Polynomial system solving in applications

Julia Lindberg
University of Wisconsin-Madison
LAAS BrainPOP Seminar

Motivation

- Polynomial systems arise naturally in many applications

Motivation

- Polynomial systems arise naturally in many applications
- Solutions to these systems often have physical meaning

Motivation

- Polynomial systems arise naturally in many applications
- Solutions to these systems often have physical meaning
- This talk will outline techniques to solve these systems

Motivation

- Polynomial systems arise naturally in many applications
- Solutions to these systems often have physical meaning
- This talk will outline techniques to solve these systems
- We will consider three examples
(1) Lagrange systems of polynomial optimization problems
(2) Gaussian mixture moment systems
(3) Power flow equations

Set up

- Consider the variety defined by polynomials $f_{1}, \ldots, f_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

$$
\mathcal{V}(F)=\left\{x \in \mathbb{C}^{n}: f_{1}(x)=0, \ldots, f_{n}(x)=0\right\}
$$

where $\operatorname{dim}(\mathcal{V}(F))=0$

Set up

- Consider the variety defined by polynomials $f_{1}, \ldots, f_{n} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$

$$
\mathcal{V}(F)=\left\{x \in \mathbb{C}^{n}: f_{1}(x)=0, \ldots, f_{n}(x)=0\right\}
$$

where $\operatorname{dim}(\mathcal{V}(F))=0$

- Goal: Find all points in $\mathcal{V}(F)$

Table of Contents

(1) Homotopy Continuation
(2) Example 1: Polynomial optimization
(3) Example 2: Gaussian mixture moment systems
4. Monodromy
(5) Example 3: Power flow equations

Method 1

Homotopy continuation

- Idea: Solving most polynomial systems is hard, but some are easy

Method 1

Homotopy continuation

- Idea: Solving most polynomial systems is hard, but some are easy

$$
H_{T}=\left\{\begin{array}{l}
2\left(x_{2} y_{1}-x_{1} y_{2}\right)+3 y_{1}=0 \\
2\left(x_{1} y_{2}-x_{2} y_{1}\right)+4 y_{2}=0 \\
x_{1}^{2}+y_{1}^{2}=1 \\
x_{2}^{2}+y_{2}^{2}=1
\end{array}\right.
$$

$$
H_{S}=\left\{\begin{array}{l}
x_{1}^{2}=1 \\
x_{2}^{2}=1 \\
y_{1}^{2}=1 \\
y_{2}^{2}=1
\end{array}\right.
$$

Method 1

Homotopy continuation

- Idea: Solving most polynomial systems is hard, but some are easy

$$
H_{T}=\left\{\begin{array}{l}
2\left(x_{2} y_{1}-x_{1} y_{2}\right)+3 y_{1}=0 \\
2\left(x_{1} y_{2}-x_{2} y_{1}\right)+4 y_{2}=0 \\
x_{1}^{2}+y_{1}^{2}=1 \\
x_{2}^{2}+y_{2}^{2}=1
\end{array}\right.
$$

$$
H_{S}=\left\{\begin{array}{l}
x_{1}^{2}=1 \\
x_{2}^{2}=1 \\
y_{1}^{2}=1 \\
y_{2}^{2}=1
\end{array}\right.
$$

- Can I map my solutions from H_{S} to H_{T} ?

Method 1

- Idea: Solving most polynomial systems is hard, but some are easy

$$
H_{T}=\left\{\begin{array}{l}
2\left(x_{2} y_{1}-x_{1} y_{2}\right)+3 y_{1}=0 \\
2\left(x_{1} y_{2}-x_{2} y_{1}\right)+4 y_{2}=0 \\
x_{1}^{2}+y_{1}^{2}=1 \\
x_{2}^{2}+y_{2}^{2}=1
\end{array} \quad H_{S}=\left\{\begin{array}{l}
x_{1}^{2}=1 \\
x_{2}^{2}=1 \\
y_{1}^{2}=1 \\
y_{2}^{2}=1
\end{array}\right.\right.
$$

- Can I map my solutions from H_{S} to H_{T} ?
- Define $H_{t}:=(1-t) H_{S}+t H_{T}$ and compute H_{t} as $t \rightarrow 1$
- Called following homotopy paths

Method 1

- Idea: Solving most polynomial systems is hard, but some are easy

$$
H_{T}=\left\{\begin{array}{l}
2\left(x_{2} y_{1}-x_{1} y_{2}\right)+3 y_{1}=0 \\
2\left(x_{1} y_{2}-x_{2} y_{1}\right)+4 y_{2}=0 \\
x_{1}^{2}+y_{1}^{2}=1 \\
x_{2}^{2}+y_{2}^{2}=1
\end{array} \quad H_{S}=\left\{\begin{array}{l}
x_{1}^{2}=1 \\
x_{2}^{2}=1 \\
y_{1}^{2}=1 \\
y_{2}^{2}=1
\end{array}\right.\right.
$$

- Can I map my solutions from H_{S} to H_{T} ?
- Define $H_{t}:=(1-t) H_{S}+t H_{T}$ and compute H_{t} as $t \rightarrow 1$
- Called following homotopy paths
- Typically use predictor-corrector methods
- Predict: Take step along tangent direction at a point
- Correct: Use Newton's method

Homotopy continuation visual

Figure: The homotopy $H_{t}=(1-t) H_{S}+t H_{T}$ (left)[KW14] and a predictor corrector step (right) [BT18]

Homotopy continuation

- Want to pick a start system, H_{S}, such that
(1) The solutions of H_{S} are easy to find
(2) The number of solutions to $H_{S} \approx$ the number of solutions to H_{T}

Homotopy continuation

- Want to pick a start system, H_{S}, such that
(1) The solutions of H_{S} are easy to find
(2) The number of solutions to $H_{S} \approx$ the number of solutions to H_{T}
- Need to know $|\mathcal{V}(F)|$

Start system

Total degree

Theorem (Bezout)
$|\mathcal{V}(F)| \leq d_{1} \cdots d_{n}$ where $d_{i}=\operatorname{deg}\left(f_{i}\right)$

Start system

Total degree

Theorem (Bezout)
$|\mathcal{V}(F)| \leq d_{1} \cdots d_{n}$ where $d_{i}=\operatorname{deg}\left(f_{i}\right)$

- If $|\mathcal{V}(F)| \approx d_{1} \cdots d_{n}$ then a total degree start system is suitable. i.e.

$$
H_{S}=\left\langle x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right\rangle
$$

Start system

Total degree

Theorem (Bezout)
$|\mathcal{V}(F)| \leq d_{1} \cdots d_{n}$ where $d_{i}=\operatorname{deg}\left(f_{i}\right)$

- If $|\mathcal{V}(F)| \approx d_{1} \cdots d_{n}$ then a total degree start system is suitable. i.e.

$$
H_{S}=\left\langle x_{1}^{d_{1}}-1, \ldots, x_{n}^{d_{n}}-1\right\rangle
$$

- This bound is generically tight but can be a strict upper bound when f_{i} are sparse

Newton Polytopes

- The monomial support of f is the set of exponent vectors of the monomials of f

Newton Polytopes

- The monomial support of f is the set of exponent vectors of the monomials of f
- Ex. $f(x, y)=1+2 x-3 y+x y$ has monomial support

$$
\{(0,0),(1,0),(0,1),(1,1)\}
$$

Newton Polytopes

- The monomial support of f is the set of exponent vectors of the monomials of f
- Ex. $f(x, y)=1+2 x-3 y+x y$ has monomial support

$$
\{(0,0),(1,0),(0,1),(1,1)\}
$$

- The Newton polytope of f is the convex hull of its monomial support

Newton Polytopes

- The monomial support of f is the set of exponent vectors of the monomials of f
- Ex. $f(x, y)=1+2 x-3 y+x y$ has monomial support

$$
\{(0,0),(1,0),(0,1),(1,1)\}
$$

- The Newton polytope of f is the convex hull of its monomial support
- Ex. If $f(x, y)=1+2 x-3 y+x y$, then $\operatorname{Newt}(f)=\operatorname{Conv}\{(0,0),(1,0),(0,1),(1,1)\}$

Mixed Volume

- Given k polytopes, P_{1}, \ldots, P_{k} in \mathbb{R}^{n} their mixed volume is

$$
\operatorname{MVol}\left(P_{1}, \ldots, P_{k}\right)=\sum_{J \subseteq[k]}(-1)^{k-|J|} \cdot \operatorname{Vol}_{n}\left(P_{J}\right)
$$

where $P_{J}=P_{i_{1}}+\ldots+P_{i_{|J|}}$ and $J=\left(i_{1}, \ldots, i_{|J|}\right)$

Mixed Volume

- Given k polytopes, P_{1}, \ldots, P_{k} in \mathbb{R}^{n} their mixed volume is

$$
\operatorname{MVol}\left(P_{1}, \ldots, P_{k}\right)=\sum_{J \subseteq[k]}(-1)^{k-|J|} \cdot \operatorname{Vol}_{n}\left(P_{J}\right)
$$

where $P_{J}=P_{i_{1}}+\ldots+P_{i_{|J|}}$ and $J=\left(i_{1}, \ldots, i_{|J|}\right)$

- Ex. $k=n=2$,

$$
\operatorname{MVol}\left(P_{1}, P_{2}\right)=\operatorname{Area}\left(P_{1}+P_{2}\right)-\operatorname{Area}\left(P_{1}\right)-\operatorname{Area}\left(P_{2}\right)
$$

Start system

Polyhedral

Theorem (BKK Bound [Ber75, Kho78, Kou76])
$|\mathcal{V}(F)| \leq \operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right)$

Start system

Polyhedral

Theorem (BKK Bound [Ber75, Kho78, Kou76])
 $|\mathcal{V}(F)| \leq \operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right)$

- If $\operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right) \ll d_{1} \cdots d_{n}$ then a polyhedral start system is suitable

Start system

Polyhedral

Theorem (BKK Bound [Ber75, Kho78, Kou76])
 $|\mathcal{V}(F)| \leq \operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right)$

- If $\operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right) \ll d_{1} \cdots d_{n}$ then a polyhedral start system is suitable
- There exists an algorithm that finds this binomial start system [HS95]

Start system

Polyhedral

Theorem (BKK Bound [Ber75, Kho78, Kou76])
 $|\mathcal{V}(F)| \leq \operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right)$

- If $\operatorname{MVol}\left(\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{n}\right)\right) \ll d_{1} \cdots d_{n}$ then a polyhedral start system is suitable
- There exists an algorithm that finds this binomial start system [HS95]
- In general, not easy to compute the mixed volume (\#P hard)

Table of Contents

(1) Homotopy Continuation
(2) Example 1: Polynomial optimization
(3) Example 2: Gaussian mixture moment systems
4. Monodromy
(5) Example 3: Power flow equations

Example 1

Critical points of polynomial optimization problems

- Want to solve polynomial optimization problem of the form

$$
\min _{x \in \mathbb{R}^{n}} g(x) \text { subject to } f_{i}(x)=0, i \in[m]
$$

Example 1

Critical points of polynomial optimization problems

- Want to solve polynomial optimization problem of the form

$$
\min _{x \in \mathbb{R}^{n}} g(x) \text { subject to } f_{i}(x)=0, i \in[m]
$$

- Consider Lagrangian

$$
\mathcal{L}(x, \lambda)=g(x)-\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

Example 1

Critical points of polynomial optimization problems

- Want to solve polynomial optimization problem of the form

$$
\min _{x \in \mathbb{R}^{n}} g(x) \text { subject to } f_{i}(x)=0, i \in[m]
$$

- Consider Lagrangian

$$
\mathcal{L}(x, \lambda)=g(x)-\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

- Smooth critical points $=$ solutions to polynomial system

$$
\begin{aligned}
\ell_{i} & =\frac{\partial \mathcal{L}}{\partial x_{i}}=0 \\
f_{i} & =\frac{\partial \mathcal{L}}{\partial \lambda_{i}}=0
\end{aligned}
$$

Example 1

Critical points of polynomial optimization problems

Theorem (L., Nicholson, Rodriguez, Wang [LNRW21])

For generic f_{i}, g the number of smooth critical points to

$$
\min _{x \in \mathbb{R}^{g}} g(x) \text { subject to } \quad f_{i}(x)=0, i \in[m]
$$

is equal to $\operatorname{MVol}\left(\ell_{1}, \ldots, \ell_{n}, f_{1}, \ldots, f_{m}\right)$. Moreover, the number of critical points is dictated by $\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{m}\right), \operatorname{Newt}(g)$.

Example 1

Critical points of polynomial optimization problems

Theorem (L., Nicholson, Rodriguez, Wang [LNRW21])

For generic f_{i}, g the number of smooth critical points to

$$
\min _{x \in \mathbb{R}^{n}} g(x) \text { subject to } f_{i}(x)=0, i \in[m]
$$

is equal to $\operatorname{MVol}\left(\ell_{1}, \ldots, \ell_{n}, f_{1}, \ldots, f_{m}\right)$. Moreover, the number of critical points is dictated by $\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{m}\right), \operatorname{Newt}(g)$.

- Implication 1: Polyhedral start systems will efficiently find all complex critical points for polynomial optimization problems

Example 1

Critical points of polynomial optimization problems

Theorem (L., Nicholson, Rodriguez, Wang [LNRW21])

For generic f_{i}, g the number of smooth critical points to

$$
\min _{x \in \mathbb{R}^{n}} g(x) \text { subject to } f_{i}(x)=0, i \in[m]
$$

is equal to $\operatorname{MVol}\left(\ell_{1}, \ldots, \ell_{n}, f_{1}, \ldots, f_{m}\right)$. Moreover, the number of critical points is dictated by $\operatorname{Newt}\left(f_{1}\right), \ldots, \operatorname{Newt}\left(f_{m}\right), \operatorname{Newt}(g)$.

- Implication 1: Polyhedral start systems will efficiently find all complex critical points for polynomial optimization problems
- Implication 2: Only consider monomials corresponding to vertices of Newton polytopes

Example 1

Critical points of polynomial optimization problems

- Consider
$\min _{x \in \mathbb{R}^{3}} 3 x_{1}-x_{2}+2 x_{3} \quad$ subject to $x_{1}^{2}-x_{1} x_{2}+x_{1} x_{3}-2 x_{2}^{2}+3 x_{2} x_{3}+4 x_{3}^{2}-x_{1}+2 x_{2}-x_{3}-1=0$

Example 1

Critical points of polynomial optimization problems

- Consider
$\min _{x \in \mathbb{R}^{3}} 3 x_{1}-x_{2}+2 x_{3}$ subject to $x_{1}^{2}-x_{1} x_{2}+x_{1} x_{3}-2 x_{2}^{2}+3 x_{2} x_{3}+4 x_{3}^{2}-x_{1}+2 x_{2}-x_{3}-1=0$
- The Lagrange system is

$$
\begin{aligned}
\ell_{1} & =3-\lambda\left(2 x_{1}-x_{2}+x_{3}-1\right) \\
\ell_{2} & =-1-\lambda\left(-x_{1}-4 x_{2}+3 x_{3}+2\right) \\
\ell_{3} & =2-\lambda\left(x_{1}+3 x_{2}+8 x_{3}-1\right) \\
f & =x_{1}^{2}-x_{1} x_{2}+x_{1} x_{3}-2 x_{2}^{2}+3 x_{2} x_{3}+4 x_{3}^{2}-x_{1}+2 x_{2}-x_{3}-1
\end{aligned}
$$

Using a total degree start system, need to track 16 paths

Example 1

Critical points of polynomial optimization problems

- Consider
$\min _{x \in \mathbb{R}^{3}} 3 x_{1}-x_{2}+2 x_{3}$ subject to $x_{1}^{2}-x_{1} x_{2}+x_{1} x_{3}-2 x_{2}^{2}+3 x_{2} x_{3}+4 x_{3}^{2}-x_{1}+2 x_{2}-x_{3}-1=0$
- The Lagrange system is

$$
\begin{aligned}
\ell_{1} & =3-\lambda\left(2 x_{1}-x_{2}+x_{3}-1\right) \\
\ell_{2} & =-1-\lambda\left(-x_{1}-4 x_{2}+3 x_{3}+2\right) \\
\ell_{3} & =2-\lambda\left(x_{1}+3 x_{2}+8 x_{3}-1\right) \\
f & =x_{1}^{2}-x_{1} x_{2}+x_{1} x_{3}-2 x_{2}^{2}+3 x_{2} x_{3}+4 x_{3}^{2}-x_{1}+2 x_{2}-x_{3}-1
\end{aligned}
$$

Using a total degree start system, need to track 16 paths

- I claim there are only 2 critical points

Example 1

Critical points of polynomial optimization problems

- Consider the same optimization problem restricted to the monomials corresponding to vertices of each Newton polytope:

$$
\min _{x \in \mathbb{R}^{3}} 3 x_{1}-x_{2}+2 x_{3} \quad \text { subject to } \quad x_{1}^{2}-2 x_{2}^{2}+4 x_{3}^{2}-1=0
$$

Example 1

Critical points of polynomial optimization problems

- Consider the same optimization problem restricted to the monomials corresponding to vertices of each Newton polytope:

$$
\min _{x \in \mathbb{R}^{3}} 3 x_{1}-x_{2}+2 x_{3} \quad \text { subject to } \quad x_{1}^{2}-2 x_{2}^{2}+4 x_{3}^{2}-1=0
$$

- The Lagrange system is

$$
\begin{aligned}
\ell_{1} & =3-2 \lambda x_{1} \\
\ell_{2} & =-1+4 \lambda x_{2} \\
\ell_{3} & =2-8 \lambda x_{3} \\
f & =x_{1}^{2}-2 x_{2}^{2}+4 x_{3}^{2}-1
\end{aligned}
$$

Example 1

Critical points of polynomial optimization problems

- Consider the same optimization problem restricted to the monomials corresponding to vertices of each Newton polytope:

$$
\min _{x \in \mathbb{R}^{3}} 3 x_{1}-x_{2}+2 x_{3} \quad \text { subject to } \quad x_{1}^{2}-2 x_{2}^{2}+4 x_{3}^{2}-1=0
$$

- The Lagrange system is

$$
\begin{aligned}
\ell_{1} & =3-2 \lambda x_{1} \\
\ell_{2} & =-1+4 \lambda x_{2} \\
\ell_{3} & =2-8 \lambda x_{3} \\
f & =x_{1}^{2}-2 x_{2}^{2}+4 x_{3}^{2}-1
\end{aligned}
$$

- Can explicitly solve this system and get 2 complex solutions, then use this as a start system for the general problem

Example 1

Critical points of polynomial optimization problems

- Consider the same optimization problem restricted to the monomials corresponding to vertices of each Newton polytope:

$$
\min _{x \in \mathbb{R}^{3}} 3 x_{1}-x_{2}+2 x_{3} \quad \text { subject to } \quad x_{1}^{2}-2 x_{2}^{2}+4 x_{3}^{2}-1=0
$$

- The Lagrange system is

$$
\begin{aligned}
\ell_{1} & =3-2 \lambda x_{1} \\
\ell_{2} & =-1+4 \lambda x_{2} \\
\ell_{3} & =2-8 \lambda x_{3} \\
f & =x_{1}^{2}-2 x_{2}^{2}+4 x_{3}^{2}-1
\end{aligned}
$$

- Can explicitly solve this system and get 2 complex solutions, then use this as a start system for the general problem
- This generalizes to minimizing a linear function over any hypersurface

Table of Contents

(1) Homotopy Continuation
(2) Example 1: Polynomial optimization
(3) Example 2: Gaussian mixture moment systems
4. Monodromy
(5) Example 3: Power flow equations

Example 2

- Classical problem in statistics is density estimation: "Given N samples from a density p, can I estimate p ?"

Example 2

- Classical problem in statistics is density estimation: "Given N samples from a density p, can I estimate p ?"
- Gaussian mixture models are a popular family to consider since they universally approximate smooth densities

Example 2

- Classical problem in statistics is density estimation: "Given N samples from a density p, can I estimate p ?"
- Gaussian mixture models are a popular family to consider since they universally approximate smooth densities
- Problem: Given N samples distributed as mixture of k Gaussians, recover mean μ_{i}, variance, σ_{i}^{2} and mixing coefficient, λ_{i} of each component

Example 2

- Classical problem in statistics is density estimation: "Given N samples from a density p, can I estimate p ?"
- Gaussian mixture models are a popular family to consider since they universally approximate smooth densities
- Problem: Given N samples distributed as mixture of k Gaussians, recover mean μ_{i}, variance, σ_{i}^{2} and mixing coefficient, λ_{i} of each component
- Many techniques to do this, consider method of moments

Moments

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the probability density function of a random variable X. For $i \geq 0$, the $i-t h$ moment of X is

$$
m_{i}=\mathbb{E}\left[X^{i}\right]=\int_{\mathbb{R}} x^{i} f(x) d x
$$

Moments

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the probability density function of a random variable X. For $i \geq 0$, the $i-t h$ moment of X is

$$
m_{i}=\mathbb{E}\left[X^{i}\right]=\int_{\mathbb{R}} x^{i} f(x) d x
$$

- For parameterized distributions, moments are functions of parameters

Moments

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the probability density function of a random variable X. For $i \geq 0$, the $i-t h$ moment of X is

$$
m_{i}=\mathbb{E}\left[X^{i}\right]=\int_{\mathbb{R}} x^{i} f(x) d x
$$

- For parameterized distributions, moments are functions of parameters
- Ex. Suppose $X \sim \operatorname{Unif}[a, b]$ where $-\infty<a<b<\infty$

Moments

Definition

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the probability density function of a random variable X. For $i \geq 0$, the $i-t h$ moment of X is

$$
m_{i}=\mathbb{E}\left[X^{i}\right]=\int_{\mathbb{R}} x^{i} f(x) d x
$$

- For parameterized distributions, moments are functions of parameters
- Ex. Suppose $X \sim \operatorname{Unif}[a, b]$ where $-\infty<a<b<\infty$
- The first few moments are:

$$
\begin{aligned}
& m_{1}=\frac{1}{2}(a+b) \\
& m_{2}=\frac{1}{3}\left(a^{2}+2 a b+b^{2}\right) \\
& m_{3}=\frac{1}{4}\left(b^{3}+a b^{2}+a^{2} b+a^{3}\right)
\end{aligned}
$$

Method of Moments

- Consider a statistical model with n unknown parameters, $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ and the moments up to order n as functions of θ

$$
m_{1}=g_{1}(\theta), \ldots, m_{n}=g_{n}(\theta)
$$

and samples y_{1}, \ldots, y_{N}

Method of Moments

- Consider a statistical model with n unknown parameters, $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ and the moments up to order n as functions of θ

$$
m_{1}=g_{1}(\theta), \ldots, m_{n}=g_{n}(\theta)
$$

and samples y_{1}, \ldots, y_{N}

- Method of Moments:
(1) Compute sample moments

$$
\bar{m}_{i}=\frac{1}{N} \sum_{j=1}^{N} y_{j}^{i}
$$

Method of Moments

- Consider a statistical model with n unknown parameters, $\theta=\left(\theta_{1}, \ldots, \theta_{n}\right)$ and the moments up to order n as functions of θ

$$
m_{1}=g_{1}(\theta), \ldots, m_{n}=g_{n}(\theta)
$$

and samples y_{1}, \ldots, y_{N}

- Method of Moments:
(1) Compute sample moments

$$
\bar{m}_{i}=\frac{1}{N} \sum_{j=1}^{N} y_{j}^{i}
$$

(2) Solve $g_{i}(\theta)=\bar{m}_{i}$ for $i=1, \ldots, n$ to recover parameters

Method of Moments

Gaussian Mixture Models

- The moments of the Gaussian distributions are $M_{0}\left(\mu, \sigma^{2}\right)=1, M_{1}\left(\mu, \sigma^{2}\right)=\mu$,

$$
M_{\ell}\left(\mu, \sigma^{2}\right)=\mu M_{\ell-1}+(\ell-1) \sigma^{2} M_{\ell-2}, \quad \ell \geq 2
$$

Method of Moments

Gaussian Mixture Models

- The moments of the Gaussian distributions are $M_{0}\left(\mu, \sigma^{2}\right)=1, M_{1}\left(\mu, \sigma^{2}\right)=\mu$,

$$
M_{\ell}\left(\mu, \sigma^{2}\right)=\mu M_{\ell-1}+(\ell-1) \sigma^{2} M_{\ell-2}, \quad \ell \geq 2
$$

- The moments of mixtures of k Gaussians are

$$
m_{\ell}=\sum_{i=1}^{k} \lambda_{i} M_{\ell}\left(\mu_{i}, \sigma_{i}^{2}\right), \quad \ell \geq 0
$$

Method of Moments

- The moments of the Gaussian distributions are $M_{0}\left(\mu, \sigma^{2}\right)=1, M_{1}\left(\mu, \sigma^{2}\right)=\mu$,

$$
M_{\ell}\left(\mu, \sigma^{2}\right)=\mu M_{\ell-1}+(\ell-1) \sigma^{2} M_{\ell-2}, \quad \ell \geq 2
$$

- The moments of mixtures of k Gaussians are

$$
m_{\ell}=\sum_{i=1}^{k} \lambda_{i} M_{\ell}\left(\mu_{i}, \sigma_{i}^{2}\right), \quad \ell \geq 0
$$

- There are three special cases of Gaussian mixture models commonly studied in the statistics literature:
(1) The mixing coefficients are known
(2) The mixing coefficients are known and the variances are equal
(3) Only the means are unknown

Gaussian Mixture Models

Theorem (L., Améndola, Rodriguez [LAR21])

In all cases, Gaussian mixture models are algebraically identifiable using moment equations of lowest degree. Moreover, the mixed volume of each of set of equations is given below.

	Known mixing coefficients	Known mixing coefficients + equal variances	Unknown means
Moment equations	$m_{1}, \ldots, m_{2 k}$	m_{1}, \ldots, m_{k+1}	m_{1}, \ldots, m_{k}
Unknowns	μ_{i}, σ_{i}^{2}	μ_{i}, σ^{2}	μ_{i}
Mixed volume	$(2 k-1)!!k!$	$\frac{(k+1)!}{2}$	$k!$
Mixed volume tight	Yes for $k \leq 8$	Yes for $k \leq 8$	Yes

Classes of Gaussian Mixture Models

	Mixed Volume	Bezout Bound
Known mixing coefficients	$(2 k-1)!!k!$	$(2 k)!$
Known mixing coefficients + equal variances	$\frac{(k+1)!}{2}$	$(k+1)!$
Unknown means	$k!^{2}$	$k!$

Classes of Gaussian Mixture Models

	Mixed Volume	Bezout Bound
Known mixing coefficients	$(2 k-1)!!k!$	$(2 k)!$
Known mixing coefficients + equal variances	$\frac{(k+1)!}{2}$	$(k+1)!$
Unknown means	$k!^{2}$	$k!$

- Our proofs of the mixed volume in the first two cases give a start system that tracks mixed volume number of paths

Classes of Gaussian Mixture Models

	Mixed Volume	Bezout Bound
Known mixing coefficients	$(2 k-1)!!k!$	$(2 k)!$
Known mixing coefficients + equal variances	$\frac{(k+1)!}{2}$	$(k+1)!$
Unknown means	$k!$	$k!$

- Our proofs of the mixed volume in the first two cases give a start system that tracks mixed volume number of paths
- In the final case if $\lambda_{i}=\frac{1}{k}$ and σ_{i}^{2} are equal, there is a unique solution up to symmetry

Table of Contents

(1) Homotopy Continuation

(2) Example 1: Polynomial optimization
(3) Example 2: Gaussian mixture moment systems
4. Monodromy
(5) Example 3: Power flow equations

Method 2

Monodromy

- Consider a parameterized polynomial system F_{b}
- i.e. $F_{b}(x)=b_{1} x^{2}+b_{2} x-1$

Method 2

- Consider a parameterized polynomial system F_{b}
- i.e. $F_{b}(x)=b_{1} x^{2}+b_{2} x-1$
- Monodromy works by moving b in a loop while tracking x along that loop

Method 2

- Consider a parameterized polynomial system F_{b}
- i.e. $F_{b}(x)=b_{1} x^{2}+b_{2} x-1$
- Monodromy works by moving b in a loop while tracking x along that loop
- After one loop, usually find a new solution

Method 2

- Consider a parameterized polynomial system F_{b}
- i.e. $F_{b}(x)=b_{1} x^{2}+b_{2} x-1$
- Monodromy works by moving b in a loop while tracking x along that loop
- After one loop, usually find a new solution
- This process then is repeated until some stopping criterion is fulfilled

Monodromy example

- Consider $F_{b}(x)=b_{1} x^{2}+b_{2} x-1$ where $B=\mathbb{C}^{2}$

Monodromy example

- Consider $F_{b}(x)=b_{1} x^{2}+b_{2} x-1$ where $B=\mathbb{C}^{2}$
- For almost all $\left(b_{1}, b_{2}\right) \in \mathbb{C}^{2},\left\{x \in \mathbb{C}: F_{b}(x)=0\right\}$ has two elements

Monodromy example

- Consider $F_{b}(x)=b_{1} x^{2}+b_{2} x-1$ where $B=\mathbb{C}^{2}$
- For almost all $\left(b_{1}, b_{2}\right) \in \mathbb{C}^{2},\left\{x \in \mathbb{C}: F_{b}(x)=0\right\}$ has two elements
- Consider $(2,1) \in \mathbb{C}^{2}$ and $x=-1$, then $F_{(2,1)}(-1)=0$

Method 2

Monodromy

- Monodromy methods work by taking one solution \hat{x} to the system of equations F_{b} and finding other elements via the monodromy action

Method 2

- Monodromy methods work by taking one solution \hat{x} to the system of equations F_{b} and finding other elements via the monodromy action
- This action is transitive if and only if the solution variety is irreducible

Method 2

- Monodromy methods work by taking one solution \hat{x} to the system of equations F_{b} and finding other elements via the monodromy action
- This action is transitive if and only if the solution variety is irreducible
- Major benefit: Using monodromy we can solve up to symmetry [ALR21]

Table of Contents

(1) Homotopy Continuation
(2) Example 1: Polynomial optimization
(3) Example 2: Gaussian mixture moment systems
4. Monodromy
(5) Example 3: Power flow equations

Example 3

Power flow equations

- Consider electric power network on n nodes, v_{0}, \ldots, v_{n-1}

Example 3

- Consider electric power network on n nodes, v_{0}, \ldots, v_{n-1}
- At v_{0} we have $x_{0}=1, y_{0}=0$

Example 3

- Consider electric power network on n nodes, v_{0}, \ldots, v_{n-1}
- At v_{0} we have $x_{0}=1, y_{0}=0$
- At each node $v_{i}, i>0$ we have the equation for voltage magnitude:

$$
x_{i}^{2}+y_{i}^{2}=1
$$

Example 3

- Consider electric power network on n nodes, v_{0}, \ldots, v_{n-1}
- At v_{0} we have $x_{0}=1, y_{0}=0$
- At each node $v_{i}, i>0$ we have the equation for voltage magnitude:

$$
x_{i}^{2}+y_{i}^{2}=1
$$

- The active power injections are described by:

$$
\sum_{k=0}^{n-1} b_{i k}\left(x_{i} y_{k}-x_{k} y_{i}\right)=P_{i}
$$

Example 3

- Consider electric power network on n nodes, v_{0}, \ldots, v_{n-1}
- At v_{0} we have $x_{0}=1, y_{0}=0$
- At each node $v_{i}, i>0$ we have the equation for voltage magnitude:

$$
x_{i}^{2}+y_{i}^{2}=1
$$

- The active power injections are described by:

$$
\sum_{k=0}^{n-1} b_{i k}\left(x_{i} y_{k}-x_{k} y_{i}\right)=P_{i}
$$

- These are the power flow equations

Method 2

Monodromy

Proposition (L., Boston, Lesieutre 2020 [LBL20])

- The power flow equations with $P_{i} \neq 0$ has a solution variety that is irreducible.
- The power flow equations with zero active power injections has a solution variety that decomposes into $2^{n-1}+1$ irreducible components.
- 2^{n-1} consist of a single point of the form $\left(x_{i}, y_{i}\right)=(\pm 1,0)$ (trivial).
- The remaining component consists of all nontrivial solutions to the power flow equations.

Method 2

Monodromy

Proposition (L., Boston, Lesieutre 2020 [LBL20])

- The power flow equations with $P_{i} \neq 0$ has a solution variety that is irreducible.
- The power flow equations with zero active power injections has a solution variety that decomposes into $2^{n-1}+1$ irreducible components.
- 2^{n-1} consist of a single point of the form $\left(x_{i}, y_{i}\right)=(\pm 1,0)$ (trivial).
- The remaining component consists of all nontrivial solutions to the power flow equations.

Lemma (L., Zachariah, Boston, Lesieutre [LZBL20])

- For the power flow equations with zero active power injections, solutions come in pairs.
- For the power flow equations with zero active power injections on bipartite graphs, solutions come in sets of four.
- For the power flow equations with nonzero active power injections on bipartite graphs, solutions come in pairs.

Comparing Monodromy

	K_{5}	K_{6}	K_{7}	K_{8}	K_{9}	K_{10}
time (s): monodromy	0.05	0.37	1.97	16.39	65.33	357.926
time (s): polyhedral	0.37	2.53	17.10	112.43	609.49	2637.22
time (s): total degree	0.21	1.45	8.17	48.78	329.60	1510.01

Table: Numerical results to find all solutions for complete networks

	C_{5}	C_{6}	C_{7}	C_{8}	C_{9}	C_{10}
time (s): monodromy	0.13	0.158	1.10	1.46	2.48	2.60
time (s): polyhedral	2.7	3.03	5.37	14.8	56.36	211.24
time (s): total degree	2.11	3.40	9.76	31.91	200.41	862.50

Table: Numerical results to find all solutions for cyclic networks

Conclusion

- Outlined methods for polynomial system solving
- Considered three applications

Questions!?

References

[ALR21] Carlos Améndola, Julia Lindberg, and Jose Israel Rodriguez, Solving parameterized polynomial systems with decomposable projections, arXiv preprint (2021).
[Ber75] David N. Bernstein, The number of roots of a system of equations, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 1-4. MR 0435072
[BT18] Paul Breiding and Sascha Timme, Homotopycontinuation.jl: A package for homotopy continuation in Julia, Mathematical Software - ICMS 2018, Springer International Publishing, 2018, pp. 458-465.
[HS95] Birkett Huber and Bernd Sturmfels, A polyhedral method for solving sparse polynomial systems, Math. Comp. 64 (1995), no. 212, 1541-1555. MR 1297471
[Kho78] Askold G. Khovanskii, Newton polyhedra, and the genus of complete intersections, Funktsional. Anal. i Prilozhen. 12 (1978), no. 1, 51-61. MR 487230
[Kou76] Anatoli G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), no. 1, 1-31. MR 419433
[KW14] Kei Kobayashi and Henry P. Wynn, Computational algebraic methods in efficient estimation, Geometric theory of information, Signals Commun. Technol., Springer, Cham, 2014, pp. 119-140. MR 3329739
[LAR21] Julia Lindberg, Carlos Améndola, and Jose Israel Rodriguez, Estimating gaussian mixtures using sparse polynomial moment systems., arXiv preprint arXiv:2106.15675 (2021).
[LBL20] Julia Lindberg, Nigel Boston, and Bernard C. Lesieutre, Exploiting symmetry in the power flow equations using monodromy, ISSAC '20: Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation (2020).
[LNRW21] Julia Lindberg, Nathan Nicholson, Jose Israel Rodriguez, and Zinan Wang, The maximum likelihood degree of sparse polynomial systems, arXiv preprint arXiv:2105.07449 (2021).
[LZBL20] Julia Lindberg, Alisha Zachariah, Nigel Boston, and Bernard C. Lesieutre, The distribution of the number of real solutions to the power flow equations, arXiv preprint (2020).

