Polynomial system solving in applications

Julia Lindberg

University of Wisconsin-Madison

LAAS BrainPOP Seminar

• Polynomial systems arise naturally in many applications

- Polynomial systems arise naturally in many applications
- Solutions to these systems often have physical meaning

- Polynomial systems arise naturally in many applications
- Solutions to these systems often have physical meaning
- This talk will outline techniques to solve these systems

- Polynomial systems arise naturally in many applications
- Solutions to these systems often have physical meaning
- This talk will outline techniques to solve these systems
- We will consider three examples
 - Lagrange systems of polynomial optimization problems
 - **2** Gaussian mixture moment systems
 - Over flow equations

• Consider the variety defined by polynomials $f_1, \ldots, f_n \in \mathbb{R}[x_1, \ldots, x_n]$

$$\mathcal{V}(F) = \{x \in \mathbb{C}^n : f_1(x) = 0, \dots, f_n(x) = 0\}$$

where dim $(\mathcal{V}(F)) = 0$

• Consider the variety defined by polynomials $f_1, \ldots, f_n \in \mathbb{R}[x_1, \ldots, x_n]$

$$\mathcal{V}(F) = \{x \in \mathbb{C}^n : f_1(x) = 0, \ldots, f_n(x) = 0\}$$

where $\dim(\mathcal{V}(F)) = 0$

• **Goal:** Find all points in $\mathcal{V}(F)$

Homotopy Continuation

- 2 Example 1: Polynomial optimization
- 3 Example 2: Gaussian mixture moment systems

4 Monodromy

5 Example 3: Power flow equations

• Idea: Solving most polynomial systems is hard, but some are easy

• Idea: Solving most polynomial systems is hard, but some are easy

$$H_{T} = \begin{cases} 2(x_{2}y_{1} - x_{1}y_{2}) + 3y_{1} = 0\\ 2(x_{1}y_{2} - x_{2}y_{1}) + 4y_{2} = 0\\ x_{1}^{2} + y_{1}^{2} = 1\\ x_{2}^{2} + y_{2}^{2} = 1 \end{cases} \qquad H_{5} = \begin{cases} x_{1}^{2} = 1\\ x_{2}^{2} = 1\\ y_{1}^{2} = 1\\ y_{2}^{2} = 1 \end{cases}$$

• Idea: Solving most polynomial systems is hard, but some are easy

$$H_{T} = \begin{cases} 2(x_{2}y_{1} - x_{1}y_{2}) + 3y_{1} = 0\\ 2(x_{1}y_{2} - x_{2}y_{1}) + 4y_{2} = 0\\ x_{1}^{2} + y_{1}^{2} = 1\\ x_{2}^{2} + y_{2}^{2} = 1 \end{cases} \qquad H_{S} = \begin{cases} x_{1}^{2} = 1\\ x_{2}^{2} = 1\\ y_{1}^{2} = 1\\ y_{2}^{2} = 1 \end{cases}$$

• Can I map my solutions from H_S to H_T ?

• Idea: Solving most polynomial systems is hard, but some are easy

$$H_{T} = \begin{cases} 2(x_{2}y_{1} - x_{1}y_{2}) + 3y_{1} = 0\\ 2(x_{1}y_{2} - x_{2}y_{1}) + 4y_{2} = 0\\ x_{1}^{2} + y_{1}^{2} = 1\\ x_{2}^{2} + y_{2}^{2} = 1 \end{cases} \qquad H_{S} = \begin{cases} x_{1}^{2} = 1\\ x_{2}^{2} = 1\\ y_{1}^{2} = 1\\ y_{2}^{2} = 1 \end{cases}$$

• Can I map my solutions from H_S to H_T ?

- Define $H_t := (1 t)H_S + tH_T$ and compute H_t as $t \to 1$
 - Called following *homotopy paths*

• Idea: Solving most polynomial systems is hard, but some are easy

$$H_{T} = \begin{cases} 2(x_{2}y_{1} - x_{1}y_{2}) + 3y_{1} = 0\\ 2(x_{1}y_{2} - x_{2}y_{1}) + 4y_{2} = 0\\ x_{1}^{2} + y_{1}^{2} = 1\\ x_{2}^{2} + y_{2}^{2} = 1 \end{cases} \qquad H_{S} = \begin{cases} x_{1}^{2} = 1\\ x_{2}^{2} = 1\\ y_{1}^{2} = 1\\ y_{2}^{2} = 1 \end{cases}$$

• Can I map my solutions from H_S to H_T ?

- Define $H_t := (1 t)H_S + tH_T$ and compute H_t as $t \to 1$
 - Called following homotopy paths
- Typically use predictor-corrector methods
 - Predict: Take step along tangent direction at a point
 - Correct: Use Newton's method

Homotopy continuation visual

Figure: The homotopy $H_t = (1 - t)H_S + tH_T$ (left)[KW14] and a predictor corrector step (right) [BT18]

- Want to pick a start system, H_S , such that
 - **1** The solutions of H_S are easy to find
 - **2** The number of solutions to $H_S \approx$ the number of solutions to H_T

- Want to pick a start system, H_S , such that
 - **1** The solutions of H_S are easy to find
 - 2 The number of solutions to $H_S \approx$ the number of solutions to H_T
- Need to know $|\mathcal{V}(F)|$

Theorem (Bezout)

 $|\mathcal{V}(F)| \leq d_1 \cdots d_n$ where $d_i = \deg(f_i)$

Theorem (Bezout)

 $|\mathcal{V}(F)| \leq d_1 \cdots d_n$ where $d_i = \deg(f_i)$

• If $|\mathcal{V}(F)| \approx d_1 \cdots d_n$ then a **total degree** start system is suitable. i.e.

$$H_{\mathcal{S}} = \langle x_1^{d_1} - 1, \dots, x_n^{d_n} - 1 \rangle$$

Theorem (Bezout)

 $|\mathcal{V}(F)| \leq d_1 \cdots d_n$ where $d_i = \deg(f_i)$

• If $|\mathcal{V}(F)| \approx d_1 \cdots d_n$ then a **total degree** start system is suitable. i.e.

$$H_{\mathcal{S}} = \langle x_1^{d_1} - 1, \dots, x_n^{d_n} - 1 \rangle$$

• This bound is generically tight but can be a strict upper bound when f_i are sparse

• The monomial support of f is the set of exponent vectors of the monomials of f

- The monomial support of f is the set of exponent vectors of the monomials of f
- Ex. f(x, y) = 1 + 2x 3y + xy has monomial support

 $\{(0,0),(1,0),(0,1),(1,1)\}$

- The monomial support of f is the set of exponent vectors of the monomials of f
- Ex. f(x, y) = 1 + 2x 3y + xy has monomial support

 $\{(0,0),(1,0),(0,1),(1,1)\}$

• The *Newton polytope* of *f* is the convex hull of its monomial support

- The monomial support of f is the set of exponent vectors of the monomials of f
- Ex. f(x, y) = 1 + 2x 3y + xy has monomial support

 $\{(0,0),(1,0),(0,1),(1,1)\}$

- The *Newton polytope* of *f* is the convex hull of its monomial support
- Ex. If f(x, y) = 1 + 2x 3y + xy, then Newt $(f) = Conv\{(0, 0), (1, 0), (0, 1), (1, 1)\}$

• Given k polytopes, P_1, \ldots, P_k in \mathbb{R}^n their mixed volume is

$$\operatorname{MVol}(P_1,\ldots,P_k) = \sum_{J\subseteq [k]} (-1)^{k-|J|} \cdot \operatorname{Vol}_n(P_J)$$

where $P_J = P_{i_1} + \ldots + P_{i_{|J|}}$ and $J = (i_1, \ldots, i_{|J|})$

• Given k polytopes, P_1, \ldots, P_k in \mathbb{R}^n their mixed volume is

$$\operatorname{MVol}(P_1,\ldots,P_k) = \sum_{J\subseteq [k]} (-1)^{k-|J|} \cdot \operatorname{Vol}_n(P_J)$$

where $P_J = P_{i_1} + \ldots + P_{i_{|J|}}$ and $J = (i_1, \ldots, i_{|J|})$

• Ex. k = n = 2,

 $\operatorname{MVol}(P_1, P_2) = \operatorname{Area}(P_1 + P_2) - \operatorname{Area}(P_1) - \operatorname{Area}(P_2)$

Theorem (BKK Bound [Ber75, Kho78, Kou76])

 $|\mathcal{V}(F)| \leq \mathrm{MVol}(\mathrm{Newt}(f_1), \dots, \mathrm{Newt}(f_n))$

Theorem (BKK Bound [Ber75, Kho78, Kou76])

 $|\mathcal{V}(F)| \leq \mathrm{MVol}(\mathrm{Newt}(f_1), \dots, \mathrm{Newt}(f_n))$

• If $MVol(Newt(f_1), \ldots, Newt(f_n)) \ll d_1 \cdots d_n$ then a **polyhedral** start system is suitable

Theorem (BKK Bound [Ber75, Kho78, Kou76]) $|\mathcal{V}(F)| \leq MVol(Newt(f_1), \dots, Newt(f_n))$

- If $MVol(Newt(f_1), \ldots, Newt(f_n)) \ll d_1 \cdots d_n$ then a **polyhedral** start system is suitable
- There exists an algorithm that finds this binomial start system [HS95]

Theorem (BKK Bound [Ber75, Kho78, Kou76]) $|\mathcal{V}(F)| \leq MVol(Newt(f_1), \dots, Newt(f_p))$

- If $MVol(Newt(f_1), \ldots, Newt(f_n)) \ll d_1 \cdots d_n$ then a **polyhedral** start system is suitable
- There exists an algorithm that finds this binomial start system [HS95]
- In general, not easy to compute the mixed volume (#P hard)

Homotopy Continuation

2 Example 1: Polynomial optimization

3 Example 2: Gaussian mixture moment systems

4 Monodromy

5 Example 3: Power flow equations

• Want to solve polynomial optimization problem of the form

$$\min_{x\in\mathbb{R}^n} g(x)$$
 subject to $f_i(x) = 0, \ i\in[m]$

Example 1 Critical points of polynomial optimization problems

• Want to solve polynomial optimization problem of the form

$$\min_{x\in\mathbb{R}^n} g(x) \quad \text{subject to} \quad f_i(x) = 0, \ i\in[m]$$

• Consider Lagrangian

$$\mathcal{L}(x,\lambda) = g(x) - \sum_{i=1}^{m} \lambda_i f_i(x)$$

• Want to solve polynomial optimization problem of the form

$$\min_{x\in\mathbb{R}^n} g(x) \quad \text{subject to} \quad f_i(x) = 0, \ i\in[m]$$

• Consider Lagrangian

$$\mathcal{L}(x,\lambda) = g(x) - \sum_{i=1}^{m} \lambda_i f_i(x)$$

• Smooth critical points = solutions to polynomial system

$$\ell_i = \frac{\partial \mathcal{L}}{\partial x_i} = 0$$
$$f_i = \frac{\partial \mathcal{L}}{\partial \lambda_i} = 0$$

Theorem (L., Nicholson, Rodriguez, Wang [LNRW21])

For generic f_i, g the number of smooth critical points to

$$\min_{x\in\mathbb{R}^n} g(x)$$
 subject to $f_i(x)=0,\ i\in[m]$

is equal to $MVol(\ell_1, \ldots, \ell_n, f_1, \ldots, f_m)$. Moreover, the number of critical points is dictated by $Newt(f_1), \ldots, Newt(f_m), Newt(g)$.

Theorem (L., Nicholson, Rodriguez, Wang [LNRW21])

For generic f_i, g the number of smooth critical points to

$$\min_{\in \mathbb{R}^n} g(x)$$
 subject to $f_i(x) = 0, \ i \in [m]$

is equal to $MVol(\ell_1, \ldots, \ell_n, f_1, \ldots, f_m)$. Moreover, the number of critical points is dictated by $Newt(f_1), \ldots, Newt(f_m), Newt(g)$.

• Implication 1: Polyhedral start systems will efficiently find all complex critical points for polynomial optimization problems

Theorem (L., Nicholson, Rodriguez, Wang [LNRW21])

For generic f_i, g the number of smooth critical points to

$$\min_{\in \mathbb{R}^n} g(x)$$
 subject to $f_i(x) = 0, \ i \in [m]$

is equal to $MVol(\ell_1, \ldots, \ell_n, f_1, \ldots, f_m)$. Moreover, the number of critical points is dictated by $Newt(f_1), \ldots, Newt(f_m), Newt(g)$.

- Implication 1: Polyhedral start systems will efficiently find all complex critical points for polynomial optimization problems
- Implication 2: Only consider monomials corresponding to vertices of Newton polytopes
Example 1 Critical points of polynomial optimization problems

Consider

 $\min_{x \in \mathbb{R}^3} 3x_1 - x_2 + 2x_3 \quad \text{subject to} \quad x_1^2 - x_1x_2 + x_1x_3 - 2x_2^2 + 3x_2x_3 + 4x_3^2 - x_1 + 2x_2 - x_3 - 1 = 0$

Example 1 Critical points of polynomial optimization problems

Consider

 $\min_{x \in \mathbb{R}^3} 3x_1 - x_2 + 2x_3 \quad \text{subject to} \quad x_1^2 - x_1x_2 + x_1x_3 - 2x_2^2 + 3x_2x_3 + 4x_3^2 - x_1 + 2x_2 - x_3 - 1 = 0$

• The Lagrange system is

$$\begin{split} \ell_1 &= 3 - \lambda (2x_1 - x_2 + x_3 - 1) \\ \ell_2 &= -1 - \lambda (-x_1 - 4x_2 + 3x_3 + 2) \\ \ell_3 &= 2 - \lambda (x_1 + 3x_2 + 8x_3 - 1) \\ f &= x_1^2 - x_1 x_2 + x_1 x_3 - 2x_2^2 + 3x_2 x_3 + 4x_3^2 - x_1 + 2x_2 - x_3 - 1 \end{split}$$

Using a total degree start system, need to track 16 paths

Example 1 Critical points of polynomial optimization problems

Consider

 $\min_{x \in \mathbb{R}^3} 3x_1 - x_2 + 2x_3 \quad \text{subject to} \quad x_1^2 - x_1x_2 + x_1x_3 - 2x_2^2 + 3x_2x_3 + 4x_3^2 - x_1 + 2x_2 - x_3 - 1 = 0$

• The Lagrange system is

$$\begin{split} \ell_1 &= 3 - \lambda (2x_1 - x_2 + x_3 - 1) \\ \ell_2 &= -1 - \lambda (-x_1 - 4x_2 + 3x_3 + 2) \\ \ell_3 &= 2 - \lambda (x_1 + 3x_2 + 8x_3 - 1) \\ f &= x_1^2 - x_1 x_2 + x_1 x_3 - 2x_2^2 + 3x_2 x_3 + 4x_3^2 - x_1 + 2x_2 - x_3 - 1 \end{split}$$

Using a total degree start system, need to track 16 paths

• I claim there are only 2 critical points

$$\min_{x \in \mathbb{R}^3} 3x_1 - x_2 + 2x_3 \quad \text{subject to} \quad x_1^2 - 2x_2^2 + 4x_3^2 - 1 = 0$$

$$\min_{x \in \mathbb{R}^3} 3x_1 - x_2 + 2x_3 \quad \text{subject to} \quad x_1^2 - 2x_2^2 + 4x_3^2 - 1 = 0$$

• The Lagrange system is

$$\ell_1 = 3 - 2\lambda x_1$$

$$\ell_2 = -1 + 4\lambda x_2$$

$$\ell_3 = 2 - 8\lambda x_3$$

$$f = x_1^2 - 2x_2^2 + 4x_3^2 - 1$$

$$\min_{x \in \mathbb{R}^3} 3x_1 - x_2 + 2x_3 \quad \text{subject to} \quad x_1^2 - 2x_2^2 + 4x_3^2 - 1 = 0$$

• The Lagrange system is

$$\ell_{1} = 3 - 2\lambda x_{1}$$

$$\ell_{2} = -1 + 4\lambda x_{2}$$

$$\ell_{3} = 2 - 8\lambda x_{3}$$

$$f = x_{1}^{2} - 2x_{2}^{2} + 4x_{3}^{2} - 1$$

• Can explicitly solve this system and get 2 complex solutions, then use this as a start system for the general problem

$$\min_{x \in \mathbb{R}^3} 3x_1 - x_2 + 2x_3 \quad \text{subject to} \quad x_1^2 - 2x_2^2 + 4x_3^2 - 1 = 0$$

• The Lagrange system is

$$\ell_{1} = 3 - 2\lambda x_{1}$$

$$\ell_{2} = -1 + 4\lambda x_{2}$$

$$\ell_{3} = 2 - 8\lambda x_{3}$$

$$f = x_{1}^{2} - 2x_{2}^{2} + 4x_{3}^{2} - 1$$

- Can explicitly solve this system and get 2 complex solutions, then use this as a start system for the general problem
- This generalizes to minimizing a linear function over any hypersurface

1 Homotopy Continuation

2 Example 1: Polynomial optimization

3 Example 2: Gaussian mixture moment systems

4 Monodromy

5 Example 3: Power flow equations

• Classical problem in statistics is density estimation: "Given N samples from a density p, can I estimate p?"

- Classical problem in statistics is density estimation: "Given N samples from a density p, can I estimate p?"
- Gaussian mixture models are a popular family to consider since they universally approximate smooth densities

- Classical problem in statistics is density estimation: "Given N samples from a density p, can I estimate p?"
- Gaussian mixture models are a popular family to consider since they universally approximate smooth densities
- **Problem:** Given N samples distributed as mixture of k Gaussians, recover mean μ_i , variance, σ_i^2 and mixing coefficient, λ_i of each component

- Classical problem in statistics is density estimation: "Given N samples from a density p, can I estimate p?"
- Gaussian mixture models are a popular family to consider since they universally approximate smooth densities
- **Problem:** Given N samples distributed as mixture of k Gaussians, recover mean μ_i , variance, σ_i^2 and mixing coefficient, λ_i of each component
- Many techniques to do this, consider method of moments

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be the probability density function of a random variable X. For $i \ge 0$, the i-th moment of X is

$$m_i = \mathbb{E}[X^i] = \int_{\mathbb{R}} x^i f(x) dx.$$

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be the probability density function of a random variable X. For $i \ge 0$, the i-th moment of X is

$$m_i = \mathbb{E}[X^i] = \int_{\mathbb{R}} x^i f(x) dx.$$

• For parameterized distributions, moments are functions of parameters

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be the probability density function of a random variable X. For $i \ge 0$, the i-th moment of X is

$$m_i = \mathbb{E}[X^i] = \int_{\mathbb{R}} x^i f(x) dx.$$

- For parameterized distributions, moments are functions of parameters
- Ex. Suppose $X \sim \text{Unif}[a, b]$ where $-\infty < a < b < \infty$

Definition

Let $f : \mathbb{R} \to \mathbb{R}$ be the probability density function of a random variable X. For $i \ge 0$, the i-th moment of X is

$$m_i = \mathbb{E}[X^i] = \int_{\mathbb{R}} x^i f(x) dx.$$

- For parameterized distributions, moments are functions of parameters
- Ex. Suppose $X \sim \mathsf{Unif}[a, b]$ where $-\infty < a < b < \infty$
- The first few moments are:

$$m_1 = \frac{1}{2}(a+b)$$

$$m_2 = \frac{1}{3}(a^2+2ab+b^2)$$

$$m_3 = \frac{1}{4}(b^3+ab^2+a^2b+a^3)$$

• Consider a statistical model with *n* unknown parameters, $\theta = (\theta_1, \dots, \theta_n)$ and the moments up to order *n* as functions of θ

$$m_1 = g_1(\theta), \ldots, m_n = g_n(\theta)$$

and samples y_1, \ldots, y_N

Consider a statistical model with n unknown parameters, θ = (θ₁,..., θ_n) and the moments up to order n as functions of θ

$$m_1 = g_1(\theta), \ldots, m_n = g_n(\theta)$$

and samples y_1, \ldots, y_N

- Method of Moments:
 - Compute sample moments

$$\overline{m}_i = \frac{1}{N} \sum_{j=1}^N y_j^i$$

• Consider a statistical model with *n* unknown parameters, $\theta = (\theta_1, \dots, \theta_n)$ and the moments up to order *n* as functions of θ

$$m_1 = g_1(\theta), \ldots, m_n = g_n(\theta)$$

and samples y_1, \ldots, y_N

- Method of Moments:
 - Compute sample moments

$$\overline{m}_i = rac{1}{N}\sum_{j=1}^N y_j^i$$

2 Solve $g_i(\theta) = \overline{m}_i$ for i = 1, ..., n to recover parameters

Method of Moments Gaussian Mixture Models

• The moments of the Gaussian distributions are $M_0(\mu, \sigma^2) = 1$, $M_1(\mu, \sigma^2) = \mu$,

$$M_\ell(\mu,\sigma^2)=\mu M_{\ell-1}+(\ell-1)\sigma^2 M_{\ell-2},\qquad \ell\geq 2$$

Method of Moments Gaussian Mixture Models

• The moments of the Gaussian distributions are $M_0(\mu, \sigma^2) = 1$, $M_1(\mu, \sigma^2) = \mu$,

$$M_\ell(\mu,\sigma^2)=\mu M_{\ell-1}+(\ell-1)\sigma^2 M_{\ell-2},\qquad \ell\geq 2$$

• The moments of mixtures of k Gaussians are

$$m_\ell = \sum_{i=1}^k \lambda_i M_\ell(\mu_i, \sigma_i^2), \qquad \ell \geq 0$$

Method of Moments Gaussian Mixture Models

• The moments of the Gaussian distributions are $M_0(\mu, \sigma^2) = 1$, $M_1(\mu, \sigma^2) = \mu$,

$$M_\ell(\mu,\sigma^2)=\mu M_{\ell-1}+(\ell-1)\sigma^2 M_{\ell-2},\qquad \ell\geq 2$$

• The moments of mixtures of k Gaussians are

$$m_\ell = \sum_{i=1}^k \lambda_i M_\ell(\mu_i, \sigma_i^2), \qquad \ell \geq 0$$

- There are three special cases of Gaussian mixture models commonly studied in the statistics literature:
 - The mixing coefficients are known
 - 2 The mixing coefficients are known and the variances are equal
 - Only the means are unknown

Theorem (L., Améndola, Rodriguez [LAR21])

In all cases, Gaussian mixture models are algebraically identifiable using moment equations of lowest degree. Moreover, the mixed volume of each of set of equations is given below.

	Known mixing	Known mixing coefficients	Unknown
	coefficients	+ equal variances	means
Moment equations	m_1,\ldots,m_{2k}	m_1,\ldots,m_{k+1}	m_1,\ldots,m_k
Unknowns	μ_i, σ_i^2	μ_i, σ^2	μ_i
Mixed volume	(2k-1)!!k!	$\frac{(k+1)!}{2}$	<i>k</i> !
Mixed volume tight	Yes for $k \leq 8$	Yes for $k \leq 8$	Yes

	Mixed Volume	Bezout Bound
Known mixing coefficients	(2k-1)!!k!	(2k)!
Known mixing coefficients $+$ equal variances	$\frac{(k+1)!}{2}$	(k+1)!
Unknown means	k!	<i>k</i> !

	Mixed Volume	Bezout Bound
Known mixing coefficients	(2k-1)!!k!	(2k)!
Known mixing coefficients $+$ equal variances	$\frac{(k+1)!}{2}$	(k+1)!
Unknown means	k!	<i>k</i> !

• Our proofs of the mixed volume in the first two cases give a start system that tracks mixed volume number of paths

	Mixed Volume	Bezout Bound
Known mixing coefficients	(2k-1)!!k!	(2k)!
Known mixing coefficients $+$ equal variances	$\frac{(k+1)!}{2}$	(k+1)!
Unknown means	k!	<i>k</i> !

- Our proofs of the mixed volume in the first two cases give a start system that tracks mixed volume number of paths
- In the final case if $\lambda_i = \frac{1}{k}$ and σ_i^2 are equal, there is a unique solution up to symmetry

Homotopy Continuation

- 2 Example 1: Polynomial optimization
- 3 Example 2: Gaussian mixture moment systems

Monodromy

5 Example 3: Power flow equations

- Consider a parameterized polynomial system F_b
 - i.e. $F_b(x) = b_1 x^2 + b_2 x 1$

- Consider a parameterized polynomial system F_b
 - i.e. $F_b(x) = b_1 x^2 + b_2 x 1$
- Monodromy works by moving b in a loop while tracking x along that loop

- Consider a parameterized polynomial system F_b
 - i.e. $F_b(x) = b_1 x^2 + b_2 x 1$
- Monodromy works by moving b in a loop while tracking x along that loop
- After one loop, usually find a new solution

- Consider a parameterized polynomial system F_b
 - i.e. $F_b(x) = b_1 x^2 + b_2 x 1$
- Monodromy works by moving b in a loop while tracking x along that loop
- After one loop, usually find a new solution
- This process then is repeated until some stopping criterion is fulfilled

Monodromy example

• Consider
$$F_b(x) = b_1 x^2 + b_2 x - 1$$
 where $B = \mathbb{C}^2$

Monodromy example

• Consider
$$F_b(x) = b_1 x^2 + b_2 x - 1$$
 where $B = \mathbb{C}^2$

• For almost all $(b_1, b_2) \in \mathbb{C}^2$, $\{x \in \mathbb{C} : F_b(x) = 0\}$ has two elements

Monodromy example

• Consider
$$F_b(x) = b_1 x^2 + b_2 x - 1$$
 where $B = \mathbb{C}^2$

• For almost all $(b_1, b_2) \in \mathbb{C}^2$, $\{x \in \mathbb{C} : F_b(x) = 0\}$ has two elements

• Consider $(2,1)\in\mathbb{C}^2$ and x=-1, then $F_{(2,1)}(-1)=0$

• Monodromy methods work by taking one solution \hat{x} to the system of equations F_b and finding other elements via the monodromy action

- Monodromy methods work by taking one solution \hat{x} to the system of equations F_b and finding other elements via the monodromy action
- This action is transitive if and only if the solution variety is irreducible
- Monodromy methods work by taking one solution \hat{x} to the system of equations F_b and finding other elements via the monodromy action
- This action is transitive if and only if the solution variety is irreducible
- Major benefit: Using monodromy we can solve up to symmetry [ALR21]

Homotopy Continuation

- 2 Example 1: Polynomial optimization
- 3 Example 2: Gaussian mixture moment systems

4 Monodromy

5 Example 3: Power flow equations

• Consider electric power network on *n* nodes, v_0, \ldots, v_{n-1}

Example 3 Power flow equations

- Consider electric power network on n nodes, v_0, \ldots, v_{n-1}
- At v_0 we have $x_0 = 1$, $y_0 = 0$

- Consider electric power network on n nodes, v_0, \ldots, v_{n-1}
- At v_0 we have $x_0 = 1$, $y_0 = 0$
- At each node v_i , i > 0 we have the equation for voltage magnitude:

$$x_i^2 + y_i^2 = 1$$

- Consider electric power network on n nodes, v_0, \ldots, v_{n-1}
- At v_0 we have $x_0 = 1$, $y_0 = 0$
- At each node v_i , i > 0 we have the equation for voltage magnitude:

$$x_i^2 + y_i^2 = 1$$

• The active power injections are described by:

$$\sum_{k=0}^{n-1} b_{ik}(x_iy_k - x_ky_i) = P_i$$

- Consider electric power network on n nodes, v_0, \ldots, v_{n-1}
- At v_0 we have $x_0 = 1$, $y_0 = 0$
- At each node v_i , i > 0 we have the equation for voltage magnitude:

$$x_i^2 + y_i^2 = 1$$

• The active power injections are described by:

$$\sum_{k=0}^{n-1} b_{ik}(x_iy_k - x_ky_i) = P_i$$

• These are the power flow equations

Proposition (L., Boston, Lesieutre 2020 [LBL20])

- The power flow equations with $P_i \neq 0$ has a solution variety that is irreducible.
- The power flow equations with zero active power injections has a solution variety that decomposes into $2^{n-1} + 1$ irreducible components.
 - 2^{n-1} consist of a single point of the form $(x_i, y_i) = (\pm 1, 0)$ (trivial).
 - The remaining component consists of all nontrivial solutions to the power flow equations.

Proposition (L., Boston, Lesieutre 2020 [LBL20])

- The power flow equations with $P_i \neq 0$ has a solution variety that is irreducible.
- The power flow equations with zero active power injections has a solution variety that decomposes into $2^{n-1} + 1$ irreducible components.
 - 2^{n-1} consist of a single point of the form $(x_i, y_i) = (\pm 1, 0)$ (trivial).
 - The remaining component consists of all nontrivial solutions to the power flow equations.

Lemma (L., Zachariah, Boston, Lesieutre [LZBL20])

- For the power flow equations with zero active power injections, solutions come in pairs.
- For the power flow equations with zero active power injections on bipartite graphs, solutions come in sets of four.
- For the power flow equations with nonzero active power injections on bipartite graphs, solutions come in pairs.

	K_5	K_6	K ₇	K ₈	K ₉	K ₁₀
time (s): monodromy	0.05	0.37	1.97	16.39	65.33	357.926
time (s): polyhedral	0.37	2.53	17.10	112.43	609.49	2637.22
time (s): total degree	0.21	1.45	8.17	48.78	329.60	1510.01

Table: Numerical results to find all solutions for complete networks

	C_5	<i>C</i> ₆	<i>C</i> ₇	<i>C</i> ₈	<i>C</i> 9	C ₁₀
time (s): monodromy	0.13	0.158	1.10	1.46	2.48	2.60
time (s): polyhedral	2.7	3.03	5.37	14.8	56.36	211.24
time (s): total degree	2.11	3.40	9.76	31.91	200.41	862.50

Table: Numerical results to find all solutions for cyclic networks

- Outlined methods for polynomial system solving
- Considered three applications

Questions!?

References

- [ALR21] Carlos Améndola, Julia Lindberg, and Jose Israel Rodriguez, Solving parameterized polynomial systems with decomposable projections, arXiv preprint (2021).
- [Ber75] David N. Bernstein, The number of roots of a system of equations, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 1-4. MR 0435072
- [BT18] Paul Breiding and Sascha Timme, Homotopycontinuation.jl: A package for homotopy continuation in Julia, Mathematical Software ICMS 2018, Springer International Publishing, 2018, pp. 458–465.
- [HS95] Birkett Huber and Bernd Sturmfels, A polyhedral method for solving sparse polynomial systems, Math. Comp. 64 (1995), no. 212, 1541–1555. MR 1297471
- [Kho78] Askold G. Khovanskii, Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen. 12 (1978), no. 1, 51–61. MR 487230
- [Kou76] Anatoli G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), no. 1, 1–31. MR 419433
- [KW14] Kei Kobayashi and Henry P. Wynn, Computational algebraic methods in efficient estimation, Geometric theory of information, Signals Commun. Technol., Springer, Cham, 2014, pp. 119–140. MR 3329739
- [LAR21] Julia Lindberg, Carlos Améndola, and Jose Israel Rodriguez, Estimating gaussian mixtures using sparse polynomial moment systems., arXiv preprint arXiv:2106.15675 (2021).
- [LBL20] Julia Lindberg, Nigel Boston, and Bernard C. Lesieutre, *Exploiting symmetry in the power flow equations using monodromy*, ISSAC '20: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation (2020).
- [LNRW21] Julia Lindberg, Nathan Nicholson, Jose Israel Rodriguez, and Zinan Wang, The maximum likelihood degree of sparse polynomial systems, arXiv preprint arXiv:2105.07449 (2021).
- [LZBL20] Julia Lindberg, Alisha Zachariah, Nigel Boston, and Bernard C. Lesieutre, The distribution of the number of real solutions to the power flow equations, arXiv preprint (2020).