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Hyperbolic plane curve

Definition
A real algebraic curve C of degree d in P2 is hyperbolic
with respect to p ∈ P2(R)\C(R) if every real line L ⊂ P2

going through p intersect C in d real points, counted with
multiplicity.

p

Figure – Hyperbolic curve defined by
6(x2 + y2 − z2)(x2 + y2 − 2z2)(x2 + y2 − 3z2) + x3y3 = 0.
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Topology of non-singular hyperbolic curves

Theorem ([Rok78],[HV07])
A non-singular real algebraic curve C ⊂ P2 of degree d is
hyperbolic if and only if its real part C(R) consists of

⌊
d
2

⌋
nested ovals, plus a pseudo-line if d is odd.

Figure – Topological type in degree 5.
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Hyperbolicity locus

Definition
The hyperbolicity locus of a real algebraic curve C ⊂ P2 is
the set of points

HC := {p ∈ P2(R)\C(R) : C hyperbolic with respect to p}.

Figure – Hyperbolicity locus of the initial example.
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Correspondence with Linear Matrix Inequalities

Definition
A closed convex set H ⊂ P2(R) of the form

{p ∈ P2(R) : L0p0 + L1p1 + L2p2 is positive semi-definite},

with each Li a symmetric matrix with real entries, is said
to have a Linear Matrix Inequality (LMI) representation.

Theorem ([HV07])
A closed convex set H ⊂ P2(R) admits a LMI
representation if and only if H is the hyperbolicity locus of
a hyperbolic curve C ⊂ P2.
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Family of non-singular hyperbolic curves

Fact ([Rok78], [HV07])
Let γ be a path in the space of degree d curves in P2 such
that every curve in γ is non-singular.
If a curve C in γ is hyperbolic, then every curve in γ is
hyperbolic.

Goal
Characterise families of non-singular hyperbolic plane
curves and their hyperbolicity loci in terms of their
logarithmic limit.
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Logarithmic limit

Definition
Let (Ct)t∈]0,ε[ be a family of non-singular real algebraic
curves in (R×)2 ⊂ P2(R) defined by a continuous path
γ :]0, ε[→ Xd , for Xd the space of real algebraic curves of
degree d in (R×)2.

The logarithmic limit of (Ct)t is the set lim
t→0

Logt(Ct), where

Logt is the map

(R×)2 → R2

(x , y) 7→ (logt |x |, logt |y |).
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Logarithmic limit of a family of lines

(a) Real line Lt
in a family of
real lines
(Lt)t∈]0,ε[.

(b) Absolute
value |Lt |.

(c) Logarithm
Logt(Lt) ⊂ R2.

(d) Limit
lim
t→0

Logt(Lt).
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Tropical curve

Definition
A non-singular tropical curve C ⊂ R2 is a 3-valent graph,
with (potentially unbounded) straight edges of rational
slope, and satisfying some balancing condition around its
vertices.
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Tropical curve as logarithmic limit

Theorem ([Rul01], [Mik04])
The logarithmic limit of a family of (Ct)t∈]0,ε[ of non-singular
real algebraic curves in (R×)2 is a (possibly singular)
tropical curve.
Conversely, every non-singular tropical curve C ⊂ R2 is
the logarithmic limit of a family (Ct)t∈]0,ε[ of non-singular
real algebraic curves in (R×)2.

All the families (Ct)t∈]0,ε[ satisfying Mikhalkin-Rullgaard’s
theorem can be constructed explicitly.
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Near the tropical limit

(a) Near the limit
around a vertex.

(b) Near the limit
around a
non-twisted
bounded edge.

(c) Near the limit
around a twisted
bounded edge.
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Real part of a tropical curve

(a) Tropical curve C, seen in
(R>0)

2, equipped with an
admissible set of twisted edges
T .

(b) Real part RCT ⊂ (R×)2 of C
with respect to T , up to
symmetry.
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(A version of) Viro’s patchworking

Theorem ([Vir01])
Let C ⊂ R2 be a non-singular tropical curve equipped with
an admissible set of twisted edges T .
There exists a family (Ct)t∈]0,ε[ of non-singular real
algebraic curves in (R×)2 such that
• C is the logarithmic limit of (Ct)t ,

• the set of twisted edges induced by (Ct)t is T ,
• and, up to symmetry, we have a homeomorphism of

pair
((R×)2, Ct(R)) ≃ ((R×)2,RCT ).
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Terminology

Definition
Let C ⊂ R2 be a non-singular tropical curve equipped with
an admissible set of twisted edges T .
The couple (C,T ) is a hyperbolic tropical curve if for every
family (Ct)t∈]0,ε[ satisfying Viro’s Theorem for (C,T ), the
curves Ct are all hyperbolic.
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Topological criterion for hyperbolicity

Proposition
Let C ⊂ R2 be a non-singular tropical curve of degree d,
equipped with an admissible set of twisted edges T . The
couple (C,T ) is hyperbolic if and only if

1 every cycle of C contains an even number of twisted
edges, and

2 the real part RCT has
⌈

d
2

⌉
(projective) connected

components.

• Item 2 can be easily computed from the data of T
(Renaudineau-Shaw 2021).

• No information on the hyperbolicity loci of the curves
Ct obtained this way !
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Example of hyperbolic tropical curve

(a) Hyperbolic tropical curve
(C,T ) of degree 4.

(b) Real part RCT (up to
symmetry) with 2 projective
components.
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Terminology, part 2

Definition
Let C ⊂ R2 be a non-singular tropical curve equipped with
an admissible set of twisted edges T . Let v be a point in
R2\C.
The couple (C,T ) is hyperbolic with respect to v if for
every family (Ct)t∈]0,ε[ satisfying Viro’s Theorem for (C,T ),
there exists a family of points (vt)t∈]0,ε[ such that
• the curve Ct is hyperbolic with respect to vt for all t ,

and
• the logarithmic limit of (vt)t is v .

(C,T ) hyperbolic ⇔ (C,T ) hyperbolic with respect to
some point v .
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Pencil of tropical lines

v

σ

σ

σ

τ

τ

τ
1,0

1,1

0,1

0,1

1,1

1,0

Figure – Subdivision of R2

with respect to v .

A pencil of tropical lines
through a point v can be
described by the rays τη.
Each point on a ray τη is
the vertex of a tropical line
going through v .
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Characterisation of hyperbolicity

Theorem ([LT21])
Let C ⊂ R2 be a non-singular tropical curve of degree d
equipped with an admissible set of twisted edges T , and
let v be a "generic" point in R2\C.
If the couple (C,T ) is hyperbolic with respect to v , then

1 Every vertex of C in a face ση is incident to an edge
of direction η.

2 Every bounded edge of C of direction η and strictly
contained in ση is twisted.

We need a few more conditions to obtain equivalence,
due to the definition "up to symmetry".
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Example in degree 4

v

Figure – Couple (C,T ) hyperbolic with respect to v .
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Speyer’s criterion

Definition
A honeycomb is a tropical curve with every edge of
direction either (1,0), (0,1) or (1,1).

Theorem ([Spe05])
Let C ⊂ R2 be a non-singular tropical curve equipped with
an admissible set of twisted edges T . The hyperbolicity
locus of the real part RCT contains an entire orthant of
(R×)2 if and only if C is a honeycomb with every bounded
edge twisted.
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Example of positively hyperbolic tropical curve

(a) Honeycomb of degree 2 with
every bounded edge twisted.

(b) Real part with positive
orthant contained in the
hyperbolicity locus.
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Multi-bridge on a honeycomb

Definition
A multi-bridge on a honeycomb C is a set B of parallel
edges disconnecting C, such that no proper subset of B
disconnects C.

Figure – A multi-bridge on a honeycomb of degree 4.
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Hyperbolicity locus of honeycombs

Theorem ([LT21])
Let C ⊂ R2 be a non-singular honeycomb equipped with
an admissible set of twisted edges T , such that every
cycle of C contains an even number of twisted edges.
Then (C,T ) is hyperbolic with respect to v if and only if
every multi-bridge strictly on the left, below and diagonally
above v is twisted.
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Signed tropical convexity

The hyperbolicity locus RHT of a
real part RCT is TO-convex (in the
sense of Loho-Végh, 2019), and
its closure RHT is TC-convex (in
the sense of Loho-Skomra, to
appear).

If C is a honeycomb, then RHT is
given as a finite intersection of
closed signed tropical halfspaces.
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Tropical spectrahedron

By Helton-Vinnikov, every element of a family

H := (Ht)t∈]0,ε[

of hyperbolicity loci in P2(R) admits a LMI representation.

Under suitable conditions, the set H is the hyperbolicity
locus of a non-singular algebraic curve over real Puiseux
series.

In that case, the logarithmic limit

H := lim
t→0

Logt(Ht)

is a tropical spectrahedron (in the sense of
Allamigeon-Gaubert-Skomra 2020).

Under suitable conditions again, the set H admits a
tropical LMI representation.
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Future directions

Questions
• Find an algorithm giving a tropical LMI representation

of the tropical hyperbolicity locus.

• For (Ht)t∈]0,ε[ a family of hyperbolicity loci with
logarithmic limit a finite intersection of signed tropical
halfspaces, what can we say on each Ht ?

• How can we characterise tropical hyperbolicity in
higher dimension and codimension?
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