

Hyperbolic plane curves near the non-singular tropical limit

BrainPOP seminar

28 février 2022 Cédric Le Texier Équipe MAC

[LT21]

- 2 Logarithmic limit
- 3 Hyperbolic tropical curves

A real algebraic curve C of degree d in \mathbb{P}^2 is hyperbolic with respect to $p \in \mathbb{P}^2(\mathbb{R}) \setminus C(\mathbb{R})$ if every real line $\mathcal{L} \subset \mathbb{P}^2$ going through p intersect C in d real points, counted with multiplicity.

Figure – Hyperbolic curve defined by $6(x^2 + y^2 - z^2)(x^2 + y^2 - 2z^2)(x^2 + y^2 - 3z^2) + x^3y^3 = 0.$

Theorem ([Rok78],[HV07])

A non-singular real algebraic curve $C \subset \mathbb{P}^2$ of degree *d* is hyperbolic if and only if its real part $C(\mathbb{R})$ consists of $\lfloor \frac{d}{2} \rfloor$ nested ovals, plus a pseudo-line if *d* is odd.

Figure – Topological type in degree 5.

Hyperbolicity locus

Definition

The hyperbolicity locus of a real algebraic curve $\mathcal{C} \subset \mathbb{P}^2$ is the set of points

 $\mathcal{H}_{\mathcal{C}} := \{ p \in \mathbb{P}^2(\mathbb{R}) \backslash \mathcal{C}(\mathbb{R}) : \mathcal{C} \text{ hyperbolic with respect to } p \}.$

Figure – Hyperbolicity locus of the initial example.

・ロト・個ト・ヨト・ヨト ヨ のQC

A closed convex set $\mathcal{H} \subset \mathbb{P}^2(\mathbb{R})$ of the form

 $\{p \in \mathbb{P}^2(\mathbb{R}) : L_0p_0 + L_1p_1 + L_2p_2 \text{ is positive semi-definite}\},\$

with each L_i a symmetric matrix with real entries, is said to have a Linear Matrix Inequality (LMI) representation.

A closed convex set $\mathcal{H} \subset \mathbb{P}^2(\mathbb{R})$ of the form

 $\{p \in \mathbb{P}^2(\mathbb{R}) : L_0p_0 + L_1p_1 + L_2p_2 \text{ is positive semi-definite}\},\$

with each L_i a symmetric matrix with real entries, is said to have a Linear Matrix Inequality (LMI) representation.

Theorem ([HV07])

A closed convex set $\mathcal{H} \subset \mathbb{P}^2(\mathbb{R})$ admits a LMI representation if and only if \mathcal{H} is the hyperbolicity locus of a hyperbolic curve $\mathcal{C} \subset \mathbb{P}^2$.

Fact ([Rok78], [HV07])

Let γ be a path in the space of degree *d* curves in \mathbb{P}^2 such that every curve in γ is non-singular. If a curve \mathcal{C} in γ is hyperbolic, then every curve in γ is hyperbolic.

Fact ([Rok78], [HV07])

Let γ be a path in the space of degree *d* curves in \mathbb{P}^2 such that every curve in γ is non-singular. If a curve \mathcal{C} in γ is hyperbolic, then every curve in γ is hyperbolic.

Goal

Characterise families of non-singular hyperbolic plane curves and their hyperbolicity loci in terms of their logarithmic limit.

Let $(\mathcal{C}_t)_{t\in]0,\varepsilon[}$ be a family of non-singular real algebraic curves in $(\mathbb{R}^{\times})^2 \subset \mathbb{P}^2(\mathbb{R})$ defined by a continuous path $\gamma:]0, \varepsilon[\to X_d, \text{ for } X_d \text{ the space of real algebraic curves of} degree <math>d$ in $(\mathbb{R}^{\times})^2$.

Let $(\mathcal{C}_t)_{t\in]0,\varepsilon[}$ be a family of non-singular real algebraic curves in $(\mathbb{R}^{\times})^2 \subset \mathbb{P}^2(\mathbb{R})$ defined by a continuous path $\gamma:]0, \varepsilon[\to X_d, \text{ for } X_d \text{ the space of real algebraic curves of}$ degree d in $(\mathbb{R}^{\times})^2$. The logarithmic limit of $(\mathcal{C}_t)_t$ is the set $\lim_{t\to 0} \mathrm{Log}_t(\mathcal{C}_t)$, where Log_t is the map

$$(\mathbb{R}^{\times})^2 o \mathbb{R}^2$$

 $(x, y) \mapsto (\log_t |x|, \log_t |y|).$

 $(\mathcal{L}_t)_{t\in]0,\varepsilon[}.$

A non-singular tropical curve $C \subset \mathbb{R}^2$ is a 3-valent graph, with (potentially unbounded) straight edges of rational slope, and satisfying some balancing condition around its vertices.

Hyperbolic tropical curves

Theorem ([Rul01], [Mik04])

The logarithmic limit of a family of $(C_t)_{t \in]0,\varepsilon[}$ of non-singular real algebraic curves in $(\mathbb{R}^{\times})^2$ is a (possibly singular) tropical curve.

Conversely, every non-singular tropical curve $C \subset \mathbb{R}^2$ is the logarithmic limit of a family $(C_t)_{t \in]0, \varepsilon[}$ of non-singular real algebraic curves in $(\mathbb{R}^{\times})^2$.

Theorem ([Rul01], [Mik04])

The logarithmic limit of a family of $(C_t)_{t \in]0,\varepsilon[}$ of non-singular real algebraic curves in $(\mathbb{R}^{\times})^2$ is a (possibly singular) tropical curve.

Conversely, every non-singular tropical curve $C \subset \mathbb{R}^2$ is the logarithmic limit of a family $(C_t)_{t \in]0, \varepsilon[}$ of non-singular real algebraic curves in $(\mathbb{R}^{\times})^2$.

All the families $(C_t)_{t \in]0, \varepsilon[}$ satisfying Mikhalkin-Rullgaard's theorem can be constructed explicitly.

Near the tropical limit

(a) Near the limit around a vertex.

(a) Near the limit around a vertex.

(b) Near the limit around a non-twisted bounded edge.

Near the tropical limit

(a) Near the limit around a vertex.

(b) Near the limit around a non-twisted bounded edge. (c) Near the limit around a twisted bounded edge.

(a) Tropical curve *C*, seen in $(\mathbb{R}_{>0})^2$, equipped with an admissible set of twisted edges *T*.

(b) Real part $\mathbb{R}C_T \subset (\mathbb{R}^{\times})^2$ of *C* with respect to *T*, up to symmetry.

Theorem ([Vir01])

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve equipped with an admissible set of twisted edges T. There exists a family $(C_t)_{t \in]0, \varepsilon[}$ of non-singular real algebraic curves in $(\mathbb{R}^{\times})^2$ such that

• *C* is the logarithmic limit of $(C_t)_t$,

Theorem ([Vir01])

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve equipped with an admissible set of twisted edges T. There exists a family $(C_t)_{t \in]0, \varepsilon[}$ of non-singular real algebraic curves in $(\mathbb{R}^{\times})^2$ such that

- C is the logarithmic limit of $(C_t)_t$,
- the set of twisted edges induced by $(\mathcal{C}_t)_t$ is T,

Theorem ([Vir01])

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve equipped with an admissible set of twisted edges T. There exists a family $(C_t)_{t \in]0, \varepsilon[}$ of non-singular real algebraic curves in $(\mathbb{R}^{\times})^2$ such that

- *C* is the logarithmic limit of $(C_t)_t$,
- the set of twisted edges induced by $(\mathcal{C}_t)_t$ is T,
- and, up to symmetry, we have a homeomorphism of pair

$$((\mathbb{R}^{\times})^2, \mathcal{C}_t(\mathbb{R})) \simeq ((\mathbb{R}^{\times})^2, \mathbb{R}\mathcal{C}_T).$$

- 2 Logarithmic limit
- Hyperbolic tropical curves

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve equipped with an admissible set of twisted edges *T*. The couple (C, T) is a hyperbolic tropical curve if for every family $(C_t)_{t \in]0, \varepsilon[}$ satisfying Viro's Theorem for (C, T), the curves C_t are all hyperbolic.

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve of degree d, equipped with an admissible set of twisted edges *T*. The couple (*C*, *T*) is hyperbolic if and only if

 every cycle of C contains an even number of twisted edges, and

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve of degree d, equipped with an admissible set of twisted edges *T*. The couple (*C*, *T*) is hyperbolic if and only if

- every cycle of C contains an even number of twisted edges, and
- 2 the real part $\mathbb{R}C_T$ has $\left\lceil \frac{d}{2} \right\rceil$ (projective) connected components.

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve of degree d, equipped with an admissible set of twisted edges *T*. The couple (C, T) is hyperbolic if and only if

- every cycle of C contains an even number of twisted edges, and
- 2 the real part $\mathbb{R}C_T$ has $\left\lceil \frac{d}{2} \right\rceil$ (projective) connected components.
- Item 2 can be easily computed from the data of T (Renaudineau-Shaw 2021).

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve of degree d, equipped with an admissible set of twisted edges *T*. The couple (C, T) is hyperbolic if and only if

- every cycle of C contains an even number of twisted edges, and
- 2 the real part $\mathbb{R}C_T$ has $\left\lceil \frac{d}{2} \right\rceil$ (projective) connected components.
 - Item 2 can be easily computed from the data of T (Renaudineau-Shaw 2021).
 - No information on the hyperbolicity loci of the curves C_t obtained this way!

Example of hyperbolic tropical curve

(a) Hyperbolic tropical curve (C, T) of degree 4.

(b) Real part $\mathbb{R}C_T$ (up to symmetry) with 2 projective components.

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve equipped with an admissible set of twisted edges *T*. Let *v* be a point in $\mathbb{R}^2 \setminus C$.

The couple (C, T) is hyperbolic with respect to v if for every family $(C_t)_{t \in]0,\varepsilon[}$ satisfying Viro's Theorem for (C, T), there exists a family of points $(v_t)_{t \in]0,\varepsilon[}$ such that

- the curve C_t is hyperbolic with respect to v_t for all t, and
- the logarithmic limit of $(v_t)_t$ is v.

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve equipped with an admissible set of twisted edges *T*. Let *v* be a point in $\mathbb{R}^2 \setminus C$.

The couple (C, T) is hyperbolic with respect to v if for every family $(C_t)_{t \in]0,\varepsilon[}$ satisfying Viro's Theorem for (C, T), there exists a family of points $(v_t)_{t \in]0,\varepsilon[}$ such that

- the curve C_t is hyperbolic with respect to v_t for all t, and
- the logarithmic limit of $(v_t)_t$ is v.

(C, T) hyperbolic $\Leftrightarrow (C, T)$ hyperbolic with respect to some point *v*.

Pencil of tropical lines

Figure – Subdivision of \mathbb{R}^2 with respect to v.

A pencil of tropical lines through a point v can be described by the rays τ_{η} . Each point on a ray τ_{η} is the vertex of a tropical line going through v.

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve of degree d equipped with an admissible set of twisted edges T, and let v be a "generic" point in $\mathbb{R}^2 \setminus C$. If the couple (C, T) is hyperbolic with respect to v, then

1 Every vertex of *C* in a face σ_{η} is incident to an edge of direction η .

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve of degree *d* equipped with an admissible set of twisted edges *T*, and let *v* be a "generic" point in $\mathbb{R}^2 \setminus C$. If the couple (C, T) is hyperbolic with respect to *v*, then

- **1** Every vertex of *C* in a face σ_{η} is incident to an edge of direction η .
- 2 Every bounded edge of *C* of direction η and strictly contained in σ_{η} is twisted.

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve of degree *d* equipped with an admissible set of twisted edges *T*, and let *v* be a "generic" point in $\mathbb{R}^2 \setminus C$. If the couple (C, T) is hyperbolic with respect to *v*, then

- **1** Every vertex of *C* in a face σ_{η} is incident to an edge of direction η .
- 2 Every bounded edge of *C* of direction η and strictly contained in σ_{η} is twisted.

We need a few more conditions to obtain equivalence, due to the definition "up to symmetry".

A honeycomb is a tropical curve with every edge of direction either (1,0), (0,1) or (1,1).

A honeycomb is a tropical curve with every edge of direction either (1, 0), (0, 1) or (1, 1).

Theorem ([Spe05])

Let $C \subset \mathbb{R}^2$ be a non-singular tropical curve equipped with an admissible set of twisted edges T. The hyperbolicity locus of the real part $\mathbb{R}C_T$ contains an entire orthant of $(\mathbb{R}^{\times})^2$ if and only if C is a honeycomb with every bounded edge twisted.

Example of positively hyperbolic tropical curve

(a) Honeycomb of degree 2 with every bounded edge twisted.

(b) Real part with positive orthant contained in the hyperbolicity locus.

Multi-bridge on a honeycomb

Definition

A multi-bridge on a honeycomb C is a set B of parallel edges disconnecting C, such that no proper subset of B disconnects C.

Figure – A multi-bridge on a honeycomb of degree 4.

Hyperbolic tropical curves

Let $C \subset \mathbb{R}^2$ be a non-singular honeycomb equipped with an admissible set of twisted edges T, such that every cycle of C contains an even number of twisted edges. Then (C, T) is hyperbolic with respect to v if and only if every multi-bridge strictly on the left, below and diagonally above v is twisted.

The hyperbolicity locus $\mathbb{R}H_T$ of a real part $\mathbb{R}C_T$ is TO-convex (in the sense of Loho-Végh, 2019), and its closure $\overline{\mathbb{R}H_T}$ is TC-convex (in the sense of Loho-Skomra, to appear).

The hyperbolicity locus $\mathbb{R}H_T$ of a real part $\mathbb{R}C_T$ is TO-convex (in the sense of Loho-Végh, 2019), and its closure $\mathbb{R}H_T$ is TC-convex (in the sense of Loho-Skomra, to appear).

If *C* is a honeycomb, then $\mathbb{R}H_T$ is given as a finite intersection of closed signed tropical halfspaces.

By Helton-Vinnikov, every element of a family

 $\mathcal{H} := (\mathcal{H}_t)_{t \in]0, \varepsilon[}$

of hyperbolicity loci in $\mathbb{P}^2(\mathbb{R})$ admits a LMI representation.

Tropical spectrahedron

By Helton-Vinnikov, every element of a family

 $\mathcal{H} := (\mathcal{H}_t)_{t \in]0, \varepsilon[}$

of hyperbolicity loci in $\mathbb{P}^2(\mathbb{R})$ admits a LMI representation.

Under suitable conditions, the set \mathcal{H} is the hyperbolicity locus of a non-singular algebraic curve over real Puiseux series.

Tropical spectrahedron

By Helton-Vinnikov, every element of a family

 $\mathcal{H} := (\mathcal{H}_t)_{t \in]0, \varepsilon[}$

of hyperbolicity loci in $\mathbb{P}^2(\mathbb{R})$ admits a LMI representation.

Under suitable conditions, the set \mathcal{H} is the hyperbolicity locus of a non-singular algebraic curve over real Puiseux series.

In that case, the logarithmic limit

 $H:=\lim_{t\to 0} \mathrm{Log}_t(\mathcal{H}_t)$

is a tropical spectrahedron (in the sense of Allamigeon-Gaubert-Skomra 2020).

Tropical spectrahedron

By Helton-Vinnikov, every element of a family

 $\mathcal{H} := (\mathcal{H}_t)_{t \in]0, \varepsilon[}$

of hyperbolicity loci in $\mathbb{P}^2(\mathbb{R})$ admits a LMI representation.

Under suitable conditions, the set \mathcal{H} is the hyperbolicity locus of a non-singular algebraic curve over real Puiseux series.

In that case, the logarithmic limit

 $H := \lim_{t \to 0} \text{Log}_t(\mathcal{H}_t)$

is a tropical spectrahedron (in the sense of Allamigeon-Gaubert-Skomra 2020).

Under suitable conditions again, the set *H* admits a tropical LMI representation.

Questions

• Find an algorithm giving a tropical LMI representation of the tropical hyperbolicity locus.

Future directions

Questions

- Find an algorithm giving a tropical LMI representation of the tropical hyperbolicity locus.
- For (*H_t*)_{t∈]0,ε[} a family of hyperbolicity loci with logarithmic limit a finite intersection of signed tropical halfspaces, what can we say on each *H_t*?

Future directions

Questions

- Find an algorithm giving a tropical LMI representation of the tropical hyperbolicity locus.
- For (*H_t*)_{t∈]0,ε[} a family of hyperbolicity loci with logarithmic limit a finite intersection of signed tropical halfspaces, what can we say on each *H_t*?
- How can we characterise tropical hyperbolicity in higher dimension and codimension?

- J William Helton and Victor Vinnikov, *Linear matrix inequality representation of sets*, Communications on Pure and Applied Mathematics : A Journal Issued by the Courant Institute of Mathematical Sciences **60** (2007), no. 5, 654–674.
- Cédric Le Texier, Hyperbolic plane curves near the non-singular tropical limit, arXiv preprint arXiv :2109.14961 (2021), Not relevant.
- Grigory Mikhalkin, *Decomposition into pairs-of-pants for complex algebraic hypersurfaces*, Topology **43** (2004), no. 5, 1035–1065.

- Vladimir A Rokhlin, Complex topological characteristics of real algebraic curves, Russian Mathematical Surveys 33 (1978), no. 5, 85.
- Hans Rullgaard, *Polynomial amoebas and convexity*, Ph.D. thesis, Stockholm University, 2001.
- David E Speyer, Horn's problem, Vinnikov curves, and the hive cone, Duke Mathematical Journal 127 (2005), no. 3, 395–427.
- Oleg Viro, Dequantization of real algebraic geometry on logarithmic paper, European Congress of Mathematics, Springer, 2001, pp. 135–146.