Sums of squares: from algebra to analysis

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Innía

Joint work with Alessandro Rudi, Ulysse Marteau-Ferey, and Blake Woodworth Brainpop online seminar - February 15, 2023

Sums of squares: from algebra to analysis One-minute summary

- Minimization of continuous functions on $[0,1]^d$
 - From polynomials to trigonometric polynomials
 - Simpler "more intuitive" sum-of-squares formulations

Sums of squares: from algebra to analysis One-minute summary

- Minimization of continuous functions on $[0,1]^d$
 - From polynomials to trigonometric polynomials
 - Simpler "more intuitive" sum-of-squares formulations
- From bound on degree to smoothness
 - Allows for explicit convergence rates
 (up to exponential in the degree of the finite hierarchy)
 - Allows for zero-th order oracle with kernel methods

• Trigonometric polynomials: $f(x) = \sum_{\omega \in \mathbb{Z}^d} \hat{f}(\omega) e^{2i\pi\omega^\top x}$

• Trigonometric polynomials: $f(x) = \sum_{\omega \in \mathbb{Z}^d} \hat{f}(\omega) e^{2i\pi\omega^\top x}$

– Fourier series
$$\hat{f}(\omega) = \int_{[0,1]^d} f(x) e^{-2i\pi\omega^\top x} dx \in \mathbb{C}$$

- Real values for $f \Leftrightarrow \forall \omega \in \mathbb{Z}^d$, $\hat{f}(-\omega) = \hat{f}(\omega)^*$ (polynomial in $\cos 2\pi x_j$ and $\sin 2\pi x_j$, $j \in \{1, \ldots, d\}$)

- Degree = max
$$\{ \|\omega\|_{\infty}, \ \hat{f}(\omega) \neq 0 \}$$

- Trigonometric polynomials: $f(x) = \sum_{\omega \in \mathbb{Z}^d} \hat{f}(\omega) e^{2i\pi\omega^\top x}$
- Representation as quadratic forms
 - Feature map $\varphi : [0,1]^d \to \mathbb{C}^m$: $\varphi(x)_\omega = \hat{q}(\omega)e^{2i\pi\omega^\top x}$, for $\omega \in \Omega$
 - If $\Omega = \{ \omega \in \mathbb{Z}^d, \|\omega\|_{\infty} \leqslant r \}$, then $m = |\Omega| = (2r+1)^d$
 - Normalization: $\|\varphi(x)\|^2 = \sum_{\omega \in \Omega} |\hat{q}(\omega)|^2 = 1$

- Trigonometric polynomials: $f(x) = \sum_{\omega \in \mathbb{Z}^d} \hat{f}(\omega) e^{2i\pi\omega^\top x}$
- Representation as quadratic forms
 - Feature map $\varphi : [0,1]^d \to \mathbb{C}^m$: $\varphi(x)_\omega = \hat{q}(\omega)e^{2i\pi\omega^\top x}$, for $\omega \in \Omega$
 - If $\Omega = \{ \omega \in \mathbb{Z}^d, \|\omega\|_{\infty} \leqslant r \}$, then $m = |\Omega| = (2r+1)^d$
 - Normalization: $\|\varphi(x)\|^2 = \sum_{\omega \in \Omega} |\hat{q}(\omega)|^2 = 1$
 - With $F \in \mathbb{C}^{m \times m}$ Hermitian

$$f(x) = \varphi(x)^* F \varphi(x) = \sum_{\omega, \omega' \in \Omega} F_{\omega \omega'} \hat{q}(\omega) \hat{q}(\omega')^* \cdot e^{2i\pi(\omega - \omega')^\top x}$$

- Represents all trigonometric polynomials of degree 2r
- F not uniquely defined

• Generic problem on $\mathfrak{X} = [0,1]^d$: $\min_{x \in \mathfrak{X}} f(x) = \varphi(x)^* F \varphi(x)$

– Normalized feature map $\varphi: \mathcal{X} \to \mathbb{C}^m$ such that $\|\varphi(x)\|^2 = 1$

- Generic problem on $\mathcal{X} = [0,1]^d$: $\min_{x \in \mathcal{X}} f(x) = \varphi(x)^* F \varphi(x)$
 - Normalized feature map $\varphi: \mathcal{X} \to \mathbb{C}^m$ such that $\|\varphi(x)\|^2 = 1$
- Sum-of-squares relaxations
 - Lasserre (2001); Parrilo (2003)
 - Books (Lasserre, 2010; Parrilo et al., 2013; Dumitrescu, 2007; Henrion et al., 2020)
 - Review paper (Laurent, 2009)

- Generic problem on $\mathcal{X} = [0,1]^d$: $\min_{x \in \mathcal{X}} f(x) = \varphi(x)^* F \varphi(x)$
 - Normalized feature map $\varphi: \mathcal{X} \to \mathbb{C}^m$ such that $\|\varphi(x)\|^2 = 1$
- Sum-of-squares relaxations
 - Lasserre (2001); Parrilo (2003)
 - Books (Lasserre, 2010; Parrilo et al., 2013; Dumitrescu, 2007; Henrion et al., 2020)
 - Review paper (Laurent, 2009)

• Simplification

- Assumption: ${\mathcal X}$ is a (very) "simple" set
- From polynomials to trigonometric polynomials (will be lifted)

• Exact reformulation of minimization problem

• Exact reformulation of minimization problem

SOS relaxation: replace f(x) - c ≥ 0 by f(x) - c = φ(x)*Aφ(x) with A Hermitian positive semi-definite (A ≥ 0)

- If
$$A = \sum_{i=1}^{m} \lambda_i u_i u_i^*$$
, then $\varphi(x)^* A \varphi(x) = \sum_{i=1}^{m} \left| \lambda_i^{1/2} u_i^* \varphi(x) \right|^2$

• Relaxed problem for minimizing $f(x) = \varphi(x)^* F \varphi(x)$:

 $\max_{c\in\mathbb{R},\ A\succcurlyeq 0}\ c \quad \text{such that} \quad \forall x\in\mathfrak{X},\ f(x)-c=\varphi(x)^*A\varphi(x)$

- Relaxed problem for minimizing $f(x) = \varphi(x)^* F \varphi(x)$:
 - $\max_{c \in \mathbb{R}, A \succeq 0} c \quad \text{such that} \quad \forall x \in \mathcal{X}, \ f(x) c = \varphi(x)^* A \varphi(x)$
 - $= \max_{c \in \mathbb{R}, A \succeq 0} c \text{ such that } \forall x \in \mathfrak{X}, \text{ tr} \left[\varphi(x)\varphi(x)^*(F cI A)\right] = 0$

• Relaxed problem for minimizing $f(x) = \varphi(x)^* F \varphi(x)$:

 $\max_{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text{such that} \quad \forall x \in \mathfrak{X}, \ f(x) - c = \varphi(x)^* A \varphi(x)$ $= \max_{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text{such that} \quad \forall x \in \mathfrak{X}, \ \text{tr} \left[\varphi(x)\varphi(x)^* (F - cI - A)\right] = 0$ $= \max_{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text{such that} \quad F - cI - A + Y = 0, \quad \text{with } Y \in \mathcal{V}^{\perp}$

where
$$\mathcal{V} = \operatorname{span} \left(\{ \varphi(x) \varphi(x)^*, \ x \in \mathfrak{X} \} \right)$$

 $\mathcal{V} = \operatorname{multivariate}$ Toeplitz matrices

- Relaxed problem for minimizing $f(x) = \varphi(x)^* F \varphi(x)$:

 $\max_{c \in \mathbb{R}, A \succeq 0} c \quad \text{such that} \quad \forall x \in \mathfrak{X}, \ f(x) - c = \varphi(x)^* A \varphi(x)$ $= \max_{c \in \mathbb{R}, A \succeq 0} c \quad \text{such that} \quad \forall x \in \mathfrak{X}, \ \text{tr} \left[\varphi(x)\varphi(x)^* (F - cI - A)\right] = 0$

 $= \max_{c \in \mathbb{R}, A \succcurlyeq 0} c \quad \text{such that} \quad F - cI - A + Y = 0, \quad \text{with } Y \in \mathcal{V}^{\perp}$

where
$$\mathcal{V} = \operatorname{span}(\{\varphi(x)\varphi(x)^*, x \in \mathcal{X}\})$$

 $\mathcal{V} = \operatorname{multivariate}$ Toeplitz matrices

• Optimizing over *c* and *A*:

 $\max_{Y \in \mathcal{V}^{\perp}} \lambda_{\min}(F+Y)$

- Link with spectral relaxation (Y = 0)

Convex relaxation: the moment view

• Dual exact reformulation of minimization problem

$$\min_{\mu\in\mathcal{P}(\mathcal{X})}\int_{\mathcal{X}}f(x)d\mu(x) = \mathrm{tr}\left[F\Big(\int_{\mathcal{X}}\varphi(x)\varphi(x)^{*}d\mu(x)\Big)\right]$$

– with $\mathcal{P}(\mathfrak{X})=\mathsf{set}$ of probability measures on \mathfrak{X}

Convex relaxation: the moment view

• Dual exact reformulation of minimization problem

$$\min_{\mu\in\mathcal{P}(\mathcal{X})}\int_{\mathcal{X}}f(x)d\mu(x) = \mathrm{tr}\left[F\left(\int_{\mathcal{X}}\varphi(x)\varphi(x)^{*}d\mu(x)\right)\right]$$

– with $\mathcal{P}(\mathfrak{X})=\mathsf{set}$ of probability measures on \mathfrak{X}

• Equivalent reformulation: $\min_{\Sigma \in \mathcal{K}} \operatorname{tr}[F\Sigma]$

- with $\mathcal K$ closure of convex hull of $\{\varphi(x)\varphi(x)^*, x \in \mathcal X\}$

Convex relaxation: the moment view

• Dual exact reformulation of minimization problem

$$\min_{\mu\in\mathcal{P}(\mathcal{X})}\int_{\mathcal{X}}f(x)d\mu(x)=\mathrm{tr}\left[F\Big(\int_{\mathcal{X}}\varphi(x)\varphi(x)^{*}d\mu(x)\Big)\right]$$

– with $\mathcal{P}(\mathcal{X})=\mathsf{set}$ of probability measures on \mathcal{X}

- Equivalent reformulation: $\min_{\Sigma \in \mathcal{K}} \operatorname{tr}[F\Sigma]$
 - with \mathcal{K} closure of convex hull of $\{\varphi(x)\varphi(x)^*, x \in \mathcal{X}\}$
- Relaxation using outer approximation $\widehat{\mathcal{K}}\supset\mathcal{K}$
 - Preserve affine hull and add positivity constraint

$$\widehat{\mathcal{K}} = \left\{ \Sigma \in \mathbb{C}^{m \times m}, \ \Sigma \in \mathcal{V}, \ \operatorname{tr}[\Sigma] = 1, \ \Sigma \succeq 0 \right\}$$

Tightness of SOS relaxations

• Two equivalent views

(1) Are all non-negative functions sums-of-squares? (2) Is $\widehat{\mathcal{K}} = \mathcal{K}$?

Tightness of SOS relaxations

• Two equivalent views

(1) Are all non-negative functions sums-of-squares? (2) Is $\widehat{\mathcal{K}} = \mathcal{K}$?

- Univariate polynomials (d = 1)
 - Tight relaxation (Fejér, 1916; Riesz, 1916; Nesterov, 2000)
 - Elementary proof based on polynomial factorization
 - NB: spectral relaxation only converges at O(1/s) with s = degree (Grenander and Szegö, 1958)

Tightness of SOS relaxations

• Two equivalent views

(1) Are all non-negative functions sums-of-squares? (2) Is $\widehat{\mathcal{K}} = \mathcal{K}$?

- Univariate polynomials (d = 1)
 - Tight relaxation (Fejér, 1916; Riesz, 1916; Nesterov, 2000)
 - Elementary proof based on polynomial factorization
 - NB: spectral relaxation only converges at O(1/s) with s = degree (Grenander and Szegö, 1958)
- What about multivariate polynomials (d > 1)?
 - Bad and good news...

Tightness of SOS relaxations Multivariate trigonometric polynomials

- Not all non-negative trigonometric polynomials are SOSs
 - Generic construction (Naftalovich and Schreiber, 1985)
 - Based on Motzkin counter-example

$$f(x) = M(1 - \cos 2\pi x_1, 1 - \cos 2\pi x_2, 1 - \cos 2\pi x_3)$$

with $M(y_1, y_2, y_3) = y_1^2 y_2 + y_1 y_2^2 + y_3^3 - 3y_1 y_2 y_3$

Tightness of SOS relaxations Multivariate trigonometric polynomials

- Not all non-negative trigonometric polynomials are SOSs
 - Generic construction (Naftalovich and Schreiber, 1985)
 - Based on Motzkin counter-example

$$f(x) = M(1 - \cos 2\pi x_1, 1 - \cos 2\pi x_2, 1 - \cos 2\pi x_3)$$

with $M(y_1, y_2, y_3) = y_1^2 y_2 + y_1 y_2^2 + y_3^3 - 3y_1 y_2 y_3$

- All strictly positive polynomials are sums-of-squares
 - See Putinar (1992); Megretski (2003)
 - Degrees not known a priori
 - Allows for hierarchies
 - NB: always finite convergence for d = 2 (Scheiderer, 2006)

Trigonometric polynomial hierarchies

- Goal: minimize degree 2r trigonometric polynomial f
 - Define $\varphi^{(s)}: [0,1]^d \to \mathbb{C}^{(2s+1)^d}$ with all Fourier exponentials of degree less than $s \geqslant r$
 - Represent f as quadratic form $f(x) = \varphi^{(s)}(x)^*(F^{(s)})\varphi^{(s)}(x)$
 - Solve the primal/dual pair of SOS relaxations, with values $c_{st}^{(s)}$

$$c_*^{(s)} \to \min_{x \in [0,1]^d} f(x) \text{ when } s \to +\infty$$

Trigonometric polynomial hierarchies

- Goal: minimize degree 2r trigonometric polynomial f
 - Define $\varphi^{(s)}: [0,1]^d \to \mathbb{C}^{(2s+1)^d}$ with all Fourier exponentials of degree less than $s \geqslant r$
 - Represent f as quadratic form $f(x) = \varphi^{(s)}(x)^*(F^{(s)})\varphi^{(s)}(x)$
 - Solve the primal/dual pair of SOS relaxations, with values $c_{st}^{(s)}$

$$c_*^{(s)} \to \min_{x \in [0,1]^d} f(x) \text{ when } s \to +\infty$$

• How fast?

- Finite convergence often observed, and provable for locally wellbehaved problems (Nie, 2014), with no rate
- Existing bounds in $O(1/s^2)$ for other special cases (Fang and Fawzi, 2021; Laurent and Slot, 2022; Slot, 2022)

From trigonometric polynomials to polynomials

- \bullet Representation of non-negative polynomials on $\left[-1,1\right]$
 - Given a polynomial P on [-1,1] of degree 2r
 - Define $f(y) = P(\cos 2\pi y)$ a trigonometric polynomial on [0, 1]
 - f is non-negative if and only if $f(y) = \left|\sum_{|\omega| \leq r} \hat{g}(\omega) e^{2i\pi\omega y}\right|^2$

From trigonometric polynomials to polynomials

- Representation of non-negative polynomials on $\left[-1,1\right]$
 - Given a polynomial P on [-1,1] of degree 2r
 - Define $f(y) = P(\cos 2\pi y)$ a trigonometric polynomial on [0, 1]
 - f is non-negative if and only if $f(y) = \left|\sum_{|\omega| \leq r} \hat{g}(\omega) e^{2i\pi\omega y}\right|^2$

• Chebyshev polynomials for $\omega>0$

- $\cos 2\pi \omega y = T_{\omega}(\cos 2\pi y)$ and $\sin 2\pi \omega y = U_{\omega-1}(\cos 2\pi y) \cdot \sin 2\pi y$
- Can expand $f(y) = Q(\cos 2\pi y)^2 + R(\cos 2\pi y)^2 \cdot \sin^2 2\pi y$
- With $\sin^2 2\pi y = 1 \cos^2 2\pi y$, we have:

$$\forall x \in [-1,1], f(x) = Q(x)^2 + R(x)^2 \cdot (1-x^2)$$

- Classical "Putinar" representation

From trigonometric polynomials to polynomials

- \bullet Representation of non-negative polynomials on [-1,1]
 - Given a polynomial P on [-1,1] of degree 2r
 - Define $f(y) = P(\cos 2\pi y)$ a trigonometric polynomial on [0, 1]
 - f is non-negative if and only if $f(y) = \left|\sum_{|\omega| \leq r} \hat{g}(\omega) e^{2i\pi\omega y}\right|^2$

• Chebyshev polynomials for $\omega>0$

- $\cos 2\pi \omega y = T_{\omega}(\cos 2\pi y)$ and $\sin 2\pi \omega y = U_{\omega-1}(\cos 2\pi y) \cdot \sin 2\pi y$
- Can expand $f(y) = Q(\cos 2\pi y)^2 + R(\cos 2\pi y)^2 \cdot \sin^2 2\pi y$
- With $\sin^2 2\pi y = 1 \cos^2 2\pi y$, we have:

$$\forall x \in [-1,1], f(x) = Q(x)^2 + R(x)^2 \cdot (1-x^2)$$

- Classical "Putinar" representation
- Extension to $[-1,1]^d$: Schmüdgen (2017) representation

Convergence bounds with no assumptions

- Theorem (Bach and Rudi, 2022)
 - Assume $s \ge 3r$, and define $\|f\|_{\mathrm{F}} = \sum_{\omega \in \mathbb{Z}^d} |\hat{f}(\omega)|$

$$0 \leq \min_{x \in [0,1]^d} f(x) - c_*^{(s)} \leq \|f - f_*\|_{\mathbf{F}} \cdot \left[\left(1 - \frac{6r^2}{s^2} \right)^{-d} - 1 \right] \sim 6\|f - f_*\|_{\mathbf{F}} \cdot \frac{r^2 d}{s^2}$$

- Proof based on Fang and Fawzi (2021)
- Essentially the same result as Laurent and Slot (2022) with different notations and better constants

Convergence bounds with no assumptions

- Theorem (Bach and Rudi, 2022)
 - Assume $s \ge 3r$, and define $\|f\|_{\mathrm{F}} = \sum_{\omega \in \mathbb{Z}^d} |\hat{f}(\omega)|$

$$0 \leq \min_{x \in [0,1]^d} f(x) - c_*^{(s)} \leq \|f - f_*\|_{\mathbf{F}} \cdot \left[\left(1 - \frac{6r^2}{s^2} \right)^{-d} - 1 \right] \sim 6\|f - f_*\|_{\mathbf{F}} \cdot \frac{r^2 d}{s^2}$$

- Proof based on Fang and Fawzi (2021)
- Essentially the same result as Laurent and Slot (2022) with different notations and better constants

• Discussion

- Spectral relaxation only achieves O(1/s)
- Is it optimal without further assumptions?
- Can it be improved with further assumptions?

From bound on degree to smoothness

- From algebra to analysis
 - Trigonometric polynomials are C^∞ functions
 - Smoothness of f typically characterized by decay of $\widehat{f}(\omega)$ for $\|\omega\| \to +\infty$
 - Support of Fourier series not precise enough

From bound on degree to smoothness

• From algebra to analysis

- Trigonometric polynomials are C^∞ functions
- Smoothness of f typically characterized by decay of $\widehat{f}(\omega)$ for $\|\omega\|\to+\infty$
- Support of Fourier series not precise enough

• Using local optimality conditions

- Assumptions: () f attains its minimum at a single point () f is twice differentiable and $f''(x_*)$ invertible
- Can be relaxed (Marteau-Ferey, Bach, and Rudi, 2022)

Decomposing non-negative C^p functions as sums-of-squares

- **Theorem** (Rudi, Marteau-Ferey, and Bach, 2020):
 - Assumptions: $f : [0,1]^d \to \mathbb{R}$ is C^p (p-th continuous derivatives) f has a unique minimum x_* located in $(0,1)^d$ $f''(x_*)$ invertible

Decomposing non-negative C^p functions as sums-of-squares

• **Theorem** (Rudi, Marteau-Ferey, and Bach, 2020):

- Assumptions: $f : [0,1]^d \to \mathbb{R}$ is C^p (*p*-th continuous derivatives) f has a unique minimum x_* located in $(0,1)^d$ $f''(x_*)$ invertible

- There exist d+1 functions g_1, \ldots, g_{d+1} in C^{p-2} such that $\forall x \in [0,1]^d, \ f(x) - f(x_*) = \sum_{i=1}^{d+1} g_i(x)^2$

Decomposing non-negative C^p functions as sums-of-squares

• **Theorem** (Rudi, Marteau-Ferey, and Bach, 2020):

- Assumptions: $f : [0,1]^d \to \mathbb{R}$ is C^p (*p*-th continuous derivatives) f has a unique minimum x_* located in $(0,1)^d$ $f''(x_*)$ invertible
- There exist d+1 functions g_1, \ldots, g_{d+1} in C^{p-2} such that $\forall x \in [0,1]^d, \ f(x) - f(x_*) = \sum_{i=1}^{d+1} g_i(x)^2$

• Proof technique

- Around x_* , Taylor formula with integral remainder $\Rightarrow d$ functions
- Away from x_* , use the square root
- Use partitions of unity to glue them

Consequence on convergence rate of hierarchies (Woodworth, Bach, and Rudi, 2022)

• A trigonometric polynomial is a C^{∞} function!

$$f(x) - f(x_*) = \sum_{i=1}^{d+1} g_i(x)^2$$

- With g_i 's all C^∞
- Let $\bar{g}_i(x) = \sum_{\|\omega\|_{\infty \leq s}} \hat{g}_i(\omega) e^{2i\pi\omega^{\top}x}$ (truncated version)
- Property: for any order p, $||g_i \bar{g}_i||_F \leq \frac{c_p(g_i)}{s^p}$

Consequence on convergence rate of hierarchies (Woodworth, Bach, and Rudi, 2022)

• A trigonometric polynomial is a C^{∞} function!

$$f(x) - f(x_*) = \sum_{i=1}^{d+1} g_i(x)^2$$

- With g_i 's all C^{∞}
- Let $\bar{g}_i(x) = \sum_{\|\omega\|_{\infty \leq s}} \hat{g}_i(\omega) e^{2i\pi\omega^\top x}$ (truncated version)
- Property: for any order p, $||g_i \bar{g}_i||_F \leq \frac{c_p(g_i)}{s^p}$

• Lemma:
$$\left\| f - f(x_*) - \sum_{i=1}^{d+1} \bar{g}_i^2 \right\|_{\mathcal{F}} \leq \sum_{i=1}^{d+1} \|g_i\|_{\mathcal{F}} \cdot \|g_i - \bar{g}_i\|_{\mathcal{F}}$$

Consequence on convergence rate of hierarchies (Woodworth, Bach, and Rudi, 2022)

• A trigonometric polynomial is a C^{∞} function!

$$f(x) - f(x_*) = \sum_{i=1}^{d+1} g_i(x)^2$$

- With g_i 's all C^{∞}
- Let $\bar{g}_i(x) = \sum_{\|\omega\|_{\infty \leq s}} \hat{g}_i(\omega) e^{2i\pi\omega^\top x}$ (truncated version)
- Property: for any order p, $||g_i \bar{g}_i||_F \leq \frac{c_p(g_i)}{s^p}$

• Lemma:
$$\left\| f - f(x_*) - \sum_{i=1}^{d+1} \bar{g}_i^2 \right\|_{\mathcal{F}} \leq \sum_{i=1}^{d+1} \|g_i\|_{\mathcal{F}} \cdot \|g_i - \bar{g}_i\|_{\mathcal{F}}$$

• **Consequence**: For any p, up to a uniform error less than $\frac{c'_p(f)}{s^p}$, $f - f(x_*)$ is a sum of squares of polynomials of degree s

Exponential convergence rates

- Theorem (Bach and Rudi, 2022)
 - Assume unique minimizer with positive definite Hessian
 - For any $\xi \in (0, 1/2]$:

$$0 \leq \min_{x \in [0,1]^d} f(x) - c_*^{(s)} \leq \Delta_1 \exp\left(-\left(\frac{s}{\Delta_2}\right)^{1+\xi}\right),$$

– Explicit dependence of \bigtriangleup_1 and \bigtriangleup_2 on all problem constants

Exponential convergence rates

- Theorem (Bach and Rudi, 2022)
 - Assume unique minimizer with positive definite Hessian
 - For any $\xi \in (0, 1/2]$:

$$0 \leq \min_{x \in [0,1]^d} f(x) - c_*^{(s)} \leq \Delta_1 \exp\Big(-\Big(\frac{s}{\Delta_2}\Big)^{1+\xi}\Big),$$

– Explicit dependence of \bigtriangleup_1 and \bigtriangleup_2 on all problem constants

• Proof technique

- Explicit control of the constants $c_p(g_i)$ and $c'_p(f)$
- Bounding all derivatives of (matrix) square roots (Del Moral and Niclas, 2018) and partitions of unity (Israel, 2015)
- Extensive use of Faà di Bruno's formula

- Traditional SOS relaxations
 - (trigonometric) polynomial f given by its coefficients

- Traditional SOS relaxations
 - (trigonometric) polynomial f given by its coefficients
- Using zero-th order oracle for f or \hat{f} for smooth functions

- Traditional SOS relaxations
 - (trigonometric) polynomial f given by its coefficients
- Using zero-th order oracle for f or \hat{f} for smooth functions
- **Option 1:** Compute approximation by (trigonometric) polynomial and optimize using SOS (see Novak, 2006)
 - Optimal in terms of number of calls to zero-th order oracle

- Traditional SOS relaxations
 - (trigonometric) polynomial f given by its coefficients
- Using zero-th order oracle for f or \hat{f} for smooth functions
- **Option 1:** Compute approximation by (trigonometric) polynomial and optimize using SOS (see Novak, 2006)
 - Optimal in terms of number of calls to zero-th order oracle
- **Option 2:** Approximate and optimize simultaneously
 - Efficient algorithms (Rudi, Marteau-Ferey, and Bach, 2020)
 - Certificates of optimality (Woodworth, Bach, and Rudi, 2022)

Using function values with trigonometric polynomials

• SOS relaxation:

$$\begin{split} \min_{\Sigma \in \mathbb{C}^{d \times d}} \operatorname{tr}[F\Sigma] \quad \text{such that} \quad \Sigma \in \mathcal{V}, \ \operatorname{tr}[\Sigma] = 1, \ \Sigma \succcurlyeq 0 \\ = \quad \max_{Y \in \mathcal{V}^{\perp}} \lambda_{\min}(F + Y) \end{split}$$

- where $\mathcal{V} = \operatorname{span}(\{\varphi(x)\varphi(x)^*, x \in \mathcal{X}\})$
- ${\mathcal V}$ may be cumbersome to characterize computationally

Using function values with trigonometric polynomials

• SOS relaxation:

 $\min_{\Sigma \in \mathbb{C}^{d \times d}} \operatorname{tr}[F\Sigma] \text{ such that } \Sigma \in \mathcal{V}, \ \operatorname{tr}[\Sigma] = 1, \ \Sigma \succcurlyeq 0$ $= \ \max_{Y \in \mathcal{V}^{\perp}} \lambda_{\min}(F + Y)$

- where $\mathcal{V} = \operatorname{span}(\{\varphi(x)\varphi(x)^*, x \in \mathcal{X}\})$
- $\ensuremath{\mathcal{V}}$ may be cumbersome to characterize computationally
- Replace \mathcal{V} by $\operatorname{span}(\{\varphi(x_i)\varphi(x_i)^*, i \in \{1, \ldots, n\}\})$
 - Generating family obtained by random samples x_1, \ldots, x_n in \mathcal{X} (Cifuentes and Parrilo, 2017)

 $\max_{c \in \mathbb{R}, A \succeq 0} c \text{ such that } \forall i \in \{1, \dots, n\}, f(x_i) - c = \varphi(x_i)^* A \varphi(x_i)$

Infinite expansions (Rudi, Marteau-Ferey, and Bach, 2020)

• Feature map $\varphi : [0,1]^d \to \mathbb{C}^{|\Omega|} : \varphi(x)_\omega = \hat{q}(\omega) e^{2i\pi\omega^\top x}$, for $\omega \in \Omega$

- Contraint $\sum_{\omega \in \Omega} |\hat{q}(\omega)|^2 = 1$
- What if $\Omega = \mathbb{Z}^d$?

Infinite expansions (Rudi, Marteau-Ferey, and Bach, 2020)

• Feature map $\varphi : [0,1]^d \to \mathbb{C}^{|\Omega|} : \varphi(x)_\omega = \hat{q}(\omega) e^{2i\pi\omega^\top x}$, for $\omega \in \Omega$

- Contraint $\sum_{\omega \in \Omega} |\hat{q}(\omega)|^2 = 1$ - What if $\Omega = \mathbb{Z}^d$?
- "Tightness" of relaxation if $\forall \omega \in \mathbb{Z}^d, \ \hat{q}(\omega) > 0$

 $\sup_{c\in\mathbb{R},\ A\succcurlyeq 0} c \quad \text{such that} \quad \forall x\in\mathcal{X},\ f(x)-c=\varphi(x)^*A\varphi(x)$

- Attained with a finite rank operator A under local optimality conditions (isolated minimizers with invertible Hessians)
- Still hard to solve (\mathfrak{X} dense and A infinite-dimensional)

Efficient sampling algorithms

• Sampling and regularization:

 $\max_{c \in \mathbb{R}, A \succeq 0} c - \frac{\lambda \operatorname{tr}(A)}{\lambda \operatorname{tr}(A)} \text{ such that } \forall i \in \{1, \dots, n\}, f(x_i) - c = \varphi(x_i)^* A \varphi(x_i)$

Efficient sampling algorithms

• Sampling and regularization:

 $\max_{c \in \mathbb{R}, A \succeq 0} c - \lambda \operatorname{tr}(A) \text{ such that } \forall i \in \{1, \ldots, n\}, f(x_i) - c = \varphi(x_i)^* A \varphi(x_i)$

- Leads to provable a priori performance guarantees (with correct λ)
- Up to logarithms and a few constants $\varepsilon \propto n^{-p/d}$ for C^p functions
- See Rudi, Marteau-Ferey, and Bach (2020) for details

Efficient sampling algorithms

• Sampling and regularization:

 $\max_{c \in \mathbb{R}, A \succeq 0} c - \lambda \operatorname{tr}(A) \text{ such that } \forall i \in \{1, \dots, n\}, f(x_i) - c = \varphi(x_i)^* A \varphi(x_i)$

- Leads to provable a priori performance guarantees (with correct λ)
- Up to logarithms and a few constants $\varepsilon \propto n^{-p/d}$ for C^p functions
- See Rudi, Marteau-Ferey, and Bach (2020) for details
- Finite-dimensional algorithm through representer theorem
 - Can restrict search to $A = \sum_{j,k=1}^{n} B_{ik} \varphi(x_j) \varphi(x_k)^*$ with $B \in \mathbb{R}^{n \times n}$ and $B \succcurlyeq 0$
 - Only need access to $\varphi(x_j)^*\varphi(x_k) = \sum_{\omega \in \mathbb{Z}^d} |\hat{q}(\omega)|^2 e^{2i\pi\omega^\top (x_j x_k)}$
 - See Marteau-Ferey, Bach, and Rudi (2020) for details

Conclusion

• Sum-of-squares relaxations in the Fourier domain

- From trigonometric polynomials to C^∞ functions
- Exponential convergence rates for polynomial hierarchies
- Extension to zero-th order oracles and infinite expansions

Conclusion

• Sum-of-squares relaxations in the Fourier domain

- From trigonometric polynomials to C^∞ functions
- Exponential convergence rates for polynomial hierarchies
- Extension to zero-th order oracles and infinite expansions

• Improvements

- Certificates of optimality (Woodworth, Bach, and Rudi, 2022)
- Constrained problems (going beyond simple sets \mathfrak{X})

Conclusion

• Sum-of-squares relaxations in the Fourier domain

- From trigonometric polynomials to C^∞ functions
- Exponential convergence rates for polynomial hierarchies
- Extension to zero-th order oracles and infinite expansions

• Improvements

- Certificates of optimality (Woodworth, Bach, and Rudi, 2022)
- Constrained problems (going beyond simple sets \mathfrak{X})

• SOS relaxations beyond optimization

- Optimal control (Berthier, Carpentier, Rudi, and Bach, 2021)
- Optimal transport (Vacher, Muzellec, Rudi, Bach, and Vialard, 2021)
- Log-partition functions and variational inference (Bach, 2022a,b)

Log-partition functions and variational inference

• Log-partition function: given $f: \mathcal{X} \to \mathbb{R}$ and a distribution q on \mathcal{X}

$$-\varepsilon \log \int_{\mathcal{X}} e^{-f(x)/\varepsilon} dq(x) = \inf_{p \text{ probability}} \int_{\mathcal{X}} f(x) dp(x) + \varepsilon D(p || q)$$

with $D(p || q) = \int_{\mathcal{X}} \log \left(\frac{dp}{dq}(x)\right) dp(x)$ Kullback-Leibler divergence

- Used within variational inference (Wainwright and Jordan, 2008)
- Duality between maximum entropy and maximum likelihood

Log-partition functions and variational inference

• Log-partition function: given $f: \mathcal{X} \to \mathbb{R}$ and a distribution q on \mathcal{X}

$$-\varepsilon \log \int_{\mathcal{X}} e^{-f(x)/\varepsilon} dq(x) = \inf_{p \text{ probability}} \int_{\mathcal{X}} f(x) dp(x) + \varepsilon D(p || q)$$

th $D(p || q) = \int \log \left(\frac{dp}{dq}(x)\right) dp(x)$ Kullback-Leibler divergence

with $D(p||q) = \int_{\mathcal{X}} \log\left(\frac{ap}{dq}(x)\right) dp(x)$ Kullback-Leibler divergence

- Used within variational inference (Wainwright and Jordan, 2008)
 Duality between maximum entropy and maximum likelihood
- Von Neumann relative entropy

$$D(\Sigma_p \| \Sigma_q) = \operatorname{tr}[\Sigma_p(\log \Sigma_p - \log \Sigma_q)]$$

- With $\Sigma_p = \int_{\mathcal{X}} \varphi(x) \varphi(x)^* dp(x)$ and $\Sigma_q = \int_{\mathcal{X}} \varphi(x) \varphi(x)^* dq(x)$

– Always a lower bound on $D(p\|q)$ (Bach, 2022a)

References

Francis Bach. Information theory with kernel methods. arXiv preprint arXiv:2202.08545, 2022a.

- Francis Bach. Sum-of-squares relaxations for information theory and variational inference. *arXiv* preprint arXiv:2206.13285, 2022b.
- Francis Bach and Alessandro Rudi. Exponential convergence of sum-of-squares hierarchies for trigonometric polynomials. Technical Report 2211.04889, ArXiv, 2022.
- Eloïse Berthier, Justin Carpentier, Alessandro Rudi, and Francis Bach. Infinite-dimensional sums-of-squares for optimal control. Technical Report 2110.07396, arXiv, 2021.
- Diego Cifuentes and Pablo A. Parrilo. Sampling algebraic varieties for sum of squares programs. *SIAM Journal on Optimization*, 27(4):2381–2404, 2017.
- Pierre Del Moral and Angele Niclas. A Taylor expansion of the square root matrix function. *Journal of Mathematical Analysis and Applications*, 465(1):259–266, 2018.
- Bogdan Dumitrescu. *Positive trigonometric polynomials and signal processing applications*, volume 103. Springer, 2007.
- Kun Fang and Hamza Fawzi. The sum-of-squares hierarchy on the sphere and applications in quantum information theory. *Mathematical Programming*, 190(1):331–360, 2021.
- Leopold Fejér. Uber trigonometrische Polynome. *Journal für die reine und angewandte Mathematik*, (146):55–82, 1916.

Ulf Grenander and Gabor Szegö. Toeplitz forms and their applications. Univ of California Press, 1958.

- Didier Henrion, Milan Korda, and Jean Bernard Lasserre. *Moment-sos Hierarchy, The: Lectures In Probability, Statistics, Computational Geometry, Control And Nonlinear PDEs*, volume 4. World Scientific, 2020.
- Arie Israel. The eigenvalue distribution of time-frequency localization operators. Technical Report 1502.04404, arXiv, 2015.
- Jean-Bernard Lasserre. Global optimization with polynomials and the problem of moments. *SIAM Journal on Optimization*, 11(3):796–817, 2001.
- Jean-Bernard Lasserre. *Moments, Positive Polynomials and their Applications*, volume 1. World Scientific, 2010.
- Jean-Bernard Lasserre, Didier Henrion, Christophe Prieur, and Emmanuel Trélat. Nonlinear optimal control via occupation measures and Imi-relaxations. *SIAM Journal on Control and Optimization*, 47(4):1643–1666, 2008.
- Monique Laurent. Sums of squares, moment matrices and optimization over polynomials. In *Emerging* applications of Algebraic Geometry, pages 157–270. Springer, 2009.
- Monique Laurent and Lucas Slot. An effective version of Schmüdgen's Positivstellensatz for the hypercube. *Optimization Letters*, pages 1–16, 2022.
- Daniel Liberzon. Calculus of Variations and Optimal Control Theory. Princeton University Press, 2011.
- Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric models for non-negative functions. *Advances in Neural Information Processing Systems*, 33, 2020.
- Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Second order conditions to decompose smooth functions as sums of squares. *arXiv preprint arXiv:2202.13729*, 2022.

- Alexandre Megretski. Positivity of trigonometric polynomials. In *International Conference on Decision* and Control, volume 4, pages 3814–3817, 2003.
- Aaron Naftalovich and M. Schreiber. Trigonometric polynomials and sums of squares. In *Number Theory*, pages 225–238. Springer, 1985.
- Yurii Nesterov. Squared functional systems and optimization problems. In *High Performance Optimization*, pages 405–440. Springer, 2000.
- Jiawang Nie. Optimality conditions and finite convergence of Lasserre's hierarchy. *Mathematical Programming*, 146(1-2):97–121, 2014.
- Erich Novak. *Deterministic and Stochastic Error Bounds in Numerical Analysis*, volume 1349. Springer, 2006.
- Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. *Mathematical Programming*, 96(2):293–320, 2003.
- Pablo A Parrilo, Grigoriy Blekherman, and Rekha R. Thomas. *Semidefinite optimization and convex algebraic geometry*. SIAM Society for Industrial and Applied Mathematics., 2013.
- Mihai Putinar. Sur la complexification du problème des moments. *Comptes rendus de l'Académie des sciences. Série 1, Mathématique*, 314(10):743–745, 1992.
- Friedrich Riesz. Uber ein Problem des Herrn Carathéodory. *Journal für die reine und angewandte Mathematik*, (146):83–87, 1916.
- Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel approximations. Technical Report 2012.11978, arXiv, 2020.
- Claus Scheiderer. Sums of squares on real algebraic surfaces. Manuscripta Mathematica, 119(4):

395-410, 2006.

Konrad Schmüdgen. The Moment Problem. Springer, 2017.

- Lucas Slot. Sum-of-squares hierarchies for polynomial optimization and the Christoffel–Darboux kernel. *SIAM Journal on Optimization*, 32(4):2612–2635, 2022.
- Adrien Vacher, Boris Muzellec, Alessandro Rudi, Francis Bach, and Francois-Xavier Vialard. A dimension-free computational upper-bound for smooth optimal transport estimation. In *Conference on Learning Theory*, pages 4143–4173, 2021.
- Richard Vinter. Convex duality and nonlinear optimal control. *SIAM Journal on Control and Optimization*, 31(2):518–538, 1993.
- Martin J. Wainwright and Michael I. Jordan. *Graphical Models, Exponential Families, and Variational Inference*. Now Publishers Inc., 2008.
- Jonathan Weed and Quentin Berthet. Estimation of smooth densities in Wasserstein distance. In *Conference on Learning Theory*, pages 3118–3119. PMLR, 2019.
- Blake Woodworth, Francis Bach, and Alessandro Rudi. Non-convex optimization with certificates and fast rates through kernel sums of squares. *arXiv preprint arXiv:2204.04970*, 2022.

Smooth optimal transport

• Primal formulation: $\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\chi \times \mathcal{Y}} c(x,y) d\gamma(x,y)$

– $\Gamma(\mu,\nu)$ set of probability distributions with marginals μ and ν

• Dual formulation: $\sup_{u,v\in C(\mathbb{R}^n)} \int_{\mathcal{X}} u(x)d\mu(x) + \int_{\mathcal{Y}} v(y)d\mu(y)$ such that $\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \ c(x,y) - u(x) + v(y) \ge 0$

Smooth optimal transport

• Primal formulation: $\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathfrak{X} \times \mathfrak{Y}} c(x,y) d\gamma(x,y)$

– $\Gamma(\mu,\nu)$ set of probability distributions with marginals μ and ν

- Dual formulation: $\sup_{u,v\in C(\mathbb{R}^n)} \int_{\mathcal{X}} u(x)d\mu(x) + \int_{\mathcal{Y}} v(y)d\mu(y)$ such that $\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \ c(x,y) - u(x) + v(y) \ge 0$
- $\bullet\,$ Estimation from i.i.d. samples from smooth densities for μ and ν
 - Rate: from $O(n^{-1/d})$ to $O(n^{-p/d})$ (Weed and Berthet, 2019)
 - No polynomial-time algorithm

Smooth optimal transport

• Primal formulation: $\inf_{\gamma \in \Gamma(\mu,\nu)} \int_{\mathfrak{X} \times \mathfrak{Y}} c(x,y) d\gamma(x,y)$

– $\Gamma(\mu,\nu)$ set of probability distributions with marginals μ and ν

• Dual formulation:
$$\sup_{u,v\in C(\mathbb{R}^n)} \int_{\mathcal{X}} u(x)d\mu(x) + \int_{\mathcal{Y}} v(y)d\mu(y)$$

such that $\forall (x,y) \in \mathcal{X} \times \mathcal{Y}, \ c(x,y) - u(x) + v(y) \ge 0$

- $\bullet\,$ Estimation from i.i.d. samples from smooth densities for μ and ν
 - Rate: from $O(n^{-1/d})$ to $O(n^{-p/d})$ (Weed and Berthet, 2019)
 - No polynomial-time algorithm
- Kernel sums of squares: "polynomial"-time algorithm
 - Vacher, Muzellec, Rudi, Bach, and Vialard (2021)

• **Optimal control** (Liberzon, 2011)

$$V^*(t_0, x_0) = \inf_{u:[t_0, T] \to \mathcal{U}} \int_{t_0}^T L(t, x(t), u(t)) dt + M(x(T))$$

$$\forall t \in [t_0, T], \ \dot{x}(t) = f(t, x(t), u(t)), \quad x(t_0) = x_0.$$

• **Optimal control** (Liberzon, 2011)

$$V^*(t_0, x_0) = \inf_{u:[t_0, T] \to \mathcal{U}} \int_{t_0}^T L(t, x(t), u(t)) dt + M(x(T))$$

$$\forall t \in [t_0, T], \ \dot{x}(t) = f(t, x(t), u(t)), \quad x(t_0) = x_0.$$

$$\begin{split} \sup_{V:[0,T]\times \mathcal{X}\to\mathbb{R}} \int V(0,x_0) \mathrm{d}\mu_0(x_0) \\ \forall (t,x,u), \quad \frac{\partial V}{\partial t}(t,x) + L(t,x,u) + \nabla V(t,x)^\top f(t,x,u) \geqslant 0 \\ \forall x, \qquad \qquad V(T,x) = M(x). \end{split}$$

$$\begin{split} \sup_{V:[0,T]\times \mathcal{X}\to\mathbb{R}} \int V(0,x_0) \mathsf{d}\mu_0(x_0) \\ \forall (t,x,u), \quad \frac{\partial V}{\partial t}(t,x) + L(t,x,u) + \nabla V(t,x)^\top f(t,x,u) \geqslant 0 \\ \forall x, \qquad \qquad V(T,x) = M(x). \end{split}$$

$$\begin{split} \sup_{V:[0,T]\times \mathcal{X}\to\mathbb{R}} \int V(0,x_0) \mathrm{d}\mu_0(x_0) \\ \forall (t,x,u), \quad \frac{\partial V}{\partial t}(t,x) + L(t,x,u) + \nabla V(t,x)^\top f(t,x,u) \geqslant 0 \\ \forall x, \qquad \qquad V(T,x) = M(x). \end{split}$$

- Polynomial sums-of-squares
 - Lasserre, Henrion, Prieur, and Trélat (2008)

$$\begin{split} \sup_{V:[0,T]\times \mathcal{X}\to\mathbb{R}} \int V(0,x_0) \mathrm{d}\mu_0(x_0) \\ \forall (t,x,u), \quad \frac{\partial V}{\partial t}(t,x) + L(t,x,u) + \nabla V(t,x)^\top f(t,x,u) \geqslant 0 \\ \forall x, \qquad \qquad V(T,x) = M(x). \end{split}$$

- Polynomial sums-of-squares
 - Lasserre, Henrion, Prieur, and Trélat (2008)
- Extension to kernel sums-of-squares
 - Berthier, Carpentier, Rudi, and Bach (2021)
 - Allows some form of modelling