Singularities of Spectrahedra

Khazhgali Kozhasov (TU Braunschweig)

based on joint works with:
Paul Breiding and Antonio Lerario Taylor Brysiewicz and Mario Kummer

Laboratory for Analysis and Architecture of Systems, Polynomial Optimization Team (Toulouse)

$$
\text { December 7, } 2022
$$

What are spectrahedra?

$$
\begin{gathered}
\mathbb{S}^{d}=\{d \times d \text { real symmetric matrices }\} \\
\mathbb{S}_{\mathbb{C}}^{d}=\{d \times d \text { complex symmetric matrices }\}
\end{gathered}
$$

The convex cone of positive semidefinite matrices :

$$
\mathbb{S}_{\succcurlyeq}^{d}=\left\{A \in \mathbb{S}^{d}: A \succcurlyeq 0\right\}=\left\{A \in \mathbb{S}^{d}: \mathbf{v}^{T} A \mathbf{v} \geq 0, \mathbf{v} \in \mathbb{R}^{d}\right\}
$$

A spectrahedron is the slice of $\mathbb{S}_{\succcurlyeq}^{d}$ by an affine-linear subspace

$$
L_{\mathbf{A}}=\left\{\mathbf{A}(\mathrm{x}):=A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n}: \mathbf{x} \in \mathbb{R}^{n}\right\} \subseteq \mathbb{S}^{d}:
$$

$$
S_{\mathrm{A}}=\mathbb{S}_{\succcurlyeq}^{d} \cap L_{\mathrm{A}} \simeq\left\{\mathrm{x} \in \mathbb{R}^{n}: \mathbf{A}(\mathrm{x}) \succcurlyeq 0\right\}
$$

In particular, spectrahedra are convex sets.

Examples

A spectrahedron is a "nonlinear" generalization of a polyhedron:

$$
\mathbf{A}(\mathbf{x})=\left(\begin{array}{ccc}
a_{1}^{0} & & 0 \\
& \ddots & \\
0 & & a_{d}^{0}
\end{array}\right)+x_{1}\left(\begin{array}{ccc}
a_{1}^{1} & & 0 \\
& \ddots & \\
0 & & a_{d}^{1}
\end{array}\right)+x_{n}\left(\begin{array}{ccc}
a_{1}^{n} & & 0 \\
& \ddots & \\
0 & & a_{d}^{n}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1}(\mathbf{x}) & & 0 \\
& \ddots & \\
0 & & a_{d}(\mathbf{x})
\end{array}\right),
$$

$$
\left\{\mathbf{x} \in \mathbb{R}^{n}: a_{1}(\mathbf{x}), \ldots, a_{d}(\mathbf{x}) \geq 0\right\}
$$

$$
\mathbf{A}(\mathbf{x})=\left(\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & 1 & x_{3} \\
x_{2} & x_{3} & 1
\end{array}\right)
$$

Elliptope
$\left\{\mathbf{x} \in \mathbb{R}^{3}: 1-x_{1}^{2}, 1-x_{2}^{2}, 1-x_{3}^{2}, 1-x_{1}^{2}-x_{2}^{2}-x_{3}^{2}+2 x_{1} x_{2} x_{3} \geq 0\right\}$

Spectrahedra, $\underline{\text { Sums }} \underline{\text { Of }} \underline{\text { Squares }}$ and optimization

- Sum of squares representations of a real polynomial

$$
1+2 t+3 t^{2}+5 t^{4}=\left(\begin{array}{lll}
1 & t & t^{2}
\end{array}\right) A\left(\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right), A=\left(\begin{array}{ccc}
1 & 1 & a \\
1 & 3-2 a & 0 \\
a & 0 & 5
\end{array}\right) \succcurlyeq 0
$$

- Semidefine programming

$$
\min _{\mathbf{x} \in S_{\mathrm{A}}}\langle\ell, \mathbf{x}\rangle=\min \left\{\langle\ell, \mathbf{x}\rangle: \mathbf{x} \in \mathbb{R}^{n}, A_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n} \succcurlyeq 0\right\}
$$

Spectrahedra are feasible regions of semidefinite programs (polyhedra)

Particular case: SOS approach to polynomial optimization

$$
\min _{t \in \mathbb{R}^{m}} f(\mathrm{t}) \geq \max \left\{\lambda \in \mathbb{R}: f(\mathrm{t})-\lambda=\left(\begin{array}{lll}
1 & t_{1} & \ldots
\end{array}\right) A\left(\begin{array}{c}
1 \\
t_{1} \\
\vdots
\end{array}\right), A \succcurlyeq 0\right\}
$$

Smoother than polyhedra but not enough...

Tetrahedron

Elliptope
(a.k.a. Somosa)

Pillow

3D spectrahedra (in general) carry singular points.

In semidefinite programming, there is a positive chance that a linear $\langle\ell, \mathrm{x}\rangle, \mathrm{x} \in S$, attains minimum at a singular point of S.

General Problem

Determine the number of singular points that a general S can have.

Homogeneous/projective setting

Affine-Linear space $L_{\mathrm{A}} \subseteq \mathbb{S}^{d}$:

$$
L_{\mathbf{A}}=\left\{\mathbf{A}(\mathbf{x})=A_{0} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \mathbf{x} \in \mathbb{R}^{n+1}\right\}
$$

Spectrahedral cone:

$$
L_{\mathbf{A}} \cap \mathbb{S}_{\succcurlyeq}^{d} \simeq\left\{\mathrm{x} \in \mathbb{R}^{n+1}: \mathbf{A}(\mathrm{x}) \succcurlyeq 0\right\}
$$

Assumption

$\underset{\left(L_{\mathbf{A}} \cap \mathbb{S}_{\succcurlyeq}^{d} \subset \mathbb{R}^{n+1} \text { is full-dimensional) }\right.}{\mathbf{A}(\mathbf{x}) \succ 0 \text { for some } \mathbf{x} \in \mathbb{R}^{n+1}} \Rightarrow \begin{gathered}\text { can take } A_{0}=\mathbb{1} \\ \text { (orthogonal congruence applied to } L_{\mathbf{A}} \text {) }\end{gathered}$
Projective spectrahedron:

$$
S_{\mathbf{A}}=\mathbb{P}\left(L \cap \mathbb{S}_{\succcurlyeq}^{d}\right) \simeq\left\{[\mathrm{x}] \in \mathbb{R} \mathrm{P}^{n}: \mathbf{A}(\mathrm{x}) \succcurlyeq 0 \text { or }-\mathbf{A}(\mathrm{x}) \succcurlyeq 0\right\}
$$

(Algebraic) Boundary of spectrahedra

The Euclidean boundary of $S_{\mathrm{A}} \subset \mathbb{R} \mathrm{P}^{n}$:

$$
\partial S_{\mathbf{A}}=\left\{[\mathbf{x}] \in S_{\mathrm{A}}: \operatorname{det}(\mathbf{A}(\mathbf{x}))=0\right\}
$$

For generic $A_{1}, \ldots, A_{n} \in \mathbb{S}^{d}$ the Zariski closure of $\partial S_{\mathrm{A}} \subset \mathbb{C P}^{n}$ is a degree d hypersurface, called (spectrahedral) symmetroid:

$$
X_{\mathbf{A}}=\left\{[\mathrm{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(\mathbb{1} x_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n}\right)=0\right\}
$$

$S_{\mathrm{A}} \subset \mathbb{R} \mathrm{P}^{n}$ is a polyhedron $\Rightarrow X_{\mathrm{A}} \subset \mathbb{C} P^{n}$ is a set of hyperplanes. (A_{1}, \ldots, A_{n} are diagonal)

Singular points

The variety $\Sigma \subset \mathbb{P}\left(\mathbb{S}_{\mathbb{C}}^{d}\right)$ of matrices of corank ≥ 2 has codimension 3 .
For $n \geq 3$ any symmetroid

$$
X_{\mathbf{A}}=\left\{[\mathrm{x}] \in \mathbb{C} P^{n}: \operatorname{det}\left(\mathbb{1} x_{0}+A_{1} x_{1}+\cdots+A_{n} x_{n}\right)=0\right\}
$$

contains points of corank $\geq 2 \Longrightarrow X_{\mathrm{A}}$ is singular. $\mathrm{n}=3$: surface $X_{\mathbf{A}} \subset \mathbb{C} \mathrm{P}^{3}$ defined by generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ has

$$
\binom{d+1}{3}=\# \operatorname{Sing}\left(X_{\mathbf{A}}\right)=\# L_{\mathbf{A}} \cap \Sigma=\operatorname{deg}(\Sigma)
$$

singular points, which are all nodal (of multiplicity 2).

Combinatorial type $(\rho, \sigma), \sigma \leq \rho$

$\rho=\#\left(\operatorname{Sing}\left(X_{\mathbf{A}}\right) \cap \mathbb{R} \mathrm{P}^{3}\right)$ is the number of real singularities of $X_{\mathbf{A}}$. $\sigma=\#\left(\operatorname{Sing}\left(X_{\mathbf{A}}\right) \cap \partial S_{\mathbf{A}}\right)$ is the number of singularities on $\partial S_{\mathbf{A}} \subset X_{\mathbf{A}}$.

$\mathrm{n}=3$

Reality questions

For generic $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{d}$ one has

$$
\sigma:=\#\left(\operatorname{Sing}\left(X_{\mathrm{A}}\right) \cap \partial S_{\mathrm{A}}\right) \leq \rho:=\#\left(\operatorname{Sing}\left(X_{\mathrm{A}}\right) \cap \mathbb{R} \mathrm{P}^{3}\right) \leq\binom{ d+1}{3}
$$

$0 \leq \sigma$ is even, ρ has the same parity as $\binom{d+1}{3}$ and
$0<\rho\left(\right.$ for all X_{A} with fixed $\left.d\right)$ unless $d=-1,0,1 \bmod 8$.
$\mathrm{d}=3$: can have either $(\rho, \sigma)=(4,4)$ or $(\rho, \sigma)=(2,2)$.
Degtyarev and Itenberg, 2011: (ρ, σ) is a combinatorial type of a (generic) quartic $\mathrm{d}=4$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 10=\binom{4+1}{3}$, both are even and $2 \leq \rho$.
Ottem, Ranestad, Sturmfels and Vinzant, 2015: alternative proof.

Question 17 in "3264 Questions about Symmetric Matrices" (Sturmfels)

Classify combinatorial types of quintic spectrahedra in \mathbb{R}^{3}.
Can you realize all $20=\binom{5+1}{3}$ complex singular points of the quintic symmetroid in the boundary of its spectrahedron?

Main result: classification for $d=5$

Brysiewicz, K. and Kummer, 2021

(ρ, σ) is a combinatorial type of a generic quintic $(d=5)$ spectrahedron iff $0 \leq \sigma \leq \rho \leq 20$, both are even and $2 \leq \rho$.

Proof strategy:

- Understand restrictions on (ρ, σ)

65 possible types

- Find explicit representatives for each (ρ, σ) numerically
- Certify the numerical answers

$$
(\rho, \sigma)=(20,20)
$$

$$
(\rho, \sigma)=(20,0)
$$

Numerical algebraic geometry

Singular points of $X_{\mathrm{A}} \subset \mathbb{C} P^{3}$ are (projective) zeros of the system:

$$
F_{\mathrm{A}}: \quad \frac{\partial}{\partial x_{i}} \operatorname{det}\left(x_{0} \mathbb{1}+x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}\right)=0, \quad i=0, \ldots, 3 .
$$

For generic complex matrices $A_{1}, A_{2}, A_{3} \in \mathbb{S}_{\mathbb{C}}^{5}, F_{\mathrm{A}}$ has 20 zeros. If we know solutions to a reference system $F_{\mathbf{A}^{\prime}}$, can solve the desired system F_{A} using the method of homotopy continuation:

Neighboring types

How to find $X_{\mathrm{A}} \subset \mathbb{C} P^{3}$ with desired combinatorial types?
Generically, the type can change in one of the following 4 ways:

$$
\begin{array}{ll}
(+,+):(\rho, \sigma) \rightarrow(\rho+2, \sigma+2) & (+, 0):(\rho, \sigma) \rightarrow(\rho+2, \sigma) \\
(-,-):(\rho, \sigma) \rightarrow(\rho-2, \sigma-2) & (-, 0):(\rho, \sigma) \rightarrow(\rho-2, \sigma) \\
\hline
\end{array}
$$

- 20

If we are able to find all possible neighboring types for each (ρ, σ), then all 65 types can be found.

We achieve this goal using the hill-climbing algorithm

Hill-climbing algorithm

Given $A_{1}, A_{2}, A_{3} \in \mathbb{S}^{5}$, define the sets

- $S_{\mathbb{R}_{+}}(\mathbf{A})$: definite real nodes $\mathbf{A}(\mathrm{x}) \in \mathbb{S}^{5}$ of $X_{\mathrm{A}} \subset \mathbb{C} P^{3}$
- $S_{\mathbb{R}_{-}}(\mathbf{A})$: indefinite real nodes $\mathbf{A}(\mathbf{x}) \in \mathbb{S}^{5}$ of $X_{\mathbf{A}} \subset \mathbb{C} P^{3}$
- $S_{\mathbb{C}_{+}}(\mathbf{A})$: non-real nodes $\mathbf{A}(\mathbf{x})$ with definite real part $\operatorname{Re}(\mathbf{A}(\mathbf{x}))$
- $S_{\mathbb{C}_{-}}(\mathbf{A})$: non-real nodes $\mathbf{A}(\mathbf{x})$ with indefinite $\operatorname{Re}(\mathbf{A}(\mathrm{x}))$

If $X_{\mathbf{A}^{\prime}}$ has type (ρ, σ), go for the 4 neighboring types as follows:

- randomly sample a few \mathbf{A} near \mathbf{A}^{\prime},
- for each neighboring type that is not found in the sample, as a new \mathbf{A}^{\prime} choose that sampled \mathbf{A} with the smallest:

$$
\begin{aligned}
(-,-): & \min \left\{\|\mathbf{A}(\mathbf{x})-\mathbf{A}(\tilde{\mathbf{x}})\|: \mathbf{A}(\mathbf{x}), \mathbf{A}(\tilde{\mathbf{x}}) \in S_{\mathbb{R}_{+}}(\mathbf{A})\right\} \\
(-, 0): & \min \left\{\|\mathbf{A}(\mathbf{x})-\mathbf{A}(\tilde{\mathbf{x}})\|: \mathbf{A}(\mathbf{x}), \mathbf{A}(\tilde{\mathbf{x}}) \in S_{\mathbb{R}_{-}}(\mathbf{A})\right\} \\
(+,+): & \min \left\{\|\operatorname{lm}(\mathbf{A}(\mathbf{x}))\|: \mathbf{A}(\mathbf{x}) \in S_{\mathbb{C}_{+}}(\mathbf{A})\right\} \\
(+, 0): & \min \left\{\|\operatorname{lm}(\mathbf{A}(\mathbf{x}))\|: \mathbf{A}(\mathbf{x}) \in S_{\mathbb{C}_{-}}(\mathbf{A})\right\}
\end{aligned}
$$

- keep repeating until all neighboring types of (ρ, σ) are found...

65 combinatorial types

去是业（1） c性象 0边祭边 Be（1） 0

Random spectrahedra

A random spectrahedron $S_{\mathrm{A}}=\mathbb{P}\left(L_{\mathrm{A}} \cap \mathbb{S} \underset{\succ}{d}\right)$ is given by a (random)

$$
L_{\mathbf{A}}=\left\{\mathbb{1} x_{0}+A_{1} x_{1}+\cdots+x_{n} A_{n}: \mathbf{x} \in \mathbb{R}^{n+1}\right\}
$$

where matrices $A_{1}, \ldots, A_{n} \sim \operatorname{GOE}(d)$ are sampled independently from the Gaussian Orthogonal Ensemble

$$
\mathrm{d} \mu_{\mathrm{GOE}(d)}(A):=\frac{1}{Z_{d}} \exp \left(-\frac{1}{4} \operatorname{Tr} A^{2}\right) \mathrm{d} A, \quad \mathrm{~d} A=\prod_{1 \leq i \leq j \leq d} \mathrm{~d} a_{i j} .
$$

Remark

The measure $\mu_{\mathrm{GOE}(d)}$ is invariant under $A \mapsto g^{\top} A g, g \in O(d)$. The space $V_{\mathrm{A}}:=\operatorname{Span}\left(A_{1}, \ldots, A_{n}\right)$ is distributed uniformly in the Grassmannian $\operatorname{Gr}_{n}\left(\mathbb{S}^{d}\right)$ of n-planes in \mathbb{S}^{d}.

Expected number of singular points

Observation: With probability 1 the random spectrahedron S_{A} has at most $\sigma_{\mathbf{A}} \leq \rho_{\mathbf{A}} \leq\binom{ d+1}{3}$ nodes on its (real algebraic) boundary.

Breiding, K. and Lerario, 2019

$$
\underset{A_{1}, A_{2}, A_{3} \sim \operatorname{GOE}(d)}{\mathbb{E}} \rho_{\mathbf{A}}=\binom{d}{2}=\frac{d(d-1)}{2}
$$

$$
\underset{A_{i} \sim \operatorname{GOE}(d)}{\mathbb{E}} \sigma_{\mathrm{A}}=\frac{2^{d-2}}{\sqrt{\pi}(d-2)!} \int_{0}^{\infty} \underset{B \sim \operatorname{GOE}(d-2)}{\mathbb{E}}\left[\operatorname{det}(B-t \mathbb{1})^{2} \mid B-t \mathbb{\mathbb { 1 }} \succcurlyeq 0\right] e^{-t^{2}} \mathrm{~d} t
$$

Expected combinatorial type of a quartic spectrahedron

$$
\left(\underset{A_{i} \sim G O E(4)}{\mathbb{E}} \sigma_{\mathrm{A}}, \underset{A_{i} \sim \operatorname{GOE}(4)}{\mathbb{E}} \rho_{\mathrm{A}}\right)=\left(6-\frac{4}{\sqrt{3}}, 6\right) \approx(3.69,6)
$$

Matrices with repeated eigenvalues

Variety of real symmetric matrices with repeated eigenvalues:

$$
\Delta:=\left\{A \in \mathbb{S}^{d}: \lambda_{i}(A)=\lambda_{j}(A) \text { for some } i \neq j\right\}
$$

Fact: Δ is a subvariety of \mathbb{S}^{d} of codimension 2.

$$
\operatorname{rk}\left(x_{0} \mathbb{1}+A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}\right) \leq d-2 \Leftrightarrow A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3} \in \Delta
$$

With probability 1 :

$$
x_{0} \mathbb{1}+A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}
$$

$$
\begin{aligned}
\rho_{\mathbf{A}} & =\# \operatorname{Sing}\left(X_{\mathbf{A}} \cap \mathbb{R} \mathrm{P}^{3}\right)=\left\{[\mathrm{x}] \in \mathbb{R} \mathrm{P}^{3}: \operatorname{rk}(\mathbf{A}(\mathrm{x})) \leq d-2\right\} \\
& =\left\{\left[x_{1}: x_{2}: x_{3}\right] \in \mathbb{R} \mathrm{P}^{2}: A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3} \in \Delta\right\}=\# \mathbb{P}\left(\Delta \cap V_{\mathbf{A}}\right)
\end{aligned}
$$

Random matrices $A_{1}, A_{2}, A_{3} \sim \mathrm{GOE}(d)$ are independent $\Rightarrow V_{\mathrm{A}}=\operatorname{Span}\left(A_{1}, A_{2}, A_{3}\right)$ is uniformly distributed in $\mathrm{Gr}_{3}\left(\mathbb{S}^{d}\right)$.
Breiding, K. and Lerario, 2018

$$
\underset{V \in \operatorname{Gr}_{3}\left(\mathbb{S}^{d}\right)}{\mathbb{E}} \# \mathbb{P}(\Delta \cap V)=\frac{\operatorname{Vol}(\mathbb{P}(\Delta))}{\operatorname{Vol}\left(\mathbb{R} P^{\operatorname{dim} \mathbb{P}(\Delta)}\right)}=\binom{d}{2}
$$

Matrices with repeated eigenvalues

Variety of real symmetric matrices with repeated eigenvalues:

$$
\Delta:=\left\{A \in \mathbb{S}^{d}: \lambda_{i}(A)=\lambda_{j}(A) \text { for some } i \neq j\right\}
$$

Fact: Δ is a subvariety of \mathbb{S}^{d} of codimension 2.

$$
\operatorname{rk}\left(x_{0} \mathbb{1}+A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}\right) \leq d-2 \Leftrightarrow A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3} \in \Delta
$$

With probability 1 :

$$
x_{0} \mathbb{1}+A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3}
$$

$$
\begin{aligned}
\rho_{\mathbf{A}} & =\# \operatorname{Sing}\left(X_{\mathbf{A}} \cap \mathbb{R} \mathrm{P}^{3}\right)=\left\{[\mathrm{x}] \in \mathbb{R} \mathrm{P}^{3}: \mathrm{rk}(\mathbf{A}(\mathrm{x})) \leq d-2\right\} \\
& =\left\{\left[x_{1}: x_{2}: x_{3}\right] \in \mathbb{R} \mathrm{P}^{2}: A_{1} x_{1}+A_{2} x_{2}+A_{3} x_{3} \in \Delta\right\}=\# \mathbb{P}\left(\Delta \cap V_{\mathbf{A}}\right)
\end{aligned}
$$

Random matrices $A_{1}, A_{2}, A_{3} \sim \mathrm{GOE}(d)$ are independent $\Rightarrow V_{\mathrm{A}}=\operatorname{Span}\left(A_{1}, A_{2}, A_{3}\right)$ is uniformly distributed in $\mathrm{Gr}_{3}\left(\mathbb{S}^{d}\right)$.

Breiding, K. and Lerario, 2018

References

A. Degtyarev and I. Itenberg, On real determinantal quartics, Proceedings of the Gökova Geometry-Topology Conference 2010, Int. Press, Somerville, MA, 110-128, 2011

雷 J. C. Ottem, K. Ranestad, B. Sturmfels and C. Vinzant, Quartic spectrahedra, Math. Program., 151 (2, Ser. B), 585-612, 2015
P. Breiding, Kh. Kozhasov and A. Lerario, Random Spectrahedra, SIAM J. Optim., 29(4), 2608-2624
T. Brysiewicz, Kh. Kozhasov and M. Kummer, Nodes on quintic spectrahedra, Le Matematiche (2021), 76(2), 415-430

Merci pour votre attention!

