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Motivation

Polynomial systems arise naturally in many applications

Solutions to these systems often have physical meaning

This talk will outline techniques to solve these systems

We will consider three examples
1 Lagrange systems of polynomial optimization problems
2 Gaussian mixture moment systems
3 Power flow equations
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Set up

Consider the variety defined by polynomials f1, . . . , fn ∈ R[x1, . . . , xn]

V(F ) = {x ∈ Cn : f1(x) = 0, . . . , fn(x) = 0}

where dim(V(F )) = 0

Goal: Find all points in V(F )

3 / 33



Set up

Consider the variety defined by polynomials f1, . . . , fn ∈ R[x1, . . . , xn]

V(F ) = {x ∈ Cn : f1(x) = 0, . . . , fn(x) = 0}

where dim(V(F )) = 0

Goal: Find all points in V(F )

3 / 33



Table of Contents

1 Homotopy Continuation

2 Example 1: Polynomial optimization

3 Example 2: Gaussian mixture moment systems

4 Monodromy

5 Example 3: Power flow equations

4 / 33



Method 1
Homotopy continuation

Idea: Solving most polynomial systems is hard, but some are easy

HT =


2(x2y1 − x1y2) + 3y1 = 0

2(x1y2 − x2y1) + 4y2 = 0

x2
1 + y2

1 = 1

x2
2 + y2

2 = 1

HS =


x2

1 = 1

x2
2 = 1

y2
1 = 1

y2
2 = 1

Can I map my solutions from HS to HT ?

Define Ht := (1− t)HS + tHT and compute Ht as t → 1
Called following homotopy paths

Typically use predictor-corrector methods
Predict: Take step along tangent direction at a point
Correct: Use Newton’s method

5 / 33



Method 1
Homotopy continuation

Idea: Solving most polynomial systems is hard, but some are easy

HT =


2(x2y1 − x1y2) + 3y1 = 0

2(x1y2 − x2y1) + 4y2 = 0

x2
1 + y2

1 = 1

x2
2 + y2

2 = 1

HS =


x2

1 = 1

x2
2 = 1

y2
1 = 1

y2
2 = 1

Can I map my solutions from HS to HT ?

Define Ht := (1− t)HS + tHT and compute Ht as t → 1
Called following homotopy paths

Typically use predictor-corrector methods
Predict: Take step along tangent direction at a point
Correct: Use Newton’s method

5 / 33



Method 1
Homotopy continuation

Idea: Solving most polynomial systems is hard, but some are easy

HT =


2(x2y1 − x1y2) + 3y1 = 0

2(x1y2 − x2y1) + 4y2 = 0

x2
1 + y2

1 = 1

x2
2 + y2

2 = 1

HS =


x2

1 = 1

x2
2 = 1

y2
1 = 1

y2
2 = 1

Can I map my solutions from HS to HT ?

Define Ht := (1− t)HS + tHT and compute Ht as t → 1
Called following homotopy paths

Typically use predictor-corrector methods
Predict: Take step along tangent direction at a point
Correct: Use Newton’s method

5 / 33



Method 1
Homotopy continuation

Idea: Solving most polynomial systems is hard, but some are easy

HT =


2(x2y1 − x1y2) + 3y1 = 0

2(x1y2 − x2y1) + 4y2 = 0

x2
1 + y2

1 = 1

x2
2 + y2

2 = 1

HS =


x2

1 = 1

x2
2 = 1

y2
1 = 1

y2
2 = 1

Can I map my solutions from HS to HT ?

Define Ht := (1− t)HS + tHT and compute Ht as t → 1
Called following homotopy paths

Typically use predictor-corrector methods
Predict: Take step along tangent direction at a point
Correct: Use Newton’s method

5 / 33



Method 1
Homotopy continuation

Idea: Solving most polynomial systems is hard, but some are easy

HT =


2(x2y1 − x1y2) + 3y1 = 0

2(x1y2 − x2y1) + 4y2 = 0

x2
1 + y2

1 = 1

x2
2 + y2

2 = 1

HS =


x2

1 = 1

x2
2 = 1

y2
1 = 1

y2
2 = 1

Can I map my solutions from HS to HT ?

Define Ht := (1− t)HS + tHT and compute Ht as t → 1
Called following homotopy paths

Typically use predictor-corrector methods
Predict: Take step along tangent direction at a point
Correct: Use Newton’s method

5 / 33



Homotopy continuation visual

Figure: The homotopy Ht = (1− t)HS + tHT (left)[KW14] and a predictor corrector step (right) [BT18]
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Homotopy continuation
Start system

Want to pick a start system, HS , such that
1 The solutions of HS are easy to find
2 The number of solutions to HS ≈ the number of solutions to HT

Need to know |V(F )|
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Start system
Total degree

Theorem (Bezout)

|V(F )| ≤ d1 · · · dn where di = deg(fi )

If |V(F )| ≈ d1 · · · dn then a total degree start system is suitable. i.e.

HS = 〈xd1
1 − 1, . . . , xdnn − 1〉

This bound is generically tight but can be a strict upper bound when fi are sparse
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Newton Polytopes

The monomial support of f is the set of exponent vectors of the monomials of f

Ex. f (x , y) = 1 + 2x − 3y + xy has monomial support

{(0, 0), (1, 0), (0, 1), (1, 1)}

The Newton polytope of f is the convex hull of its monomial support

Ex. If f (x , y) = 1 + 2x − 3y + xy , then Newt(f ) = Conv{(0, 0), (1, 0), (0, 1), (1, 1)}

1 x

y xy

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Mixed Volume

Given k polytopes, P1, . . . ,Pk in Rn their mixed volume is

MVol(P1, . . . ,Pk) =
∑
J⊆[k]

(−1)k−|J| · Voln(PJ)

where PJ = Pi1 + . . .+ Pi|J| and J = (i1, . . . , i|J|)

Ex. k = n = 2,

MVol(P1,P2) = Area(P1 + P2)−Area(P1)−Area(P2)
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Start system
Polyhedral

Theorem (BKK Bound [Ber75, Kho78, Kou76])

|V(F )| ≤ MVol(Newt(f1), . . . ,Newt(fn))

If MVol(Newt(f1), . . . ,Newt(fn))� d1 · · · dn then a polyhedral start system is suitable

There exists an algorithm that finds this binomial start system [HS95]

In general, not easy to compute the mixed volume (#P hard)
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Example 1
Critical points of polynomial optimization problems

Want to solve polynomial optimization problem of the form

min
x∈Rn

g(x) subject to fi (x) = 0, i ∈ [m]

Consider Lagrangian

L(x , λ) = g(x)−
m∑
i=1

λi fi (x)

Smooth critical points = solutions to polynomial system

`i =
∂L
∂xi

= 0

fi =
∂L
∂λi

= 0
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Example 1
Critical points of polynomial optimization problems

Theorem (L., Nicholson, Rodriguez, Wang [LNRW21])

For generic fi , g the number of smooth critical points to

min
x∈Rn

g(x) subject to fi (x) = 0, i ∈ [m]

is equal to MVol(`1, . . . , `n, f1, . . . , fm). Moreover, the number of critical points is dictated by
Newt(f1), . . . ,Newt(fm),Newt(g).

Implication 1: Polyhedral start systems will efficiently find all complex critical points for
polynomial optimization problems

Implication 2: Only consider monomials corresponding to vertices of Newton polytopes
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Example 1
Critical points of polynomial optimization problems

Consider

min
x∈R3

3x1−x2 +2x3 subject to x2
1−x1x2 +x1x3−2x2

2 +3x2x3 +4x2
3−x1 +2x2−x3−1 = 0

The Lagrange system is

`1 = 3− λ(2x1 − x2 + x3 − 1)

`2 = −1− λ(−x1 − 4x2 + 3x3 + 2)

`3 = 2− λ(x1 + 3x2 + 8x3 − 1)

f = x2
1 − x1x2 + x1x3 − 2x2

2 + 3x2x3 + 4x2
3 − x1 + 2x2 − x3 − 1

Using a total degree start system, need to track 16 paths

I claim there are only 2 critical points

15 / 33
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Example 1
Critical points of polynomial optimization problems

Consider the same optimization problem restricted to the monomials corresponding to
vertices of each Newton polytope:

min
x∈R3

3x1 − x2 + 2x3 subject to x2
1 − 2x2

2 + 4x2
3 − 1 = 0

The Lagrange system is

`1 = 3− 2λx1

`2 = −1 + 4λx2

`3 = 2− 8λx3

f = x2
1 − 2x2

2 + 4x2
3 − 1

Can explicitly solve this system and get 2 complex solutions, then use this as a start
system for the general problem

This generalizes to minimizing a linear function over any hypersurface

16 / 33
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Example 2
Gaussian mixture moment systems

Classical problem in statistics is density estimation: “Given N samples from a density p,
can I estimate p?”

Gaussian mixture models are a popular family to consider since they universally
approximate smooth densities

Problem: Given N samples distributed as mixture of k Gaussians, recover mean µi ,
variance, σ2

i and mixing coefficient, λi of each component

Many techniques to do this, consider method of moments
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Moments

Definition

Let f : R→ R be the probability density function of a random variable X . For i ≥ 0, the i−th
moment of X is

mi = E[X i ] =

∫
R
x i f (x)dx .

For parameterized distributions, moments are functions of parameters

Ex. Suppose X ∼ Unif[a, b] where −∞ < a < b <∞
The first few moments are:

m1 =
1

2
(a + b)

m2 =
1

3
(a2 + 2ab + b2)

m3 =
1

4
(b3 + ab2 + a2b + a3)

19 / 33
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Method of Moments
Procedure

Consider a statistical model with n unknown parameters, θ = (θ1, . . . , θn) and the
moments up to order n as functions of θ

m1 = g1(θ), . . . ,mn = gn(θ)

and samples y1, . . . , yN

Method of Moments:
1 Compute sample moments

mi =
1

N

N∑
j=1

y i
j

2 Solve gi (θ) = mi for i = 1, . . . , n to recover parameters

20 / 33
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1 Compute sample moments

mi =
1

N

N∑
j=1

y i
j

2 Solve gi (θ) = mi for i = 1, . . . , n to recover parameters
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Method of Moments
Gaussian Mixture Models

The moments of the Gaussian distributions are M0(µ, σ2) = 1, M1(µ, σ2) = µ,

M`(µ, σ
2) = µM`−1 + (`− 1)σ2M`−2, ` ≥ 2

The moments of mixtures of k Gaussians are

m` =
k∑

i=1

λiM`(µi , σ
2
i ), ` ≥ 0

There are three special cases of Gaussian mixture models commonly studied in the
statistics literature:

1 The mixing coefficients are known
2 The mixing coefficients are known and the variances are equal
3 Only the means are unknown

21 / 33



Method of Moments
Gaussian Mixture Models

The moments of the Gaussian distributions are M0(µ, σ2) = 1, M1(µ, σ2) = µ,

M`(µ, σ
2) = µM`−1 + (`− 1)σ2M`−2, ` ≥ 2

The moments of mixtures of k Gaussians are

m` =
k∑

i=1

λiM`(µi , σ
2
i ), ` ≥ 0

There are three special cases of Gaussian mixture models commonly studied in the
statistics literature:

1 The mixing coefficients are known
2 The mixing coefficients are known and the variances are equal
3 Only the means are unknown

21 / 33



Method of Moments
Gaussian Mixture Models

The moments of the Gaussian distributions are M0(µ, σ2) = 1, M1(µ, σ2) = µ,

M`(µ, σ
2) = µM`−1 + (`− 1)σ2M`−2, ` ≥ 2

The moments of mixtures of k Gaussians are

m` =
k∑

i=1

λiM`(µi , σ
2
i ), ` ≥ 0

There are three special cases of Gaussian mixture models commonly studied in the
statistics literature:

1 The mixing coefficients are known
2 The mixing coefficients are known and the variances are equal
3 Only the means are unknown

21 / 33



Gaussian Mixture Models

Theorem (L., Améndola, Rodriguez [LAR21])

In all cases, Gaussian mixture models are algebraically identifiable using moment equations of
lowest degree. Moreover, the mixed volume of each of set of equations is given below.

Known mixing
coefficients

Known mixing coefficients
+ equal variances

Unknown
means

Moment equations m1, . . . ,m2k m1, . . . ,mk+1 m1, . . . ,mk

Unknowns µi , σ
2
i µi , σ

2 µi
Mixed volume (2k − 1)!!k! (k+1)!

2
k!

Mixed volume tight Yes for k ≤ 8 Yes for k ≤ 8 Yes
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Classes of Gaussian Mixture Models
Solving the Polynomial Systems

Mixed Volume Bezout Bound

Known mixing coefficients (2k − 1)!!k! (2k)!

Known mixing coefficients + equal variances (k+1)!
2

(k + 1)!

Unknown means k! k!

Our proofs of the mixed volume in the first two cases give a start system that tracks
mixed volume number of paths

In the final case if λi = 1
k and σ2

i are equal, there is a unique solution up to symmetry
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Method 2
Monodromy

Consider a parameterized polynomial system Fb
i.e. Fb(x) = b1x

2 + b2x − 1

Monodromy works by moving b in a loop while tracking x along that loop

After one loop, usually find a new solution

This process then is repeated until some stopping criterion is fulfilled
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Monodromy example

Consider Fb(x) = b1x
2 + b2x − 1 where B = C2

For almost all (b1, b2) ∈ C2, {x ∈ C : Fb(x) = 0} has two elements

Consider (2, 1) ∈ C2 and x = −1, then F(2,1)(−1) = 0
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Method 2
Monodromy

Monodromy methods work by taking one solution x̂ to the system of equations Fb and
finding other elements via the monodromy action

This action is transitive if and only if the solution variety is irreducible

Major benefit: Using monodromy we can solve up to symmetry [ALR21]
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Example 3
Power flow equations

Consider electric power network on n nodes, v0, . . . , vn−1

At v0 we have x0 = 1, y0 = 0

At each node vi , i > 0 we have the equation for voltage magnitude:

x2
i + y2

i = 1

The active power injections are described by:

n−1∑
k=0

bik(xiyk − xkyi ) = Pi

These are the power flow equations
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Method 2
Monodromy

Proposition (L., Boston, Lesieutre 2020 [LBL20])

The power flow equations with Pi 6= 0 has a solution variety that is irreducible.

The power flow equations with zero active power injections has a solution variety that decomposes
into 2n−1 + 1 irreducible components.

2n−1 consist of a single point of the form (xi , yi ) = (±1, 0) (trivial).
The remaining component consists of all nontrivial solutions to the power flow equations.

Lemma (L., Zachariah, Boston, Lesieutre [LZBL20])

For the power flow equations with zero active power injections, solutions come in pairs.

For the power flow equations with zero active power injections on bipartite graphs, solutions come
in sets of four.

For the power flow equations with nonzero active power injections on bipartite graphs, solutions
come in pairs.

30 / 33



Method 2
Monodromy

Proposition (L., Boston, Lesieutre 2020 [LBL20])

The power flow equations with Pi 6= 0 has a solution variety that is irreducible.

The power flow equations with zero active power injections has a solution variety that decomposes
into 2n−1 + 1 irreducible components.

2n−1 consist of a single point of the form (xi , yi ) = (±1, 0) (trivial).
The remaining component consists of all nontrivial solutions to the power flow equations.

Lemma (L., Zachariah, Boston, Lesieutre [LZBL20])

For the power flow equations with zero active power injections, solutions come in pairs.

For the power flow equations with zero active power injections on bipartite graphs, solutions come
in sets of four.

For the power flow equations with nonzero active power injections on bipartite graphs, solutions
come in pairs.

30 / 33



Comparing Monodromy

K5 K6 K7 K8 K9 K10

time (s): monodromy 0.05 0.37 1.97 16.39 65.33 357.926
time (s): polyhedral 0.37 2.53 17.10 112.43 609.49 2637.22

time (s): total degree 0.21 1.45 8.17 48.78 329.60 1510.01

Table: Numerical results to find all solutions for complete networks

C5 C6 C7 C8 C9 C10

time (s): monodromy 0.13 0.158 1.10 1.46 2.48 2.60
time (s): polyhedral 2.7 3.03 5.37 14.8 56.36 211.24

time (s): total degree 2.11 3.40 9.76 31.91 200.41 862.50

Table: Numerical results to find all solutions for cyclic networks

31 / 33



Conclusion

Outlined methods for polynomial system solving

Considered three applications

Questions!?
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[ALR21] Carlos Améndola, Julia Lindberg, and Jose Israel Rodriguez, Solving parameterized polynomial systems with decomposable projections, arXiv preprint
(2021).

[Ber75] David N. Bernstein, The number of roots of a system of equations, Funkcional. Anal. i Priložen. 9 (1975), no. 3, 1–4. MR 0435072
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