≤

(d+1
3

)
nodes on its (real algebraic) boundary.

Breiding, K. and Lerario, 2019

E
A1,A2,A3∼GOE(d)

ρA =

(
d

2

)
=

d(d − 1)

2

E
Ai∼GOE(d)

σA =
2d−2

√
π(d − 2)!

ˆ ∞
0

E
B∼GOE(d−2)

[
det(B − t1)2

∣∣B − t1 < 0
]
e−t2

dt

Expected combinatorial type of a quartic spectrahedron

(
E

Ai∼GOE(4)
σA, E

Ai∼GOE(4)
ρA

)
=

(
6− 4√

3
, 6

)
≈ (3.69, 6)



Matrices with repeated eigenvalues
Variety of real symmetric matrices with repeated eigenvalues:

∆ := {A ∈ Sd : λi (A) = λj(A) for some i 6= j}

Fact: ∆ is a subvariety of Sd of codimension 2.

rk(x01 + A1x1 + A2x2 + A3x3) ≤ d − 2 ⇔ A1x1 + A2x2 + A3x3 ∈ ∆

With probability 1:

ρA = #Sing(XA ∩ RP3) = {

x01+A1x1+A2x2+A3x3
q

[x] ∈ RP3 : rk(A(x)) ≤ d − 2}
= {[x1 : x2 : x3] ∈ RP2 : A1x1 + A2x2 + A3x3 ∈ ∆} = #P(∆ ∩ VA)

Random matrices A1,A2,A3 ∼ GOE(d) are independent
⇒ VA = Span(A1,A2,A3) is uniformly distributed in Gr3(Sd).

Breiding, K. and Lerario, 2018

E
V ∈ Gr3(Sd )

#P(∆ ∩ V ) =
Vol(P(∆))

Vol(RPdim P(∆))
=

(
d

2

)
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