Sums of squares: from algebra to analysis

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

ÉCOLE NORMALE
S U P ÉRIE UR E

Joint work with Alessandro Rudi,
Ulysse Marteau-Ferey, and Blake Woodworth
Brainpop online seminar - February 15, 2023

Sums of squares: from algebra to analysis One-minute summary

- Minimization of continuous functions on $[0,1]^{d}$
- From polynomials to trigonometric polynomials
- Simpler "more intuitive" sum-of-squares formulations

Sums of squares: from algebra to analysis One-minute summary

- Minimization of continuous functions on $[0,1]^{d}$
- From polynomials to trigonometric polynomials
- Simpler "more intuitive" sum-of-squares formulations
- From bound on degree to smoothness
- Allows for explicit convergence rates
(up to exponential in the degree of the finite hierarchy)
- Allows for zero-th order oracle with kernel methods

Optimization of trigonometric polynomials

- Trigonometric polynomials: $f(x)=\sum_{\omega \in \mathbb{Z}^{d}} \hat{f}(\omega) e^{2 i \pi \omega^{\top} x}$

Optimization of trigonometric polynomials

- Trigonometric polynomials: $f(x)=\sum_{\omega \in \mathbb{Z}^{d}} \hat{f}(\omega) e^{2 i \pi \omega^{\top} x}$
- Fourier series $\hat{f}(\omega)=\int_{[0,1]^{d}} f(x) e^{-2 i \pi \omega^{\top} x} d x \in \mathbb{C}$
- Real values for $f \Leftrightarrow \forall \omega \in \mathbb{Z}^{d}, \hat{f}(-\omega)=\hat{f}(\omega)^{*}$ (polynomial in $\cos 2 \pi x_{j}$ and $\sin 2 \pi x_{j}, j \in\{1, \ldots, d\}$)
- Degree $=\max \left\{\|\omega\|_{\infty}, \hat{f}(\omega) \neq 0\right\}$

Optimization of trigonometric polynomials

- Trigonometric polynomials: $f(x)=\sum_{\omega \in \mathbb{Z}^{d}} \hat{f}(\omega) e^{2 i \pi \omega^{\top} x}$
- Representation as quadratic forms
- Feature map $\varphi:[0,1]^{d} \rightarrow \mathbb{C}^{m}: \varphi(x)_{\omega}=\hat{q}(\omega) e^{2 i \pi \omega^{\top} x}$, for $\omega \in \Omega$
- If $\Omega=\left\{\omega \in \mathbb{Z}^{d},\|\omega\|_{\infty} \leqslant r\right\}$, then $m=|\Omega|=(2 r+1)^{d}$
- Normalization: $\|\varphi(x)\|^{2}=\sum_{\omega \in \Omega}|\hat{q}(\omega)|^{2}=1$

Optimization of trigonometric polynomials

- Trigonometric polynomials: $f(x)=\sum_{\omega \in \mathbb{Z}^{d}} \hat{f}(\omega) e^{2 i \pi \omega^{\top} x}$
- Representation as quadratic forms
- Feature map $\varphi:[0,1]^{d} \rightarrow \mathbb{C}^{m}: \varphi(x)_{\omega}=\hat{q}(\omega) e^{2 i \pi \omega^{\top} x}$, for $\omega \in \Omega$
- If $\Omega=\left\{\omega \in \mathbb{Z}^{d},\|\omega\|_{\infty} \leqslant r\right\}$, then $m=|\Omega|=(2 r+1)^{d}$
- Normalization: $\|\varphi(x)\|^{2}=\sum_{\omega \in \Omega}|\hat{q}(\omega)|^{2}=1$
- With $F \in \mathbb{C}^{m \times m}$ Hermitian

$$
f(x)=\varphi(x)^{*} F \varphi(x)=\sum_{\omega, \omega^{\prime} \in \Omega} F_{\omega \omega^{\prime}} \hat{q}(\omega) \hat{q}\left(\omega^{\prime}\right)^{*} \cdot e^{2 i \pi\left(\omega-\omega^{\prime}\right)^{\top} x}
$$

- Represents all trigonometric polynomials of degree $2 r$
- F not uniquely defined

Optimization of trigonometric polynomials

- Generic problem on $X=[0,1]^{d}: \min _{x \in X} f(x)=\varphi(x)^{*} F \varphi(x)$
- Normalized feature map $\varphi: \mathcal{X} \rightarrow \mathbb{C}^{m}$ such that $\|\varphi(x)\|^{2}=1$

Optimization of trigonometric polynomials

- Generic problem on $X=[0,1]^{d}: \min _{x \in X} f(x)=\varphi(x)^{*} F \varphi(x)$
- Normalized feature map $\varphi: X \rightarrow \mathbb{C}^{m}$ such that $\|\varphi(x)\|^{2}=1$
- Sum-of-squares relaxations
- Lasserre (2001); Parrilo (2003)
- Books (Lasserre, 2010; Parrilo et al., 2013; Dumitrescu, 2007; Henrion et al., 2020)
- Review paper (Laurent, 2009)

Optimization of trigonometric polynomials

- Generic problem on $X=[0,1]^{d}: \min _{x \in X} f(x)=\varphi(x)^{*} F \varphi(x)$
- Normalized feature map $\varphi: X \rightarrow \mathbb{C}^{m}$ such that $\|\varphi(x)\|^{2}=1$
- Sum-of-squares relaxations
- Lasserre (2001); Parrilo (2003)
- Books (Lasserre, 2010; Parrilo et al., 2013; Dumitrescu, 2007; Henrion et al., 2020)
- Review paper (Laurent, 2009)
- Simplification
- Assumption: X is a (very) "simple" set
- From polynomials to trigonometric polynomials (will be lifted)

Convex relaxation: the SOS view

- Exact reformulation of minimization problem

$$
\min _{x \in X} f(x)=\max _{c \in \mathbb{R}} c \quad \text { such that } \forall x \in X, f(x)-c \geqslant 0
$$

Convex relaxation: the SOS view

- Exact reformulation of minimization problem

$$
\min _{x \in X} f(x)=\max _{c \in \mathbb{R}} c \quad \text { such that } \forall x \in X, f(x)-c \geqslant 0
$$

- SOS relaxation: replace $f(x)-c \geqslant 0$ by $f(x)-c=\varphi(x)^{*} A \varphi(x)$ with A Hermitian positive semi-definite $(A \succcurlyeq 0)$
- If $A=\sum_{i=1}^{m} \lambda_{i} u_{i} u_{i}^{*}$, then $\varphi(x)^{*} A \varphi(x)=\sum_{i=1}^{m}\left|\lambda_{i}^{1 / 2} u_{i}^{*} \varphi(x)\right|^{2}$

Convex relaxation: the SOS view

- Relaxed problem for minimizing $f(x)=\varphi(x)^{*} F \varphi(x)$:

$$
\max _{c \in \mathbb{R}, A \succcurlyeq 0} c \text { such that } \quad \forall x \in \mathcal{X}, f(x)-c=\varphi(x)^{*} A \varphi(x)
$$

Convex relaxation: the SOS view

- Relaxed problem for minimizing $f(x)=\varphi(x)^{*} F \varphi(x)$:

$$
\left.\begin{array}{rl}
& \max _{c \in \mathbb{R}, A \succcurlyeq 0} c \\
= & \text { such that } \quad \forall x \in X, f(x)-c=\varphi(x)^{*} A \varphi(x) \\
= & \max _{c \in \mathbb{R}, A \succcurlyeq 0} c
\end{array} \quad \text { such that } \quad \forall x \in X, \operatorname{tr}\left[\varphi(x) \varphi(x)^{*}(F-c I-A)\right]=0\right)
$$

Convex relaxation: the SOS view

- Relaxed problem for minimizing $f(x)=\varphi(x)^{*} F \varphi(x)$:

$$
\begin{aligned}
& \max _{c \in \mathbb{R}, A \succcurlyeq 0} c \text { such that } \forall x \in X, f(x)-c=\varphi(x)^{*} A \varphi(x) \\
& =\max _{c \in \mathbb{R}, A \succcurlyeq 0} c \text { such that } \forall x \in X, \operatorname{tr}\left[\varphi(x) \varphi(x)^{*}(F-c I-A)\right]=0 \\
& =\max _{c \in \mathbb{R}, A \succcurlyeq 0} c \text { such that } F-c I-A+Y=0, \text { with } Y \in \mathcal{V}^{\perp} \\
& \text { where } \mathcal{V}=\operatorname{span}\left(\left\{\varphi(x) \varphi(x)^{*}, x \in X\right\}\right) \\
& \mathcal{V}=\text { multivariate Toeplitz matrices }
\end{aligned}
$$

Convex relaxation: the SOS view

- Relaxed problem for minimizing $f(x)=\varphi(x)^{*} F \varphi(x)$:

$$
\begin{aligned}
& \max _{c \in \mathbb{R}, A \succcurlyeq 0} c \text { such that } \forall x \in X, f(x)-c=\varphi(x)^{*} A \varphi(x) \\
& =\max _{c \in \mathbb{R}, A \succcurlyeq 0} c \text { such that } \forall x \in X, \operatorname{tr}\left[\varphi(x) \varphi(x)^{*}(F-c I-A)\right]=0 \\
& =\max _{c \in \mathbb{R}, A \succcurlyeq 0} c \text { such that } F-c I-A+Y=0, \text { with } Y \in \mathcal{V}^{\perp} \\
& \text { where } \mathcal{V}=\operatorname{span}\left(\left\{\varphi(x) \varphi(x)^{*}, x \in X\right\}\right) \\
& \mathcal{V}=\text { multivariate Toeplitz matrices }
\end{aligned}
$$

- Optimizing over c and A :

$$
\max _{Y \in \mathcal{V} \perp} \lambda_{\min }(F+Y)
$$

- Link with spectral relaxation $(Y=0)$

Convex relaxation: the moment view

- Dual exact reformulation of minimization problem

$$
\min _{\mu \in \mathcal{P}(X)} \int_{X} f(x) d \mu(x)=\operatorname{tr}\left[F\left(\int_{X} \varphi(x) \varphi(x)^{*} d \mu(x)\right)\right]
$$

- with $\mathcal{P}(X)=$ set of probability measures on X

Convex relaxation: the moment view

- Dual exact reformulation of minimization problem

$$
\min _{\mu \in \mathcal{P}(X)} \int_{x} f(x) d \mu(x)=\operatorname{tr}\left[F\left(\int_{X} \varphi(x) \varphi(x)^{*} d \mu(x)\right)\right]
$$

- with $\mathcal{P}(X)=$ set of probability measures on \mathcal{X}
- Equivalent reformulation: $\min _{\Sigma \in \mathcal{K}} \operatorname{tr}[F \Sigma]$
- with \mathcal{K} closure of convex hull of $\left\{\varphi(x) \varphi(x)^{*}, x \in \mathcal{X}\right\}$

Convex relaxation: the moment view

- Dual exact reformulation of minimization problem

$$
\min _{\mu \in \mathcal{P}(X)} \int_{X} f(x) d \mu(x)=\operatorname{tr}\left[F\left(\int_{X} \varphi(x) \varphi(x)^{*} d \mu(x)\right)\right]
$$

- with $\mathcal{P}(X)=$ set of probability measures on X
- Equivalent reformulation: $\min _{\Sigma \in \mathcal{K}} \operatorname{tr}[F \Sigma]$
- with \mathcal{K} closure of convex hull of $\left\{\varphi(x) \varphi(x)^{*}, x \in \mathcal{X}\right\}$
- Relaxation using outer approximation $\widehat{\mathcal{K}} \supset \mathcal{K}$
- Preserve affine hull and add positivity constraint

$$
\widehat{\mathcal{K}}=\left\{\Sigma \in \mathbb{C}^{m \times m}, \Sigma \in \mathcal{V}, \operatorname{tr}[\Sigma]=1, \Sigma \succcurlyeq 0\right\}
$$

Tightness of SOS relaxations

- Two equivalent views
(1) Are all non-negative functions sums-of-squares?
(2) Is $\widehat{\mathcal{K}}=\mathcal{K}$?

Tightness of SOS relaxations

- Two equivalent views
(1) Are all non-negative functions sums-of-squares?
(2) Is $\widehat{\mathcal{K}}=\mathcal{K}$?
- Univariate polynomials $(d=1)$
- Tight relaxation (Fejér, 1916; Riesz, 1916; Nesterov, 2000)
- Elementary proof based on polynomial factorization
- NB: spectral relaxation only converges at $O(1 / s)$ with $s=$ degree (Grenander and Szegö, 1958)

Tightness of SOS relaxations

- Two equivalent views
(1) Are all non-negative functions sums-of-squares?
(2) Is $\widehat{\mathcal{K}}=\mathcal{K}$?
- Univariate polynomials $(d=1)$
- Tight relaxation (Fejér, 1916; Riesz, 1916; Nesterov, 2000)
- Elementary proof based on polynomial factorization
- NB: spectral relaxation only converges at $O(1 / s)$ with $s=$ degree (Grenander and Szegö, 1958)
- What about multivariate polynomials $(d>1)$?
- Bad and good news...

Tightness of SOS relaxations Multivariate trigonometric polynomials

- Not all non-negative trigonometric polynomials are SOSs
- Generic construction (Naftalovich and Schreiber, 1985)
- Based on Motzkin counter-example

$$
\begin{aligned}
& f(x)=M\left(1-\cos 2 \pi x_{1}, 1-\cos 2 \pi x_{2}, 1-\cos 2 \pi x_{3}\right) \\
& \quad \text { with } M\left(y_{1}, y_{2}, y_{3}\right)=y_{1}^{2} y_{2}+y_{1} y_{2}^{2}+y_{3}^{3}-3 y_{1} y_{2} y_{3}
\end{aligned}
$$

Tightness of SOS relaxations Multivariate trigonometric polynomials

- Not all non-negative trigonometric polynomials are SOSs
- Generic construction (Naftalovich and Schreiber, 1985)
- Based on Motzkin counter-example

$$
\begin{aligned}
& f(x)=M\left(1-\cos 2 \pi x_{1}, 1-\cos 2 \pi x_{2}, 1-\cos 2 \pi x_{3}\right) \\
& \quad \text { with } M\left(y_{1}, y_{2}, y_{3}\right)=y_{1}^{2} y_{2}+y_{1} y_{2}^{2}+y_{3}^{3}-3 y_{1} y_{2} y_{3}
\end{aligned}
$$

- All strictly positive polynomials are sums-of-squares
- See Putinar (1992); Megretski (2003)
- Degrees not known a priori
- Allows for hierarchies
- NB: always finite convergence for $d=2$ (Scheiderer, 2006)

Trigonometric polynomial hierarchies

- Goal: minimize degree $2 r$ trigonometric polynomial f
- Define $\varphi^{(s)}:[0,1]^{d} \rightarrow \mathbb{C}^{(2 s+1)^{d}}$ with all Fourier exponentials of degree less than $s \geqslant r$
- Represent f as quadratic form $f(x)=\varphi^{(s)}(x)^{*}\left(F^{(s)}\right) \varphi^{(s)}(x)$
- Solve the primal/dual pair of SOS relaxations, with values $c_{*}^{(s)}$

$$
c_{*}^{(s)} \rightarrow \min _{x \in[0,1]^{d}} f(x) \quad \text { when } s \rightarrow+\infty
$$

Trigonometric polynomial hierarchies

- Goal: minimize degree $2 r$ trigonometric polynomial f
- Define $\varphi^{(s)}:[0,1]^{d} \rightarrow \mathbb{C}^{(2 s+1)^{d}}$ with all Fourier exponentials of degree less than $s \geqslant r$
- Represent f as quadratic form $f(x)=\varphi^{(s)}(x)^{*}\left(F^{(s)}\right) \varphi^{(s)}(x)$
- Solve the primal/dual pair of SOS relaxations, with values $c_{*}^{(s)}$

$$
c_{*}^{(s)} \rightarrow \min _{x \in[0,1]^{d}} f(x) \text { when } s \rightarrow+\infty
$$

- How fast?
- Finite convergence often observed, and provable for locally wellbehaved problems (Nie, 2014), with no rate
- Existing bounds in $O\left(1 / s^{2}\right)$ for other special cases (Fang and Fawzi, 2021; Laurent and Slot, 2022; Slot, 2022)

From trigonometric polynomials to polynomials

- Representation of non-negative polynomials on $[-1,1]$
- Given a polynomial P on $[-1,1]$ of degree $2 r$
- Define $f(y)=P(\cos 2 \pi y)$ a trigonometric polynomial on $[0,1]$
- f is non-negative if and only if $f(y)=\left|\sum_{|\omega| \leqslant r} \hat{g}(\omega) e^{2 i \pi \omega y}\right|^{2}$

From trigonometric polynomials to polynomials

- Representation of non-negative polynomials on $[-1,1]$
- Given a polynomial P on $[-1,1]$ of degree $2 r$
- Define $f(y)=P(\cos 2 \pi y)$ a trigonometric polynomial on $[0,1]$
- f is non-negative if and only if $f(y)=\left|\sum_{|\omega| \leqslant r} \hat{g}(\omega) e^{2 i \pi \omega y}\right|^{2}$
- Chebyshev polynomials for $\omega>0$
$-\cos 2 \pi \omega y=T_{\omega}(\cos 2 \pi y)$ and $\sin 2 \pi \omega y=U_{\omega-1}(\cos 2 \pi y) \cdot \sin 2 \pi y$
- Can expand $f(y)=Q(\cos 2 \pi y)^{2}+R(\cos 2 \pi y)^{2} \cdot \sin ^{2} 2 \pi y$
- With $\sin ^{2} 2 \pi y=1-\cos ^{2} 2 \pi y$, we have:

$$
\forall x \in[-1,1], \quad f(x)=Q(x)^{2}+R(x)^{2} \cdot\left(1-x^{2}\right)
$$

- Classical "Putinar" representation

From trigonometric polynomials to polynomials

- Representation of non-negative polynomials on $[-1,1]$
- Given a polynomial P on $[-1,1]$ of degree $2 r$
- Define $f(y)=P(\cos 2 \pi y)$ a trigonometric polynomial on $[0,1]$
- f is non-negative if and only if $f(y)=\left|\sum_{|\omega| \leqslant r} \hat{g}(\omega) e^{2 i \pi \omega y}\right|^{2}$
- Chebyshev polynomials for $\omega>0$
$-\cos 2 \pi \omega y=T_{\omega}(\cos 2 \pi y)$ and $\sin 2 \pi \omega y=U_{\omega-1}(\cos 2 \pi y) \cdot \sin 2 \pi y$
- Can expand $f(y)=Q(\cos 2 \pi y)^{2}+R(\cos 2 \pi y)^{2} \cdot \sin ^{2} 2 \pi y$
- With $\sin ^{2} 2 \pi y=1-\cos ^{2} 2 \pi y$, we have:

$$
\forall x \in[-1,1], \quad f(x)=Q(x)^{2}+R(x)^{2} \cdot\left(1-x^{2}\right)
$$

- Classical "Putinar" representation
- Extension to $[-1,1]^{d}$: Schmüdgen (2017) representation

Convergence bounds with no assumptions

- Theorem (Bach and Rudi, 2022)
- Assume $s \geqslant 3 r$, and define $\|f\|_{\mathrm{F}}=\sum_{\omega \in \mathbb{Z}^{d}}|\hat{f}(\omega)|$
$0 \leqslant \min _{x \in[0,1]^{d}} f(x)-c_{*}^{(s)} \leqslant\left\|f-f_{*}\right\|_{\mathrm{F}} \cdot\left[\left(1-\frac{6 r^{2}}{s^{2}}\right)^{-d}-1\right] \sim 6\left\|f-f_{*}\right\|_{\mathrm{F}} \cdot \frac{r^{2} d}{s^{2}}$
- Proof based on Fang and Fawzi (2021)
- Essentially the same result as Laurent and Slot (2022) with different notations and better constants

Convergence bounds with no assumptions

- Theorem (Bach and Rudi, 2022)
- Assume $s \geqslant 3 r$, and define $\|f\|_{\mathrm{F}}=\sum_{\omega \in \mathbb{Z}^{d}}|\hat{f}(\omega)|$
$0 \leqslant \min _{x \in[0,1]^{d}} f(x)-c_{*}^{(s)} \leqslant\left\|f-f_{*}\right\|_{\mathrm{F}} \cdot\left[\left(1-\frac{6 r^{2}}{s^{2}}\right)^{-d}-1\right] \sim 6\left\|f-f_{*}\right\|_{\mathrm{F}} \cdot \frac{r^{2} d}{s^{2}}$
- Proof based on Fang and Fawzi (2021)
- Essentially the same result as Laurent and Slot (2022) with different notations and better constants
- Discussion
- Spectral relaxation only achieves $O(1 / s)$
- Is it optimal without further assumptions?
- Can it be improved with further assumptions?

From bound on degree to smoothness

- From algebra to analysis
- Trigonometric polynomials are C^{∞} functions
- Smoothness of f typically characterized by decay of $\hat{f}(\omega)$ for $\|\omega\| \rightarrow+\infty$
- Support of Fourier series not precise enough

From bound on degree to smoothness

- From algebra to analysis
- Trigonometric polynomials are C^{∞} functions
- Smoothness of f typically characterized by decay of $\hat{f}(\omega)$ for $\|\omega\| \rightarrow+\infty$
- Support of Fourier series not precise enough
- Using local optimality conditions
- Assumptions: () f attains its minimum at a single point
() f is twice differentiable and $f^{\prime \prime}\left(x_{*}\right)$ invertible
- Can be relaxed (Marteau-Ferey, Bach, and Rudi, 2022)

Decomposing non-negative C^{p} functions as sums-of-squares

- Theorem (Rudi, Marteau-Ferey, and Bach, 2020):
- Assumptions: $f:[0,1]^{d} \rightarrow \mathbb{R}$ is C^{p} (p-th continuous derivatives) f has a unique minimum x_{*} located in $(0,1)^{d}$ $f^{\prime \prime}\left(x_{*}\right)$ invertible

Decomposing non-negative C^{p} functions as sums-of-squares

- Theorem (Rudi, Marteau-Ferey, and Bach, 2020):
- Assumptions: $f:[0,1]^{d} \rightarrow \mathbb{R}$ is C^{p} (p-th continuous derivatives) f has a unique minimum x_{*} located in $(0,1)^{d}$ $f^{\prime \prime}\left(x_{*}\right)$ invertible
- There exist $d+1$ functions g_{1}, \ldots, g_{d+1} in C^{p-2} such that

$$
\forall x \in[0,1]^{d}, f(x)-f\left(x_{*}\right)=\sum_{i=1}^{d+1} g_{i}(x)^{2}
$$

Decomposing non-negative C^{p} functions as sums-of-squares

- Theorem (Rudi, Marteau-Ferey, and Bach, 2020):
- Assumptions: $f:[0,1]^{d} \rightarrow \mathbb{R}$ is C^{p} (p-th continuous derivatives) f has a unique minimum x_{*} located in $(0,1)^{d}$ $f^{\prime \prime}\left(x_{*}\right)$ invertible
- There exist $d+1$ functions g_{1}, \ldots, g_{d+1} in C^{p-2} such that

$$
\forall x \in[0,1]^{d}, f(x)-f\left(x_{*}\right)=\sum_{i=1}^{d+1} g_{i}(x)^{2}
$$

- Proof technique
- Around x_{*}, Taylor formula with integral remainder $\Rightarrow d$ functions
- Away from x_{*}, use the square root
- Use partitions of unity to glue them

Consequence on convergence rate of hierarchies (Woodworth, Bach, and Rudi, 2022)

- A trigonometric polynomial is a C^{∞} function!

$$
f(x)-f\left(x_{*}\right)=\sum_{i=1}^{d+1} g_{i}(x)^{2}
$$

- With g_{i} 's all C^{∞}
- Let $\bar{g}_{i}(x)=\sum_{\|\omega\|_{\infty} \leqslant s} \hat{g}_{i}(\omega) e^{2 i \pi \omega^{\top} x}$ (truncated version)
- Property: for any order $p,\left\|g_{i}-\bar{g}_{i}\right\|_{\mathrm{F}} \leqslant \frac{c_{p}\left(g_{i}\right)}{s^{p}}$

Consequence on convergence rate of hierarchies (Woodworth, Bach, and Rudi, 2022)

- A trigonometric polynomial is a C^{∞} function!

$$
f(x)-f\left(x_{*}\right)=\sum_{i=1}^{d+1} g_{i}(x)^{2}
$$

- With g_{i} 's all C^{∞}
- Let $\bar{g}_{i}(x)=\sum_{\|\omega\|_{\infty} \leqslant s} \hat{g}_{i}(\omega) e^{2 i \pi \omega^{\top} x}$ (truncated version)
- Property: for any order $p,\left\|g_{i}-\bar{g}_{i}\right\|_{\mathrm{F}} \leqslant \frac{c_{p}\left(g_{i}\right)}{s^{p}}$
- Lemma: $\left\|f-f\left(x_{*}\right)-\sum_{i=1}^{d+1} \bar{g}_{i}^{2}\right\|_{\mathrm{F}} \leqslant \sum_{i=1}^{d+1}\left\|g_{i}\right\|_{\mathrm{F}} \cdot\left\|g_{i}-\bar{g}_{i}\right\|_{\mathrm{F}}$

Consequence on convergence rate of hierarchies (Woodworth, Bach, and Rudi, 2022)

- A trigonometric polynomial is a C^{∞} function!

$$
f(x)-f\left(x_{*}\right)=\sum_{i=1}^{d+1} g_{i}(x)^{2}
$$

- With g_{i} 's all C^{∞}
- Let $\bar{g}_{i}(x)=\sum_{\|\omega\|_{\infty} \leqslant s} \hat{g}_{i}(\omega) e^{2 i \pi \omega^{\top} x}$ (truncated version)
- Property: for any order $p,\left\|g_{i}-\bar{g}_{i}\right\|_{\mathrm{F}} \leqslant \frac{c_{p}\left(g_{i}\right)}{s^{p}}$
- Lemma: $\left\|f-f\left(x_{*}\right)-\sum_{i=1}^{d+1} \bar{g}_{i}^{2}\right\|_{\mathrm{F}} \leqslant \sum_{i=1}^{d+1}\left\|g_{i}\right\|_{\mathrm{F}} \cdot\left\|g_{i}-\bar{g}_{i}\right\|_{\mathrm{F}}$
- Consequence: For any p, up to a uniform error less than $\frac{c_{p}^{\prime}(f)}{s^{p}}$, $f-f\left(x_{*}\right)$ is a sum of squares of polynomials of degree s

Exponential convergence rates

- Theorem (Bach and Rudi, 2022)
- Assume unique minimizer with positive definite Hessian
- For any $\xi \in(0,1 / 2]$:

$$
0 \leqslant \min _{x \in[0,1]^{d}} f(x)-c_{*}^{(s)} \leqslant \triangle_{1} \exp \left(-\left(\frac{s}{\triangle_{2}}\right)^{1+\xi}\right)
$$

- Explicit dependence of \triangle_{1} and \triangle_{2} on all problem constants

Exponential convergence rates

- Theorem (Bach and Rudi, 2022)
- Assume unique minimizer with positive definite Hessian
- For any $\xi \in(0,1 / 2]$:

$$
0 \leqslant \min _{x \in[0,1]^{d}} f(x)-c_{*}^{(s)} \leqslant \triangle_{1} \exp \left(-\left(\frac{s}{\triangle_{2}}\right)^{1+\xi}\right)
$$

- Explicit dependence of \triangle_{1} and \triangle_{2} on all problem constants
- Proof technique
- Explicit control of the constants $c_{p}\left(g_{i}\right)$ and $c_{p}^{\prime}(f)$
- Bounding all derivatives of (matrix) square roots (Del Moral and Niclas, 2018) and partitions of unity (Israel, 2015)
- Extensive use of Faà di Bruno's formula

Towards zero-th order oracles

- Traditional SOS relaxations
- (trigonometric) polynomial f given by its coefficients

Towards zero-th order oracles

- Traditional SOS relaxations
- (trigonometric) polynomial f given by its coefficients
- Using zero-th order oracle for f or \hat{f} for smooth functions

Towards zero-th order oracles

- Traditional SOS relaxations
- (trigonometric) polynomial f given by its coefficients
- Using zero-th order oracle for f or \hat{f} for smooth functions
- Option 1: Compute approximation by (trigonometric) polynomial and optimize using SOS (see Novak, 2006)
- Optimal in terms of number of calls to zero-th order oracle

Towards zero-th order oracles

- Traditional SOS relaxations
- (trigonometric) polynomial f given by its coefficients
- Using zero-th order oracle for f or \hat{f} for smooth functions
- Option 1: Compute approximation by (trigonometric) polynomial and optimize using SOS (see Novak, 2006)
- Optimal in terms of number of calls to zero-th order oracle
- Option 2: Approximate and optimize simultaneously
- Efficient algorithms (Rudi, Marteau-Ferey, and Bach, 2020)
- Certificates of optimality (Woodworth, Bach, and Rudi, 2022)

Using function values with trigonometric polynomials

- SOS relaxation:

$$
\begin{aligned}
& \min _{\Sigma \in \mathbb{C}^{d \times d}} \operatorname{tr}[F \Sigma] \text { such that } \Sigma \in \mathcal{V}, \operatorname{tr}[\Sigma]=1, \Sigma \succcurlyeq 0 \\
= & \max _{Y \in \mathcal{V}^{\perp}} \lambda_{\min }(F+Y)
\end{aligned}
$$

- where $\mathcal{V}=\operatorname{span}\left(\left\{\varphi(x) \varphi(x)^{*}, x \in \mathcal{X}\right\}\right)$
- \mathcal{V} may be cumbersome to characterize computationally

Using function values with trigonometric polynomials

- SOS relaxation:

$$
\begin{aligned}
& \min _{\Sigma \in \mathbb{C}^{d} \times d} \operatorname{tr}[F \Sigma] \text { such that } \Sigma \in \mathcal{V}, \operatorname{tr}[\Sigma]=1, \Sigma \succcurlyeq 0 \\
= & \max _{Y \in \mathcal{V}^{\perp}} \lambda_{\min }(F+Y)
\end{aligned}
$$

- where $\mathcal{V}=\operatorname{span}\left(\left\{\varphi(x) \varphi(x)^{*}, x \in X\right\}\right)$
- \mathcal{V} may be cumbersome to characterize computationally
- Replace \mathcal{V} by $\operatorname{span}\left(\left\{\varphi\left(x_{i}\right) \varphi\left(x_{i}\right)^{*}, i \in\{1, \ldots, n\}\right\}\right)$
- Generating family obtained by random samples x_{1}, \ldots, x_{n} in X (Cifuentes and Parrilo, 2017)
$\max _{c \in \mathbb{R}, A \succcurlyeq 0} c$ such that $\forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)-c=\varphi\left(x_{i}\right)^{*} A \varphi\left(x_{i}\right)$

Infinite expansions
 (Rudi, Marteau-Ferey, and Bach, 2020)

- Feature map $\varphi:[0,1]^{d} \rightarrow \mathbb{C}^{|\Omega|}: \varphi(x)_{\omega}=\hat{q}(\omega) e^{2 i \pi \omega^{\top} x}$, for $\omega \in \Omega$
- Contraint $\sum_{\omega \in \Omega}|\hat{q}(\omega)|^{2}=1$
- What if $\Omega=\mathbb{Z}^{d}$?

Infinite expansions

(Rudi, Marteau-Ferey, and Bach, 2020)

- Feature map $\varphi:[0,1]^{d} \rightarrow \mathbb{C}^{|\Omega|}: \varphi(x)_{\omega}=\hat{q}(\omega) e^{2 i \pi \omega^{\top} x}$, for $\omega \in \Omega$
- Contraint $\sum_{\omega \in \Omega}|\hat{q}(\omega)|^{2}=1$
- What if $\Omega=\mathbb{Z}^{d}$?
- "Tightness" of relaxation if $\forall \omega \in \mathbb{Z}^{d}, \hat{q}(\omega)>0$

$$
\sup _{c \in \mathbb{R},},{ }_{A \succcurlyeq 0} c \text { such that } \forall x \in X, f(x)-c=\varphi(x)^{*} A \varphi(x)
$$

- Attained with a finite rank operator A under local optimality conditions (isolated minimizers with invertible Hessians)
- Still hard to solve (X dense and A infinite-dimensional)

Efficient sampling algorithms

- Sampling and regularization:

$$
\max _{c \in \mathbb{R}, A \succcurlyeq 0} c-\lambda \operatorname{tr}(A) \text { such that } \forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)-c=\varphi\left(x_{i}\right)^{*} A \varphi\left(x_{i}\right)
$$

Efficient sampling algorithms

- Sampling and regularization:
$\max _{c \in \mathbb{R}, A \succcurlyeq 0} c-\lambda \operatorname{tr}(A)$ such that $\forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)-c=\varphi\left(x_{i}\right)^{*} A \varphi\left(x_{i}\right)$
- Leads to provable a priori performance guarantees (with correct λ)
- Up to logarithms and a few constants $\varepsilon \propto n^{-p / d}$ for C^{p} functions
- See Rudi, Marteau-Ferey, and Bach (2020) for details

Efficient sampling algorithms

- Sampling and regularization:
$\max _{c \in \mathbb{R}, A \succcurlyeq 0} c-\lambda \operatorname{tr}(A)$ such that $\forall i \in\{1, \ldots, n\}, f\left(x_{i}\right)-c=\varphi\left(x_{i}\right)^{*} A \varphi\left(x_{i}\right)$
- Leads to provable a priori performance guarantees (with correct λ)
- Up to logarithms and a few constants $\varepsilon \propto n^{-p / d}$ for C^{p} functions
- See Rudi, Marteau-Ferey, and Bach (2020) for details
- Finite-dimensional algorithm through representer theorem
- Can restrict search to $A=\sum_{j, k=1}^{n} B_{i k} \varphi\left(x_{j}\right) \varphi\left(x_{k}\right)^{*}$ with $B \in \mathbb{R}^{n \times n}$ and $B \succcurlyeq 0$
- Only need access to $\varphi\left(x_{j}\right)^{*} \varphi\left(x_{k}\right)=\sum_{\omega \in \mathbb{Z}^{d}}|\hat{q}(\omega)|^{2} e^{2 i \pi \omega^{\top}\left(x_{j}-x_{k}\right)}$
- See Marteau-Ferey, Bach, and Rudi (2020) for details

Conclusion

- Sum-of-squares relaxations in the Fourier domain
- From trigonometric polynomials to C^{∞} functions
- Exponential convergence rates for polynomial hierarchies
- Extension to zero-th order oracles and infinite expansions

Conclusion

- Sum-of-squares relaxations in the Fourier domain
- From trigonometric polynomials to C^{∞} functions
- Exponential convergence rates for polynomial hierarchies
- Extension to zero-th order oracles and infinite expansions
- Improvements
- Certificates of optimality (Woodworth, Bach, and Rudi, 2022)
- Constrained problems (going beyond simple sets X)

Conclusion

- Sum-of-squares relaxations in the Fourier domain
- From trigonometric polynomials to C^{∞} functions
- Exponential convergence rates for polynomial hierarchies
- Extension to zero-th order oracles and infinite expansions
- Improvements
- Certificates of optimality (Woodworth, Bach, and Rudi, 2022)
- Constrained problems (going beyond simple sets X)
- SOS relaxations beyond optimization
- Optimal control (Berthier, Carpentier, Rudi, and Bach, 2021)
- Optimal transport (Vacher, Muzellec, Rudi, Bach, and Vialard, 2021)
- Log-partition functions and variational inference (Bach, 2022a,b)

Log-partition functions and variational inference

- Log-partition function: given $f: \mathcal{X} \rightarrow \mathbb{R}$ and a distribution q on X

$$
-\varepsilon \log \int_{x} e^{-f(x) / \varepsilon} d q(x)=\inf _{p \text { probability }} \int_{x} f(x) d p(x)+\varepsilon D(p \| q)
$$

with $D(p \| q)=\int_{x} \log \left(\frac{d p}{d q}(x)\right) d p(x)$ Kullback-Leibler divergence

- Used within variational inference (Wainwright and Jordan, 2008)
- Duality between maximum entropy and maximum likelihood

Log-partition functions and variational inference

- Log-partition function: given $f: X \rightarrow \mathbb{R}$ and a distribution q on X

$$
-\varepsilon \log \int_{X} e^{-f(x) / \varepsilon} d q(x)=\inf _{p \text { probability }} \int_{X} f(x) d p(x)+\varepsilon D(p \| q)
$$

with $D(p \| q)=\int_{x} \log \left(\frac{d p}{d q}(x)\right) d p(x)$ Kullback-Leibler divergence

- Used within variational inference (Wainwright and Jordan, 2008)
- Duality between maximum entropy and maximum likelihood
- Von Neumann relative entropy

$$
\begin{gathered}
D\left(\Sigma_{p} \| \Sigma_{q}\right)=\operatorname{tr}\left[\Sigma_{p}\left(\log \Sigma_{p}-\log \Sigma_{q}\right)\right] \\
- \text { With } \Sigma_{p}=\int_{X} \varphi(x) \varphi(x)^{*} d p(x) \text { and } \Sigma_{q}=\int_{X} \varphi(x) \varphi(x)^{*} d q(x)
\end{gathered}
$$

- Always a lower bound on $D(p \| q)$ (Bach, 2022a)

References

Francis Bach. Information theory with kernel methods. arXiv preprint arXiv:2202.08545, 2022a.
Francis Bach. Sum-of-squares relaxations for information theory and variational inference. arXiv preprint arXiv:2206.13285, 2022b.
Francis Bach and Alessandro Rudi. Exponential convergence of sum-of-squares hierarchies for trigonometric polynomials. Technical Report 2211.04889, ArXiv, 2022.

Eloïse Berthier, Justin Carpentier, Alessandro Rudi, and Francis Bach. Infinite-dimensional sums-ofsquares for optimal control. Technical Report 2110.07396, arXiv, 2021.
Diego Cifuentes and Pablo A. Parrilo. Sampling algebraic varieties for sum of squares programs. SIAM Journal on Optimization, 27(4):2381-2404, 2017.
Pierre Del Moral and Angele Niclas. A Taylor expansion of the square root matrix function. Journal of Mathematical Analysis and Applications, 465(1):259-266, 2018.
Bogdan Dumitrescu. Positive trigonometric polynomials and signal processing applications, volume 103. Springer, 2007.

Kun Fang and Hamza Fawzi. The sum-of-squares hierarchy on the sphere and applications in quantum information theory. Mathematical Programming, 190(1):331-360, 2021.
Leopold Fejér. Uber trigonometrische Polynome. Journal für die reine und angewandte Mathematik, (146):55-82, 1916.

Ulf Grenander and Gabor Szegö. Toeplitz forms and their applications. Univ of California Press, 1958.

Didier Henrion, Milan Korda, and Jean Bernard Lasserre. Moment-sos Hierarchy, The: Lectures In Probability, Statistics, Computational Geometry, Control And Nonlinear PDEs, volume 4. World Scientific, 2020.

Arie Israel. The eigenvalue distribution of time-frequency localization operators. Technical Report 1502.04404, arXiv, 2015.

Jean-Bernard Lasserre. Global optimization with polynomials and the problem of moments. SIAM Journal on Optimization, 11(3):796-817, 2001.
Jean-Bernard Lasserre. Moments, Positive Polynomials and their Applications, volume 1. World Scientific, 2010.
Jean-Bernard Lasserre, Didier Henrion, Christophe Prieur, and Emmanuel Trélat. Nonlinear optimal control via occupation measures and Imi-relaxations. SIAM Journal on Control and Optimization, 47(4):1643-1666, 2008.
Monique Laurent. Sums of squares, moment matrices and optimization over polynomials. In Emerging applications of Algebraic Geometry, pages 157-270. Springer, 2009.
Monique Laurent and Lucas Slot. An effective version of Schmüdgen's Positivstellensatz for the hypercube. Optimization Letters, pages 1-16, 2022.
Daniel Liberzon. Calculus of Variations and Optimal Control Theory. Princeton University Press, 2011.
Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Non-parametric models for non-negative functions. Advances in Neural Information Processing Systems, 33, 2020.
Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Second order conditions to decompose smooth functions as sums of squares. arXiv preprint arXiv:2202.13729, 2022.

Alexandre Megretski. Positivity of trigonometric polynomials. In International Conference on Decision and Control, volume 4, pages 3814-3817, 2003.
Aaron Naftalovich and M. Schreiber. Trigonometric polynomials and sums of squares. In Number Theory, pages 225-238. Springer, 1985.
Yurii Nesterov. Squared functional systems and optimization problems. In High Performance Optimization, pages 405-440. Springer, 2000.
Jiawang Nie. Optimality conditions and finite convergence of Lasserre's hierarchy. Mathematical Programming, 146(1-2):97-121, 2014.

Erich Novak. Deterministic and Stochastic Error Bounds in Numerical Analysis, volume 1349. Springer, 2006.

Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming, 96(2):293-320, 2003.
Pablo A Parrilo, Grigoriy Blekherman, and Rekha R. Thomas. Semidefinite optimization and convex algebraic geometry. SIAM Society for Industrial and Applied Mathematics., 2013.
Mihai Putinar. Sur la complexification du problème des moments. Comptes rendus de l'Académie des sciences. Série 1, Mathématique, 314(10):743-745, 1992.
Friedrich Riesz. Uber ein Problem des Herrn Carathéodory. Journal für die reine und angewandte Mathematik, (146):83-87, 1916.
Alessandro Rudi, Ulysse Marteau-Ferey, and Francis Bach. Finding global minima via kernel approximations. Technical Report 2012.11978, arXiv, 2020.
Claus Scheiderer. Sums of squares on real algebraic surfaces. Manuscripta Mathematica, 119(4):

Konrad Schmüdgen. The Moment Problem. Springer, 2017.
Lucas Slot. Sum-of-squares hierarchies for polynomial optimization and the Christoffel-Darboux kernel. SIAM Journal on Optimization, 32(4):2612-2635, 2022.
Adrien Vacher, Boris Muzellec, Alessandro Rudi, Francis Bach, and Francois-Xavier Vialard. A dimension-free computational upper-bound for smooth optimal transport estimation. In Conference on Learning Theory, pages 4143-4173, 2021.
Richard Vinter. Convex duality and nonlinear optimal control. SIAM Journal on Control and Optimization, 31(2):518-538, 1993.
Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families, and Variational Inference. Now Publishers Inc., 2008.
Jonathan Weed and Quentin Berthet. Estimation of smooth densities in Wasserstein distance. In Conference on Learning Theory, pages 3118-3119. PMLR, 2019.
Blake Woodworth, Francis Bach, and Alessandro Rudi. Non-convex optimization with certificates and fast rates through kernel sums of squares. arXiv preprint arXiv:2204.04970, 2022.

Smooth optimal transport

- Primal formulation: $\inf _{\gamma \in \Gamma(\mu, \nu)} \int_{x \times y} c(x, y) d \gamma(x, y)$
- $\Gamma(\mu, \nu)$ set of probability distributions with marginals μ and ν
- Dual formulation: $\sup _{u, v \in C\left(\mathbb{R}^{n}\right)} \int_{x} u(x) d \mu(x)+\int_{y} v(y) d \mu(y)$
such that

$$
\forall(x, y) \in \mathcal{X} \times \mathcal{Y}, c(x, y)-u(x)+v(y) \geqslant 0
$$

Smooth optimal transport

- Primal formulation: $\inf _{\gamma \in \Gamma(\mu, \nu)} \int_{x \times y} c(x, y) d \gamma(x, y)$
- $\Gamma(\mu, \nu)$ set of probability distributions with marginals μ and ν
- Dual formulation: $\sup _{u, v \in C\left(\mathbb{R}^{n}\right)} \int_{x} u(x) d \mu(x)+\int_{y} v(y) d \mu(y)$
such that

$$
\forall(x, y) \in \mathcal{X} \times \mathcal{Y}, c(x, y)-u(x)+v(y) \geqslant 0
$$

- Estimation from i.i.d. samples from smooth densities for μ and ν
- Rate: from $O\left(n^{-1 / d}\right)$ to $O\left(n^{-p / d}\right)$ (Weed and Berthet, 2019)
- No polynomial-time algorithm

Smooth optimal transport

- Primal formulation: $\inf _{\gamma \in \Gamma(\mu, \nu)} \int_{x \times y} c(x, y) d \gamma(x, y)$
- $\Gamma(\mu, \nu)$ set of probability distributions with marginals μ and ν
- Dual formulation: $\sup _{u, v \in C\left(\mathbb{R}^{n}\right)} \int_{x} u(x) d \mu(x)+\int_{y} v(y) d \mu(y)$
such that

$$
\forall(x, y) \in \mathcal{X} \times \mathcal{y}, c(x, y)-u(x)+v(y) \geqslant 0
$$

- Estimation from i.i.d. samples from smooth densities for μ and ν
- Rate: from $O\left(n^{-1 / d}\right)$ to $O\left(n^{-p / d}\right)$ (Weed and Berthet, 2019)
- No polynomial-time algorithm
- Kernel sums of squares: "polynomial"-time algorithm
- Vacher, Muzellec, Rudi, Bach, and Vialard (2021)

Optimal control / reinforcement learning

- Optimal control (Liberzon, 2011)

$$
\begin{gathered}
V^{*}\left(t_{0}, x_{0}\right)=\inf _{u:\left[t_{0}, T\right] \rightarrow u} \int_{t_{0}}^{T} L(t, x(t), u(t)) \mathrm{d} t+M(x(T)) \\
\forall t \in\left[t_{0}, T\right], \dot{x}(t)=f(t, x(t), u(t)), \quad x\left(t_{0}\right)=x_{0}
\end{gathered}
$$

Optimal control / reinforcement learning

- Optimal control (Liberzon, 2011)

$$
\begin{gathered}
V^{*}\left(t_{0}, x_{0}\right)=\inf _{u:\left[t_{0}, T\right] \rightarrow u} \int_{t_{0}}^{T} L(t, x(t), u(t)) \mathrm{d} t+M(x(T)) \\
\forall t \in\left[t_{0}, T\right], \dot{x}(t)=f(t, x(t), u(t)), \quad x\left(t_{0}\right)=x_{0}
\end{gathered}
$$

- Subsolution of Hamilton-Jacobi-Bellman equation (Vinter, 1993)

$$
\begin{array}{cc}
\sup _{V:[0, T] \times x \rightarrow \mathbb{R}} \int V\left(0, x_{0}\right) \mathrm{d} \mu_{0}\left(x_{0}\right) \\
\forall(t, x, u), & \frac{\partial V}{\partial t}(t, x)+L(t, x, u)+\nabla V(t, x)^{\top} f(t, x, u) \geqslant 0 \\
\forall x, & V(T, x)=M(x) .
\end{array}
$$

Optimal control / reinforcement learning

- Subsolution of Hamilton-Jacobi-Bellman equation (Vinter, 1993)

$$
\begin{gathered}
\sup _{V:[0, T] \times x \rightarrow \mathbb{R}} \int V\left(0, x_{0}\right) \mathrm{d} \mu_{0}\left(x_{0}\right) \\
\forall(t, x, u), \quad \frac{\partial V}{\partial t}(t, x)+L(t, x, u)+\nabla V(t, x)^{\top} f(t, x, u) \geqslant 0 \\
\forall x,
\end{gathered}
$$

Optimal control / reinforcement learning

- Subsolution of Hamilton-Jacobi-Bellman equation (Vinter, 1993)

$$
\begin{array}{cc}
\sup _{V:[0, T] \times x \rightarrow \mathbb{R}} \int V\left(0, x_{0}\right) \mathrm{d} \mu_{0}\left(x_{0}\right) \\
\forall(t, x, u), & \frac{\partial V}{\partial t}(t, x)+L(t, x, u)+\nabla V(t, x)^{\top} f(t, x, u) \geqslant 0 \\
\forall x, & V(T, x)=M(x) .
\end{array}
$$

- Polynomial sums-of-squares
- Lasserre, Henrion, Prieur, and Trélat (2008)

Optimal control / reinforcement learning

- Subsolution of Hamilton-Jacobi-Bellman equation (Vinter, 1993)

$$
\begin{gathered}
\sup _{V:[0, T] \times x \rightarrow \mathbb{R}} \int V\left(0, x_{0}\right) \mathrm{d} \mu_{0}\left(x_{0}\right) \\
\forall(t, x, u), \quad \frac{\partial V}{\partial t}(t, x)+L(t, x, u)+\nabla V(t, x)^{\top} f(t, x, u) \geqslant 0 \\
\forall x, \quad V(T, x)=M(x) .
\end{gathered}
$$

- Polynomial sums-of-squares
- Lasserre, Henrion, Prieur, and Trélat (2008)
- Extension to kernel sums-of-squares
- Berthier, Carpentier, Rudi, and Bach (2021)
- Allows some form of modelling

