Hyperbolic plane curves near the non-singular tropical limit

 BrainPOP seminar28 février 2022
Cédric Le Texier
Équipe MAC

[LT21]

Laboratoire d'analyse et d'architecture des systèmes du CNRS
(1) Hyperbolic plane curves

-

Logarithmic limit

3 Hyperbolic tropical curves

cnrs

CNRS

Definition

A real algebraic curve \mathcal{C} of degree d in \mathbb{P}^{2} is hyperbolic with respect to $p \in \mathbb{P}^{2}(\mathbb{R}) \backslash \mathcal{C}(\mathbb{R})$ if every real line $\mathcal{L} \subset \mathbb{P}^{2}$ going through p intersect \mathcal{C} in d real points, counted with multiplicity.

Figure - Hyperbolic curve defined by $6\left(x^{2}+y^{2}-z^{2}\right)\left(x^{2}+y^{2}-2 z^{2}\right)\left(x^{2}+y^{2}-3 z^{2}\right)+x^{3} y^{3}=0$.

Theorem ([Rok78],[HV07])

A non-singular real algebraic curve $\mathcal{C} \subset \mathbb{P}^{2}$ of degree d is hyperbolic if and only if its real part $\mathcal{C}(\mathbb{R})$ consists of $\left\lfloor\frac{d}{2}\right\rfloor$ nested ovals, plus a pseudo-line if d is odd.

Figure - Topological type in degree 5.

CAAS
 =INSTITUT CARNOT LAASCNRE

Definition

The hyperbolicity locus of a real algebraic curve $\mathcal{C} \subset \mathbb{P}^{2}$ is the set of points
$\mathcal{H}_{\mathcal{C}}:=\left\{p \in \mathbb{P}^{2}(\mathbb{R}) \backslash \mathcal{C}(\mathbb{R}): \mathcal{C}\right.$ hyperbolic with respect to $\left.p\right\}$.

Figure - Hyperbolicity locus of the initial example.

Correspondence with Linear Matrix Inequalities

Definition

A closed convex set $\mathcal{H} \subset \mathbb{P}^{2}(\mathbb{R})$ of the form
$\left\{p \in \mathbb{P}^{2}(\mathbb{R}): L_{0} p_{0}+L_{1} p_{1}+L_{2} p_{2}\right.$ is positive semi-definite $\}$,
with each L_{i} a symmetric matrix with real entries, is said to have a Linear Matrix Inequality (LMI) representation.

Definition

A closed convex set $\mathcal{H} \subset \mathbb{P}^{2}(\mathbb{R})$ of the form
$\left\{p \in \mathbb{P}^{2}(\mathbb{R}): L_{0} p_{0}+L_{1} p_{1}+L_{2} p_{2}\right.$ is positive semi-definite $\}$, with each L_{i} a symmetric matrix with real entries, is said to have a Linear Matrix Inequality (LMI) representation.

Theorem ([HV07])

A closed convex set $\mathcal{H} \subset \mathbb{P}^{2}(\mathbb{R})$ admits a LMI representation if and only if \mathcal{H} is the hyperbolicity locus of a hyperbolic curve $\mathcal{C} \subset \mathbb{P}^{2}$.

Fact ([Rok78], [HV07])

Let γ be a path in the space of degree d curves in \mathbb{P}^{2} such that every curve in γ is non-singular. If a curve \mathcal{C} in γ is hyperbolic, then every curve in γ is hyperbolic.

Family of non-singular hyperbolic curves

Fact ([Rok78], [HV07])

Let γ be a path in the space of degree d curves in \mathbb{P}^{2} such that every curve in γ is non-singular. If a curve \mathcal{C} in γ is hyperbolic, then every curve in γ is hyperbolic.

Goal

Characterise families of non-singular hyperbolic plane curves and their hyperbolicity loci in terms of their logarithmic limit.

(1) Hyperbolic plane curves

(2) Logarithmic limit

3 Hyperbolic tropical curves

CNRS

CAAS
 INSTITUT CARNOT CAASNRES
 Logarithmic limit

Definition

Let $\left(\mathcal{C}_{t}\right)_{t \in] 0, \varepsilon[}$ be a family of non-singular real algebraic curves in $\left(\mathbb{R}^{\times}\right)^{2} \subset \mathbb{P}^{2}(\mathbb{R})$ defined by a continuous path $\gamma:] 0, \varepsilon\left[\rightarrow X_{d}\right.$, for X_{d} the space of real algebraic curves of degree d in $\left(\mathbb{R}^{\times}\right)^{2}$.

Definition

Let $\left(\mathcal{C}_{t}\right)_{t \in \mathrm{j}, \varepsilon[}$ be a family of non-singular real algebraic curves in $\left(\mathbb{R}^{\times}\right)^{2} \subset \mathbb{P}^{2}(\mathbb{R})$ defined by a continuous path $\gamma:] 0, \varepsilon\left[\rightarrow X_{d}\right.$, for X_{d} the space of real algebraic curves of degree d in $\left(\mathbb{R}^{\times}\right)^{2}$.
The logarithmic limit of $\left(\mathcal{C}_{t}\right)_{t}$ is the set $\lim _{t \rightarrow 0} \log _{t}\left(\mathcal{C}_{t}\right)$, where $\log _{t}$ is the map

$$
\begin{aligned}
\left(\mathbb{R}^{\times}\right)^{2} & \rightarrow \mathbb{R}^{2} \\
(x, y) & \mapsto\left(\log _{t}|x|, \log _{t}|y|\right) .
\end{aligned}
$$

 (0^{2}

 1 0^{2} 1

LABS
 CARS

 Logarithmic limit of a family of lines

\qquad

\square － －

LAAS
 Logarithmic limit of a family of lines

in a family of real lines
$\left(\mathcal{L}_{t}\right)_{t \in] 0, \varepsilon[}$.

$\log _{t}\left(\mathcal{L}_{t}\right) \subset \mathbb{R}^{2}$.
(c) Logarithm

(
(d) Limit $\lim _{t \rightarrow 0} \log _{t}\left(\mathcal{L}_{t}\right)$.

$$
t \rightarrow 0
$$

 -
\qquad

Lex pe Tropical curve
 -INSTITUTe CARNOT CAASCNRT:

Definition

A non-singular tropical curve $C \subset \mathbb{R}^{2}$ is a 3-valent graph, with (potentially unbounded) straight edges of rational slope, and satisfying some balancing condition around its vertices.

$$
+2
$$

CAAS

Theorem ([Rul01], [Mik04])

The logarithmic limit of a family of $\left(\mathcal{C}_{t}\right)_{t \in] 0, \varepsilon \mid}$ of non-singular real algebraic curves in $\left(\mathbb{R}^{\times}\right)^{2}$ is a (possibly singular) tropical curve.
Conversely, every non-singular tropical curve $C \subset \mathbb{R}^{2}$ is the logarithmic limit of a family $\left(\mathcal{C}_{t}\right)_{t \in[0, \varepsilon[}$ of non-singular real algebraic curves in $\left(\mathbb{R}^{\times}\right)^{2}$.

Theorem ([Rul01], [Mik04])

The logarithmic limit of a family of $\left(\mathcal{C}_{t}\right)_{t \in] 0, \varepsilon \mid}$ of non-singular real algebraic curves in $\left(\mathbb{R}^{\times}\right)^{2}$ is a (possibly singular) tropical curve.
Conversely, every non-singular tropical curve $C \subset \mathbb{R}^{2}$ is the logarithmic limit of a family $\left(\mathcal{C}_{t}\right)_{t \in[0, \varepsilon[}$ of non-singular real algebraic curves in $\left(\mathbb{R}^{\times}\right)^{2}$.

All the families $\left(\mathcal{C}_{t}\right)_{t \in] 0, \varepsilon[}$ satisfying Mikhalkin-Rullgaard's theorem can be constructed explicitly.

（2） $-\quad-2$
華
（

\qquad

 （

路五 ． （｜） T $+$ $+$

（O）

芫
\qquad
?

LAAS
 - CAARNOT

Abstract

\qquad

 ,
（a）Tropical curve C ，seen in $\left(\mathbb{R}_{>0}\right)^{2}$ ，equipped with an admissible set of twisted edges T ．

Real part of a tropical curve

＊
（b）Real part $\mathbb{R} C_{T} \subset\left(\mathbb{R}^{\times}\right)^{2}$ of C with respect to T ，up to symmetry．

s．

Theorem ([Vir01])

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve equipped with an admissible set of twisted edges T.
There exists a family $\left(\mathcal{C}_{t}\right)_{t \in[0, \varepsilon[}$ of non-singular real algebraic curves in $\left(\mathbb{R}^{\times}\right)^{2}$ such that

- C is the logarithmic limit of $\left(\mathcal{C}_{t}\right)_{t}$,

Theorem ([Vir01])

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve equipped with an admissible set of twisted edges T.
There exists a family $\left(\mathcal{C}_{t}\right)_{t \in[0, \varepsilon[}$ of non-singular real algebraic curves in $\left(\mathbb{R}^{\times}\right)^{2}$ such that

- C is the logarithmic limit of $\left(\mathcal{C}_{t}\right)_{t}$,
- the set of twisted edges induced by $\left(\mathcal{C}_{t}\right)_{t}$ is T,

Theorem ([Vir01])

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve equipped with an admissible set of twisted edges T.
There exists a family $\left(\mathcal{C}_{t}\right)_{t \in[0, \varepsilon[}$ of non-singular real algebraic curves in $\left(\mathbb{R}^{\times}\right)^{2}$ such that

- C is the logarithmic limit of $\left(\mathcal{C}_{t}\right)_{t}$,
- the set of twisted edges induced by $\left(\mathcal{C}_{t}\right)_{t}$ is T,
- and, up to symmetry, we have a homeomorphism of pair

$$
\left(\left(\mathbb{R}^{\times}\right)^{2}, \mathcal{C}_{t}(\mathbb{R})\right) \simeq\left(\left(\mathbb{R}^{\times}\right)^{2}, \mathbb{R} C_{T}\right)
$$

Laboratoire d'analyse et d'architecture des systèmes du CNRS

Hyperbolic plane curves

(2) Logarithmic limit

(3) Hyperbolic tropical curves
cnrs

CNRS

Definition

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve equipped with an admissible set of twisted edges T.
The couple (C, T) is a hyperbolic tropical curve if for every family $\left(\mathcal{C}_{t}\right)_{t \in] 0, \varepsilon[}$ satisfying Viro's Theorem for (C, T), the curves \mathcal{C}_{t} are all hyperbolic.

LAAS

Proposition

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve of degree d, equipped with an admissible set of twisted edges T. The couple (C, T) is hyperbolic if and only if
(1) every cycle of C contains an even number of twisted edges, and

Proposition

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve of degree d, equipped with an admissible set of twisted edges T. The couple (C, T) is hyperbolic if and only if
(1) every cycle of C contains an even number of twisted edges, and
(2) the real part $\mathbb{R} C_{T}$ has $\left\lceil\frac{d}{2}\right\rceil$ (projective) connected components.

Topological criterion for hyperbolicity

Proposition

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve of degree d, equipped with an admissible set of twisted edges T. The couple (C, T) is hyperbolic if and only if
(1) every cycle of C contains an even number of twisted edges, and
(2) the real part $\mathbb{R} C_{T}$ has $\left\lceil\frac{d}{2}\right\rceil$ (projective) connected components.

- Item 2 can be easily computed from the data of T (Renaudineau-Shaw 2021).

Topological criterion for hyperbolicity

Proposition

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve of degree d, equipped with an admissible set of twisted edges T. The couple (C, T) is hyperbolic if and only if
(1) every cycle of C contains an even number of twisted edges, and
(2) the real part $\mathbb{R} C_{T}$ has $\left\lceil\frac{d}{2}\right\rceil$ (projective) connected components.

- Item 2 can be easily computed from the data of T (Renaudineau-Shaw 2021).
- No information on the hyperbolicity loci of the curves \mathcal{C}_{t} obtained this way!

EANAE Example of hyperbolic tropical curve
 - laAs cnirs

(a) Hyperbolic tropical curve (C, T) of degree 4.

(b) Real part $\mathbb{R} C_{T}$ (up to symmetry) with 2 projective components.

Definition

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve equipped with an admissible set of twisted edges T. Let v be a point in $\mathbb{R}^{2} \backslash C$.
The couple (C, T) is hyperbolic with respect to v if for every family $\left(\mathcal{C}_{t}\right)_{t \in j 0, \varepsilon}$ satisfying Viro's Theorem for (C, T), there exists a family of points $\left(v_{t}\right)_{t \in] 0, \varepsilon[}$ such that

- the curve \mathcal{C}_{t} is hyperbolic with respect to v_{t} for all t, and
- the logarithmic limit of $\left(v_{t}\right)_{t}$ is v.

CARNNOT
LAASCNRS:

Definition

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve equipped with an admissible set of twisted edges T. Let v be a point in $\mathbb{R}^{2} \backslash C$.
The couple (C, T) is hyperbolic with respect to v if for every family $\left(\mathcal{C}_{t}\right)_{t \in \mathrm{j} 0, \varepsilon}$ satisfying Viro's Theorem for (C, T), there exists a family of points $\left(v_{t}\right)_{t \in] 0, \varepsilon[}$ such that

- the curve \mathcal{C}_{t} is hyperbolic with respect to v_{t} for all t, and
- the logarithmic limit of $\left(v_{t}\right)_{t}$ is v.
(C, T) hyperbolic $\Leftrightarrow(C, T)$ hyperbolic with respect to some point v.

CARS

A pencil of tropical lines through a point v can be described by the rays τ_{η}. Each point on a ray τ_{η} is the vertex of a tropical line going through v.

Figure - Subdivision of \mathbb{R}^{2} with respect to v.

Characterisation of hyperbolicity

Theorem ([LT21])

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve of degree d equipped with an admissible set of twisted edges T, and let v be a "generic" point in $\mathbb{R}^{2} \backslash C$.
If the couple (C, T) is hyperbolic with respect to v, then
(1) Every vertex of C in a face σ_{η} is incident to an edge of direction η.

Theorem ([LT21])

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve of degree d equipped with an admissible set of twisted edges T, and let v be a "generic" point in $\mathbb{R}^{2} \backslash C$.
If the couple (C, T) is hyperbolic with respect to v, then
(1) Every vertex of C in a face σ_{η} is incident to an edge of direction η.
(2) Every bounded edge of C of direction η and strictly contained in σ_{η} is twisted.

Theorem ([LT21])

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve of degree d equipped with an admissible set of twisted edges T, and let v be a "generic" point in $\mathbb{R}^{2} \backslash C$.
If the couple (C, T) is hyperbolic with respect to v, then
(1) Every vertex of C in a face σ_{η} is incident to an edge of direction η.
(2) Every bounded edge of C of direction η and strictly contained in σ_{η} is twisted.

We need a few more conditions to obtain equivalence, due to the definition "up to symmetry".

LAAS ENRS -INSTITUT - CARNOT LAAS CNRS
 Example in degree 4

核
 A

s,

都
 1

 ?

都

CAAS
 Speyer's criterion

Definition

A honeycomb is a tropical curve with every edge of direction either $(1,0),(0,1)$ or $(1,1)$.

Theorem ([Spe05])

Let $C \subset \mathbb{R}^{2}$ be a non-singular tropical curve equipped with an admissible set of twisted edges T. The hyperbolicity locus of the real part $\mathbb{R} C_{T}$ contains an entire orthant of $\left(\mathbb{R}^{\times}\right)^{2}$ if and only if C is a honeycomb with every bounded edge twisted.

Example of positively hyperbolic tropical curve
(a) Honeycomb of degree 2 with every bounded edge twisted.

(b) Real part with positive orthant contained in the hyperbolicity locus.

LAAS
 - INSTITUT - CARNOT LAAS CNRSI
 Multi-bridge on a honeycomb

Definition

A multi-bridge on a honeycomb C is a set B of parallel edges disconnecting C, such that no proper subset of B disconnects C.

Figure - A multi-bridge on a honeycomb of degree 4.
disconnects

Theorem ([LT21])

Let $C \subset \mathbb{R}^{2}$ be a non-singular honeycomb equipped with an admissible set of twisted edges T, such that every cycle of C contains an even number of twisted edges. Then (C, T) is hyperbolic with respect to v if and only if every multi-bridge strictly on the left, below and diagonally above v is twisted.

 - LaAS cNMES

The hyperbolicity locus $\mathbb{R} H_{T}$ of a real part $\mathbb{R} C_{T}$ is TO-convex (in the sense of Loho-Végh, 2019), and its closure $\mathbb{R} H_{T}$ is TC-convex (in the sense of Loho-Skomra, to appear).

The hyperbolicity locus $\mathbb{R} H_{T}$ of a real part $\mathbb{R} C_{T}$ is TO-convex (in the sense of Loho-Végh, 2019), and its closure $\mathbb{R} H_{T}$ is TC-convex (in the sense of Loho-Skomra, to appear).
If C is a honeycomb, then $\overline{\mathbb{R}} H_{T}$ is given as a finite intersection of closed signed tropical halfspaces.

LAAS

By Helton-Vinnikov, every element of a family

$$
\mathcal{H}:=\left(\mathcal{H}_{t}\right)_{t \in] 0, \varepsilon[}
$$

of hyperbolicity loci in $\mathbb{P}^{2}(\mathbb{R})$ admits a LMI representation.

CARS
 MINSTITUT CARNOT CARSNNTS
 Tropical spectrahedron

By Helton-Vinnikov, every element of a family

$$
\mathcal{H}:=\left(\mathcal{H}_{t}\right)_{t \in] 0, \varepsilon[}
$$

of hyperbolicity loci in $\mathbb{P}^{2}(\mathbb{R})$ admits a LMI representation.
Under suitable conditions, the set \mathcal{H} is the hyperbolicity locus of a non-singular algebraic curve over real Puiseux series.

CAAS
 Tropical spectrahedron

By Helton-Vinnikov, every element of a family

$$
\mathcal{H}:=\left(\mathcal{H}_{t}\right)_{t \in] 0, \varepsilon[}
$$

of hyperbolicity loci in $\mathbb{P}^{2}(\mathbb{R})$ admits a LMI representation.
Under suitable conditions, the set \mathcal{H} is the hyperbolicity locus of a non-singular algebraic curve over real Puiseux series.

In that case, the logarithmic limit

$$
H:=\lim _{t \rightarrow 0} \log _{t}\left(\mathcal{H}_{t}\right)
$$

is a tropical spectrahedron (in the sense of Allamigeon-Gaubert-Skomra 2020).

By Helton-Vinnikov, every element of a family

$$
\mathcal{H}:=\left(\mathcal{H}_{t}\right)_{t \in] 0, \varepsilon[}
$$

of hyperbolicity loci in $\mathbb{P}^{2}(\mathbb{R})$ admits a LMI representation.
Under suitable conditions, the set \mathcal{H} is the hyperbolicity locus of a non-singular algebraic curve over real Puiseux series.

In that case, the logarithmic limit

$$
H:=\lim _{t \rightarrow 0} \log _{t}\left(\mathcal{H}_{t}\right)
$$

is a tropical spectrahedron (in the sense of Allamigeon-Gaubert-Skomra 2020).

Under suitable conditions again, the set H admits a tropical LMI representation.

LAAS
 Lब̂술 Future directions

Questions

- Find an algorithm giving a tropical LMI representation of the tropical hyperbolicity locus.

CAAS
 L⿹弋龴⿵人丶龴⿱丆贝 Future directions
 （CARNOT

Questions

－Find an algorithm giving a tropical LMI representation of the tropical hyperbolicity locus．
－For $\left(\mathcal{H}_{t}\right)_{t \in] 0, \varepsilon[}$ a family of hyperbolicity loci with logarithmic limit a finite intersection of signed tropical halfspaces，what can we say on each \mathcal{H}_{t} ？

CAAS
 L⿹弋龴⿵人丶龴⿱丆贝 Future directions

Questions

－Find an algorithm giving a tropical LMI representation of the tropical hyperbolicity locus．
－For $\left(\mathcal{H}_{t}\right)_{t \in] 0, \varepsilon[}$ a family of hyperbolicity loci with logarithmic limit a finite intersection of signed tropical halfspaces，what can we say on each \mathcal{H}_{t} ？
－How can we characterise tropical hyperbolicity in higher dimension and codimension？

D William Helton and Victor Vinnikov, Linear matrix inequality representation of sets, Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences 60 (2007), no. 5, 654-674.
© Cédric Le Texier, Hyperbolic plane curves near the non-singular tropical limit, arXiv preprint arXiv :2109.14961 (2021), Not relevant.

Erigory Mikhalkin, Decomposition into pairs-of-pants for complex algebraic hypersurfaces, Topology 43 (2004), no. 5, 1035-1065.
: Vladimir A Rokhlin, Complex topological characteristics of real algebraic curves, Russian Mathematical Surveys 33 (1978), no. 5, 85.
R Hans Rullgaard, Polynomial amoebas and convexity, Ph.D. thesis, Stockholm University, 2001.
目 David E Speyer, Horn's problem, Vinnikov curves, and the hive cone, Duke Mathematical Journal 127 (2005), no. 3, 395-427.
: Oleg Viro, Dequantization of real algebraic geometry on logarithmic paper, European Congress of Mathematics, Springer, 2001, pp. 135-146.

