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One-minute summary

• Minimization of continuous functions on [0, 1]d

– From polynomials to trigonometric polynomials

– Simpler “more intuitive” sum-of-squares formulations

• From bound on degree to smoothness

– Allows for explicit convergence rates

(up to exponential in the degree of the finite hierarchy)

– Allows for zero-th order oracle with kernel methods
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Optimization of trigonometric polynomials

• Trigonometric polynomials: f(x) =
∑

ω∈Zd

f̂(ω)e2iπω
⊤x

– Fourier series f̂(ω) =

∫

[0,1]d
f(x)e−2iπω⊤xdx ∈ C

– Real values for f ⇔ ∀ω ∈ Z
d, f̂(−ω) = f̂(ω)∗

(polynomial in cos 2πxj and sin 2πxj, j ∈ {1, . . . , d})

– Degree = max
{
‖ω‖∞, f̂(ω) 6= 0

}



Optimization of trigonometric polynomials

• Trigonometric polynomials: f(x) =
∑

ω∈Zd

f̂(ω)e2iπω
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• Representation as quadratic forms

– Feature map ϕ : [0, 1]d → C
m: ϕ(x)ω = q̂(ω)e2iπω

⊤x, for ω ∈ Ω

– If Ω = {ω ∈ Z
d, ‖ω‖∞ 6 r}, then m = |Ω| = (2r + 1)d
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∑

ω∈Ω |q̂(ω)|2 = 1



Optimization of trigonometric polynomials

• Trigonometric polynomials: f(x) =
∑

ω∈Zd

f̂(ω)e2iπω
⊤x

• Representation as quadratic forms

– Feature map ϕ : [0, 1]d → C
m: ϕ(x)ω = q̂(ω)e2iπω

⊤x, for ω ∈ Ω

– If Ω = {ω ∈ Z
d, ‖ω‖∞ 6 r}, then m = |Ω| = (2r + 1)d

– Normalization: ‖ϕ(x)‖2 =
∑

ω∈Ω |q̂(ω)|2 = 1

– With F ∈ C
m×m Hermitian

f(x) = ϕ(x)∗Fϕ(x) =
∑

ω,ω′∈Ω

Fωω′q̂(ω)q̂(ω′)∗ · e2iπ(ω−ω′)⊤x

– Represents all trigonometric polynomials of degree 2r

– F not uniquely defined
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Optimization of trigonometric polynomials

• Generic problem on X = [0, 1]d : min
x∈X

f(x) = ϕ(x)∗Fϕ(x)

– Normalized feature map ϕ : X → C
m such that ‖ϕ(x)‖2 = 1

• Sum-of-squares relaxations

– Lasserre (2001); Parrilo (2003)

– Books (Lasserre, 2010; Parrilo et al., 2013; Dumitrescu, 2007;

Henrion et al., 2020)

– Review paper (Laurent, 2009)

• Simplification

– Assumption: X is a (very) “simple” set

– From polynomials to trigonometric polynomials (will be lifted)



Convex relaxation: the SOS view
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f(x) = max
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c such that ∀x ∈ X, f(x)− c > 0

f (x)
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Convex relaxation: the SOS view

• Exact reformulation of minimization problem

min
x∈X

f(x) = max
c∈R

c such that ∀x ∈ X, f(x)− c > 0

f (x)

x

c

• SOS relaxation: replace f(x)− c > 0 by f(x)− c = ϕ(x)∗Aϕ(x)

with A Hermitian positive semi-definite (A < 0)

– If A =
∑m

i=1 λiuiu
∗
i , then ϕ(x)∗Aϕ(x) =

∑m
i=1

∣∣λ1/2
i u∗

iϕ(x)
∣∣2
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= max
c∈R, A<0

c such that ∀x ∈ X, tr
[
ϕ(x)ϕ(x)∗(F − cI − A)

]
= 0
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Convex relaxation: the SOS view

• Relaxed problem for minimizing f(x) = ϕ(x)∗Fϕ(x) :

max
c∈R, A<0

c such that ∀x ∈ X, f(x)− c = ϕ(x)∗Aϕ(x)

= max
c∈R, A<0

c such that ∀x ∈ X, tr
[
ϕ(x)ϕ(x)∗(F − cI − A)

]
= 0

= max
c∈R, A<0

c such that F − cI −A+ Y = 0, with Y ∈ V⊥

- where V = span
(
{ϕ(x)ϕ(x)∗, x ∈ X}

)

- V = multivariate Toeplitz matrices

• Optimizing over c and A:

max
Y ∈V⊥

λmin(F + Y )

– Link with spectral relaxation (Y = 0)
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• Dual exact reformulation of minimization problem

min
µ∈P(X)

∫

X

f(x)dµ(x) = tr
[
F
(∫

X
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)]

– with P(X) = set of probability measures on X
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Convex relaxation: the moment view

• Dual exact reformulation of minimization problem

min
µ∈P(X)

∫

X

f(x)dµ(x) = tr
[
F
(∫

X

ϕ(x)ϕ(x)∗dµ(x)
)]

– with P(X) = set of probability measures on X

• Equivalent reformulation: min
Σ∈K

tr[FΣ]

– with K closure of convex hull of {ϕ(x)ϕ(x)∗, x ∈ X}

• Relaxation using outer approximation K̂ ⊃ K

– Preserve affine hull and add positivity constraint

K̂ =
{
Σ ∈ C

m×m, Σ ∈ V, tr[Σ] = 1, Σ < 0
}
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• Two equivalent views

(1) Are all non-negative functions sums-of-squares?

(2) Is K̂ = K ?
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Tightness of SOS relaxations

• Two equivalent views

(1) Are all non-negative functions sums-of-squares?

(2) Is K̂ = K ?

• Univariate polynomials (d = 1)

– Tight relaxation (Fejér, 1916; Riesz, 1916; Nesterov, 2000)

– Elementary proof based on polynomial factorization

– NB: spectral relaxation only converges at O(1/s) with s = degree

(Grenander and Szegö, 1958)

• What about multivariate polynomials (d > 1)?

– Bad and good news...



Tightness of SOS relaxations

Multivariate trigonometric polynomials

• Not all non-negative trigonometric polynomials are SOSs

– Generic construction (Naftalovich and Schreiber, 1985)

– Based on Motzkin counter-example

f(x) = M(1− cos 2πx1, 1− cos 2πx2, 1− cos 2πx3)

with M(y1, y2, y3) = y21y2 + y1y
2
2 + y33 − 3y1y2y3



Tightness of SOS relaxations

Multivariate trigonometric polynomials

• Not all non-negative trigonometric polynomials are SOSs

– Generic construction (Naftalovich and Schreiber, 1985)

– Based on Motzkin counter-example

f(x) = M(1− cos 2πx1, 1− cos 2πx2, 1− cos 2πx3)

with M(y1, y2, y3) = y21y2 + y1y
2
2 + y33 − 3y1y2y3

• All strictly positive polynomials are sums-of-squares

– See Putinar (1992); Megretski (2003)

– Degrees not known a priori

– Allows for hierarchies

– NB: always finite convergence for d = 2 (Scheiderer, 2006)



Trigonometric polynomial hierarchies

• Goal: minimize degree 2r trigonometric polynomial f

– Define ϕ(s) : [0, 1]d → C
(2s+1)d with all Fourier exponentials of

degree less than s > r

– Represent f as quadratic form f(x) = ϕ(s)(x)∗(F (s))ϕ(s)(x)

– Solve the primal/dual pair of SOS relaxations, with values c
(s)
∗

c(s)∗ → min
x∈[0,1]d

f(x) when s → +∞



Trigonometric polynomial hierarchies

• Goal: minimize degree 2r trigonometric polynomial f

– Define ϕ(s) : [0, 1]d → C
(2s+1)d with all Fourier exponentials of

degree less than s > r

– Represent f as quadratic form f(x) = ϕ(s)(x)∗(F (s))ϕ(s)(x)

– Solve the primal/dual pair of SOS relaxations, with values c
(s)
∗

c(s)∗ → min
x∈[0,1]d

f(x) when s → +∞

• How fast?

– Finite convergence often observed, and provable for locally well-

behaved problems (Nie, 2014), with no rate

– Existing bounds in O(1/s2) for other special cases

(Fang and Fawzi, 2021; Laurent and Slot, 2022; Slot, 2022)



From trigonometric polynomials to polynomials

• Representation of non-negative polynomials on [−1, 1]

– Given a polynomial P on [−1, 1] of degree 2r

– Define f(y) = P (cos 2πy) a trigonometric polynomial on [0, 1]

– f is non-negative if and only if f(y) =
∣∣∑

|ω|6r ĝ(ω)e
2iπωy

∣∣2
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2iπωy

∣∣2

• Chebyshev polynomials for ω > 0

– cos 2πωy = Tω(cos 2πy) and sin 2πωy = Uω−1(cos 2πy) · sin 2πy
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• Representation of non-negative polynomials on [−1, 1]

– Given a polynomial P on [−1, 1] of degree 2r

– Define f(y) = P (cos 2πy) a trigonometric polynomial on [0, 1]

– f is non-negative if and only if f(y) =
∣∣∑

|ω|6r ĝ(ω)e
2iπωy

∣∣2

• Chebyshev polynomials for ω > 0

– cos 2πωy = Tω(cos 2πy) and sin 2πωy = Uω−1(cos 2πy) · sin 2πy

– Can expand f(y) = Q(cos 2πy)2 +R(cos 2πy)2 · sin2 2πy

– With sin2 2πy = 1− cos2 2πy, we have:

∀x ∈ [−1, 1], f(x) = Q(x)2 +R(x)2 · (1− x2)

– Classical “Putinar” representation

• Extension to [−1, 1]d: Schmüdgen (2017) representation



Convergence bounds with no assumptions

• Theorem (Bach and Rudi, 2022)

– Assume s > 3r, and define ‖f‖F =
∑

ω∈Zd |f̂(ω)|

0 6 min
x∈[0,1]d

f(x)−c(s)∗ 6 ‖f−f∗‖F·
[(

1−
6r2

s2

)−d

−1
]
∼ 6‖f−f∗‖F·

r2d

s2

– Proof based on Fang and Fawzi (2021)

– Essentially the same result as Laurent and Slot (2022)

with different notations and better constants
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• Theorem (Bach and Rudi, 2022)

– Assume s > 3r, and define ‖f‖F =
∑

ω∈Zd |f̂(ω)|

0 6 min
x∈[0,1]d

f(x)−c(s)∗ 6 ‖f−f∗‖F·
[(

1−
6r2

s2

)−d

−1
]
∼ 6‖f−f∗‖F·

r2d

s2

– Proof based on Fang and Fawzi (2021)

– Essentially the same result as Laurent and Slot (2022)

with different notations and better constants

• Discussion

– Spectral relaxation only achieves O(1/s)

– Is it optimal without further assumptions?

– Can it be improved with further assumptions?
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– Trigonometric polynomials are C∞ functions

– Smoothness of f typically characterized by decay of f̂(ω) for
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– Support of Fourier series not precise enough



From bound on degree to smoothness

• From algebra to analysis

– Trigonometric polynomials are C∞ functions

– Smoothness of f typically characterized by decay of f̂(ω) for

‖ω‖ → +∞

– Support of Fourier series not precise enough

• Using local optimality conditions

– Assumptions: ( ) f attains its minimum at a single point

( ) f is twice differentiable and f ′′(x∗) invertible

– Can be relaxed (Marteau-Ferey, Bach, and Rudi, 2022)



Decomposing non-negative Cp functions

as sums-of-squares

• Theorem (Rudi, Marteau-Ferey, and Bach, 2020):

– Assumptions: f : [0, 1]d → R is Cp (p-th continuous derivatives)

f has a unique minimum x∗ located in (0, 1)d

f ′′(x∗) invertible
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Decomposing non-negative Cp functions

as sums-of-squares

• Theorem (Rudi, Marteau-Ferey, and Bach, 2020):

– Assumptions: f : [0, 1]d → R is Cp (p-th continuous derivatives)

f has a unique minimum x∗ located in (0, 1)d

f ′′(x∗) invertible

– There exist d+ 1 functions g1, . . . , gd+1 in Cp−2 such that

∀x ∈ [0, 1]d, f(x)− f(x∗) =
d+1∑

i=1

gi(x)
2

• Proof technique

– Around x∗, Taylor formula with integral remainder ⇒ d functions

– Away from x∗, use the square root

– Use partitions of unity to glue them



Consequence on convergence rate of hierarchies

(Woodworth, Bach, and Rudi, 2022)

• A trigonometric polynomial is a C∞ function!

f(x)− f(x∗) =
d+1∑

i=1

gi(x)
2

– With gi’s all C
∞

– Let ḡi(x) =
∑

‖ω‖∞6s ĝi(ω)e
2iπω⊤x (truncated version)

– Property: for any order p, ‖gi − ḡi‖F 6
cp(gi)
sp
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Consequence on convergence rate of hierarchies

(Woodworth, Bach, and Rudi, 2022)

• A trigonometric polynomial is a C∞ function!

f(x)− f(x∗) =
d+1∑

i=1

gi(x)
2

– With gi’s all C
∞

– Let ḡi(x) =
∑

‖ω‖∞6s ĝi(ω)e
2iπω⊤x (truncated version)

– Property: for any order p, ‖gi − ḡi‖F 6
cp(gi)
sp

• Lemma:
∥∥∥f − f(x∗)−

d+1∑

i=1

ḡ2i

∥∥∥
F
6

d+1∑

i=1

‖gi‖F · ‖gi − ḡi‖F

• Consequence: For any p, up to a uniform error less than
c′p(f)

sp
,

f − f(x∗) is a sum of squares of polynomials of degree s



Exponential convergence rates

• Theorem (Bach and Rudi, 2022)

– Assume unique minimizer with positive definite Hessian

– For any ξ ∈ (0, 1/2]:

0 6 min
x∈[0,1]d

f(x)− c(s)∗ 6 △1 exp
(
−

( s

△2

)1+ξ)
,

– Explicit dependence of △1 and △2 on all problem constants



Exponential convergence rates

• Theorem (Bach and Rudi, 2022)

– Assume unique minimizer with positive definite Hessian

– For any ξ ∈ (0, 1/2]:

0 6 min
x∈[0,1]d

f(x)− c(s)∗ 6 △1 exp
(
−

( s

△2

)1+ξ)
,

– Explicit dependence of △1 and △2 on all problem constants

• Proof technique

– Explicit control of the constants cp(gi) and c′p(f)

– Bounding all derivatives of (matrix) square roots (Del Moral and

Niclas, 2018) and partitions of unity (Israel, 2015)

– Extensive use of Faà di Bruno’s formula
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– (trigonometric) polynomial f given by its coefficients



Towards zero-th order oracles

• Traditional SOS relaxations

– (trigonometric) polynomial f given by its coefficients

• Using zero-th order oracle for f or f̂ for smooth functions



Towards zero-th order oracles

• Traditional SOS relaxations

– (trigonometric) polynomial f given by its coefficients

• Using zero-th order oracle for f or f̂ for smooth functions

• Option 1: Compute approximation by (trigonometric) polynomial

and optimize using SOS (see Novak, 2006)

– Optimal in terms of number of calls to zero-th order oracle



Towards zero-th order oracles

• Traditional SOS relaxations

– (trigonometric) polynomial f given by its coefficients

• Using zero-th order oracle for f or f̂ for smooth functions

• Option 1: Compute approximation by (trigonometric) polynomial

and optimize using SOS (see Novak, 2006)

– Optimal in terms of number of calls to zero-th order oracle

• Option 2: Approximate and optimize simultaneously

– Efficient algorithms (Rudi, Marteau-Ferey, and Bach, 2020)

– Certificates of optimality (Woodworth, Bach, and Rudi, 2022)



Using function values with trigonometric polynomials

• SOS relaxation:

min
Σ∈Cd×d

tr[FΣ] such that Σ ∈ V, tr[Σ] = 1, Σ < 0

= max
Y ∈V⊥

λmin(F + Y )

– where V = span
(
{ϕ(x)ϕ(x)∗, x ∈ X}

)

– V may be cumbersome to characterize computationally



Using function values with trigonometric polynomials

• SOS relaxation:

min
Σ∈Cd×d

tr[FΣ] such that Σ ∈ V, tr[Σ] = 1, Σ < 0

= max
Y ∈V⊥

λmin(F + Y )

– where V = span
(
{ϕ(x)ϕ(x)∗, x ∈ X}

)

– V may be cumbersome to characterize computationally

• Replace V by span
(
{ϕ(xi)ϕ(xi)

∗, i ∈ {1, . . . , n}}
)

– Generating family obtained by random samples x1, . . . , xn in X

(Cifuentes and Parrilo, 2017)

max
c∈R, A<0

c such that ∀i ∈ {1, . . . , n}, f(xi)−c = ϕ(xi)
∗Aϕ(xi)



Infinite expansions
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• Feature map ϕ : [0, 1]d → C
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Infinite expansions

(Rudi, Marteau-Ferey, and Bach, 2020)

• Feature map ϕ : [0, 1]d → C
|Ω|: ϕ(x)ω = q̂(ω)e2iπω

⊤x, for ω ∈ Ω

– Contraint
∑

ω∈Ω |q̂(ω)|2 = 1

– What if Ω = Z
d ?

• “Tightness” of relaxation if ∀ω ∈ Z
d, q̂(ω) > 0

sup
c∈R, A<0

c such that ∀x ∈ X, f(x)− c = ϕ(x)∗Aϕ(x)

– Attained with a finite rank operator A under local optimality

conditions (isolated minimizers with invertible Hessians)

– Still hard to solve (X dense and A infinite-dimensional)
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max
c∈R, A<0

c−λ tr(A) such that ∀i ∈ {1, . . . , n}, f(xi)−c = ϕ(xi)
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Efficient sampling algorithms

• Sampling and regularization:

max
c∈R, A<0

c−λ tr(A) such that ∀i ∈ {1, . . . , n}, f(xi)−c = ϕ(xi)
∗Aϕ(xi)

– Leads to provable a priori performance guarantees (with correct λ)

– Up to logarithms and a few constants ε ∝ n−p/d for Cp functions

– See Rudi, Marteau-Ferey, and Bach (2020) for details

• Finite-dimensional algorithm through representer theorem

– Can restrict search to A =
∑n

j,k=1Bikϕ(xj)ϕ(xk)
∗

with B ∈ R
n×n and B < 0

– Only need access to ϕ(xj)
∗ϕ(xk) =

∑
ω∈Zd |q̂(ω)|2e2iπω

⊤(xj−xk)

– See Marteau-Ferey, Bach, and Rudi (2020) for details
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– Exponential convergence rates for polynomial hierarchies

– Extension to zero-th order oracles and infinite expansions

• Improvements

– Certificates of optimality (Woodworth, Bach, and Rudi, 2022)

– Constrained problems (going beyond simple sets X)

• SOS relaxations beyond optimization

– Optimal control (Berthier, Carpentier, Rudi, and Bach, 2021)

– Optimal transport (Vacher, Muzellec, Rudi, Bach, and Vialard,

2021)

– Log-partition functions and variational inference (Bach, 2022a,b)
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• Log-partition function: given f : X → R and a distribution q on X

−ε log

∫

X
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p probability
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−ε log

∫

X

e−f(x)/εdq(x) = inf
p probability

∫

X

f(x)dp(x) + εD(p‖q)

with D(p‖q) =

∫

X

log
(dp
dq

(x)
)
dp(x) Kullback-Leibler divergence

– Used within variational inference (Wainwright and Jordan, 2008)

– Duality between maximum entropy and maximum likelihood

• Von Neumann relative entropy

D(Σp‖Σq) = tr[Σp(log Σp − log Σq)]

– With Σp =

∫

X

ϕ(x)ϕ(x)∗dp(x) and Σq =

∫

X

ϕ(x)ϕ(x)∗dq(x)

– Always a lower bound on D(p‖q) (Bach, 2022a)
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Ulf Grenander and Gabor Szegö. Toeplitz forms and their applications. Univ of California Press, 1958.



Didier Henrion, Milan Korda, and Jean Bernard Lasserre. Moment-sos Hierarchy, The: Lectures In

Probability, Statistics, Computational Geometry, Control And Nonlinear PDEs, volume 4. World

Scientific, 2020.

Arie Israel. The eigenvalue distribution of time-frequency localization operators. Technical Report

1502.04404, arXiv, 2015.

Jean-Bernard Lasserre. Global optimization with polynomials and the problem of moments. SIAM

Journal on Optimization, 11(3):796–817, 2001.

Jean-Bernard Lasserre. Moments, Positive Polynomials and their Applications, volume 1. World

Scientific, 2010.

Jean-Bernard Lasserre, Didier Henrion, Christophe Prieur, and Emmanuel Trélat. Nonlinear optimal
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Konrad Schmüdgen. The Moment Problem. Springer, 2017.

Lucas Slot. Sum-of-squares hierarchies for polynomial optimization and the Christoffel–Darboux kernel.

SIAM Journal on Optimization, 32(4):2612–2635, 2022.

Adrien Vacher, Boris Muzellec, Alessandro Rudi, Francis Bach, and Francois-Xavier Vialard. A

dimension-free computational upper-bound for smooth optimal transport estimation. In Conference

on Learning Theory, pages 4143–4173, 2021.

Richard Vinter. Convex duality and nonlinear optimal control. SIAM Journal on Control and

Optimization, 31(2):518–538, 1993.

Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families, and Variational

Inference. Now Publishers Inc., 2008.

Jonathan Weed and Quentin Berthet. Estimation of smooth densities in Wasserstein distance. In

Conference on Learning Theory, pages 3118–3119. PMLR, 2019.

Blake Woodworth, Francis Bach, and Alessandro Rudi. Non-convex optimization with certificates and

fast rates through kernel sums of squares. arXiv preprint arXiv:2204.04970, 2022.



Smooth optimal transport

• Primal formulation: inf
γ∈Γ(µ,ν)

∫

X×Y

c(x, y)dγ(x, y)

– Γ(µ, ν) set of probability distributions with marginals µ and ν

• Dual formulation: sup
u,v∈C(Rn)

∫

X

u(x)dµ(x) +

∫

Y

v(y)dµ(y)

such that ∀(x, y) ∈ X× Y, c(x, y) − u(x) + v(y) > 0
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∫
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v(y)dµ(y)

such that ∀(x, y) ∈ X× Y, c(x, y) − u(x) + v(y) > 0

• Estimation from i.i.d. samples from smooth densities for µ and ν

– Rate: from O(n−1/d) to O(n−p/d) (Weed and Berthet, 2019)

– No polynomial-time algorithm

• Kernel sums of squares: “polynomial”-time algorithm

– Vacher, Muzellec, Rudi, Bach, and Vialard (2021)



Optimal control / reinforcement learning

• Optimal control (Liberzon, 2011)

V ∗(t0, x0) = inf
u:[t0,T ]→U

∫ T

t0

L(t, x(t), u(t))dt+M(x(T ))

∀t ∈ [t0, T ], ẋ(t) = f(t, x(t), u(t)), x(t0) = x0.
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∫
V (0, x0)dµ0(x0)

∀(t, x, u),
∂V

∂t
(t, x) + L(t, x, u) +∇V (t, x)⊤f(t, x, u) > 0

∀x, V (T, x) = M(x).
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Optimal control / reinforcement learning

• Subsolution of Hamilton-Jacobi-Bellman equation (Vinter, 1993)

sup
V :[0,T ]×X→R

∫
V (0, x0)dµ0(x0)

∀(t, x, u),
∂V

∂t
(t, x) + L(t, x, u) +∇V (t, x)⊤f(t, x, u) > 0

∀x, V (T, x) = M(x).

• Polynomial sums-of-squares

– Lasserre, Henrion, Prieur, and Trélat (2008)

• Extension to kernel sums-of-squares

– Berthier, Carpentier, Rudi, and Bach (2021)

– Allows some form of modelling


