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What are spectrahedra?

S? = {d x d real symmetric matrices}
S% = {d x d complex symmetric matrices}

The convex cone of positive semidefinite matrices :
S¢ = {Aes?: A=0} = {AesS?  vTAv>0, veRY}

A spectrahedron is the slice of S‘; by an affine-linear subspace

Ly = {A(x) =Ao+Aixq+ -+ Apxp xeR”}QSd:

[ SA:S‘;HLAQ{XGR”:A(X)>O}

In particular, spectrahedra are convex sets.



Examples

A spectrahedron is a “nonlinear” generalization of a polyhedron:
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Spectrahedra, Sums Of Squares
and optimization

® Sum of squares representations of a real polynomial

14+2t+3t2+5t* = (1 « t2)A<i>,A: (i 322 S);o

a 0 5

® Semidefine programming

misn<2,x> = min{{£,x) : x €R", Ag+ Aixi + -+ + Asx, = 0}
xXES)

Spectrahedra are feasible regions of semidefinite programs
(polyhedra) (linear)

Particular case: SOS approach to polynomial optimization

min f(t) > max{AeR: f(t)-A=(1 t ..)A|B] A%0

teRrRmM



Smoother than polyhedra but not enough...

Elliptope

Tetrahed
etranedron (a.k.a. Somosa) Pillow

3D spectrahedra (in general) carry singular points.

In semidefinite programming, there is a positive chance that a
linear (¢,x), x € S, attains minimum at a singular point of S.

General Problem

Determine the number of singular points that a general S can have.




Homogeneous/projective setting
Affime- Linear space Ly C S¢:

La = {A(x) =Aoxo +Aix1+ -+ xpAn : XE R"H}.
Spectrahedral cone:

LanS? ~ {xeR™! : A(x) = 0}

A(x) = 0 for some x € R"T! = can take Ap =1
(La NSE CRH1 is full-dimensional) (orthogonal congruence applied to Ly

Projective spectrahedron:

Sa = IP’(LﬂS‘;) ~ {[x] e RP" : A(x) = 0or —A(x) = 0}




(Algebraic) Boundary of spectrahedra
The Euclidean boundary of S, € RP":

9Sa = {[x] € Sa : det(A(x)) = 0}

For generic Ay,..., A, € S? the Zariski closure of S, € CP" is a
degree d hypersurface, called (spectrahedral) symmetroid-

[ Xa = {[x] € CP" : det(1xp + A1x1 + - -+ Apxp) = 0} ]

'S A ‘
4

Sx C RP" is a polyhedron = Xj C CP" is a set of hyperplanes.
(A1,...,An are diagonal)



Singular points
The variety © C P(S%) of matrices of corank > 2 has codimension 3.
For n > 3 any symmetroid

Xa = {[x] € CP" : det(1xp + Aix1 + - + Apxn) = 0}

contains points of corank > 2 = X, is singular.
: surface Xa C CP3 defined by generic A1, Ay, A3 € S9 has

(d;rl) = #Sing(Xa) = #LaNT = deg(T)| () _,

singular points, which are all nodal (of multiplicity 2).

Combinatorial type (p,0), 0 <p

p = #(Sing(Xx) N RP?) is the number of real singularities of Xj.
o = #(Sing(Xa) N OSa) is the number of singularities on 9Sx C Xa.




n=3 Reality questions
For generic A1, Ax, A3 € S one has

o = #(Sing(Xa) N9Sa) < p:= #(Sing(Xa) NRP%) < (d: 1)’

0 < o is even, p has the same parity as (?1') and

0 < p (for all Xa with fixed d) unless d = —1,0,1 mod 8.
can have either (p, o) = (4,4) or (p,0) = (2,2).

Degtyarev and ltenberg, 2011: (p, o) is a combinatorial type of a

(generic) quartic spectrahedron iff 0 < o < p <10 = (*}1),
both are even and 2 < p.

Ottem, Ranestad, Sturmfels and Vinzant, 2015: alternative proof.

Question 17 in “3264 Questions about Symmetric Matrices” (Sturmfels)

Classify combinatorial types of quintic spectrahedra in R3.

Can you realize all 20 = (*1') complex singular points of the

quintic symmetroid in the boundary of its spectrahedron?




Main result: classification for

Brysiewicz, K. and Kummer, 2021

(p,0) is a combinatorial type of a generic quintic (d = 5) spec-
trahedron iff 0 < o < p < 20, both are even and 2 < p.

Proof strategy:

e Understand restrictions on (p, o) |65 possible types|

e Find explicit representatives for each (p, o) numerically
o Certify the numerical answers

-

(p, o) = (20, 20) (p, o) = (20,0)




Numerical algebraic geometry

Singular points of Xy C CP3 are (projective) zeros of the system:

0
Fa: adet(xoﬂ +x1A1+xA +x3A3) = 0, i=0,....3.

For generic complex matrices A1, Ay, A3 € S%., F has 20 zeros.
If we know solutions to a reference system F,/, can solve the
desired system Fj using the method of homotopy continuation:

L
L




Neighboring types
How to find Xa C CP3 with desired combinatorial types?

Generically, the type can change in one of the following 4 ways:
(+:4): (o) = (p+2,042)  (+,0): (p,0) = (p+2,0)
(_7_): (P,O')—>(p—2,0'_2) (—,0)2 (p,J)—)(,O—Q,U)

® 20
® @ 138
® o 05 If we are able to find all possible
LA neighboring types for each (p,o),
¢o0ooo2 then all 65 types can be found.
® 6 06 06 06 0 10
e 6 0o ® @ 3
oo o e e 5 We achieve this goal using
®© 006060000 the hill-climbing algorithm
®© 060606060600 0 o0
® 6 06060606 0 0 0 0 0
0 2 4 6 8 101214161820



Hill-climbing algorithm
Given A1, Az, A3 € S®, define the sets
® Sg. (A): definite real nodes A(x) € S° of Xy C CP?
® Sg_(A): indefinite real nodes A(x) € S° of X, c CP?
Sc, (A): non-real nodes A(x) with definite real part Re(A(x))
Sc_(A): non-real nodes A(x) with indefinite Re(A(x))

If Xs/ has type (p, o), go for the 4 neighboring types as follows:
® randomly sample a few A near A’
® for each neighboring type that is not found in the sample,
as a new A’ choose that sampled A with the smallest:

() min{||A(x) - AF)[| : A(x), A(X) € Sk, (A)}
(—0): min{[[A(x) - A®)[ : A(x), A(%) € Sr_(A)}
(+:4+) - min{[[lm(A(x))]| : A(x) € Sc. (A)}
(+:0): min{fllm(A(x))[| : A(x) € Sc_(A)}

® keep repeating until all neighboring types of (p, o) are found...



65 combinatorial types
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Random spectrahedra
A random spectrahedron Sy = P(Ls N S‘;) is given by a (random)

Ly = {]1X0—|—A1X1+"'-|—XnAn : XER"Jrl},

where matrices Ay, ..., A, ~ GOE(d) are sampled independently
from the Gaussian Orthogonal Ensemble

1 1
dicoe(d)(A) = - exp <—4TrA2> dA, dA= [ day
d 1<i<j<d

Remark
The measure (1Gog(q) IS invariant under A — g'Ag, g € O(d).

The space V := Span(Ai,...,Ap) is distributed uniformly in the
Grassmannian Gr,(S?) of n-planes in S¢.



Expected number of singular points

Observation: With probability 1 the random spectrahedron Sp has
at most oa < pa < (“3%) nodes on its (real algebraic) boundary.

Breiding, K. and Lerario, 2019

d d(d—1)
E = = _—
A1,A2,A3~GOE(d) PA <2> 2

2d—2
E = ——
A~GOE() T Vr(d =2)!,

/ E [det(B —t1)’|B—t1 = 0} e Cdt
o B~GOE(d—2)

Expected combinatorial type of a quartic spectrahedron

4
E E = [6—-——,6] =~ (3.69,6
(A,-~GOE(4)JA’A,-NGOE(4)pA) < \/§’ > ( ©)




Matrices with repeated eigenvalues
Variety of real symmetric matrices with repeated eigenvalues:

A = {AcS?: \(A) = \(A) for some i # j}
Fact: A is a subvariety of S¢ of codimension 2.

[ I’k(Xo]]. + A1xy + Aoxo + A3X3) <d—-2 & Aixi+Axxo+Asx3s € A ]

With probability 1: X01+A1X1-0;A2X2+A3X3
pa = #Sing(Xa NRP?) = {[x] € RP® : rk(A(x)) < d —2}
= {[x1:x : x3] € RP? : Aixq + Apxo + Asxs € A} = #P(AN Va)

Random matrices A;, A2, A3 ~ GOE(d) are independent
= Vi = Span(A1, Az, A3) is uniformly distributed in Gr3(S9).

Breiding, K. and Lerario, 2018

_ Vol(P(A)) <d)
veIGEg(sd)#P(Amv) © Vol(RPIMP@A)y T \2
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Vol(P(A)) (d)
E = E PANYV) = ———-5 =
AiNGOE(d)pA Ve Gr3(§d)# ( ) Vol(RPdlm P(A)) 2
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