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Heuristic definition (Supervised learning)
Family of schemes used to learn a mapping f : X — ) by using
o a series of inputs (xi,...,xy) € XN,

o matching outputs (y1,...,yn) € YV,

< a loss function ¢ : ) x ) — R to measure potential misfits.

v

Neural network (Illustration)
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Mismatch £(x(3),y)
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Introduction — Mathematical model for neural networks
The update of x(-) from layer k to k + 1 writes

x(k 4+ 1) = p(Wix(k) + by),
where k € {0,...,n— 1}, and
o Wy € R%*dki1 are weight matrices,
o by € RI+1 are called the biases,

o p:R — R is a componentwise activation function.

Idea: Network training ~~ expected risk minimisation

Statement (Training as a stochastic optimisation problem)
Assuming that (x;, y;) are sampled from p° € P(X x ), solve
in Euo|(x(n),y).
o ()
sit. x(k+1) = p(Wix(k) + by) for k€ {0,...,n—1}.
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Introduction — The concept of residual block

Main limitations (Stability and explainability)
1. Their accuracy may decrease as the depth increases.

2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ'16]

<) x = p(Wix + by) kD)

k-th hidden layer Residual block

Remarks (Concerning residual blocks)
< Con: rectangular networks only ~~ need to add constraints

o Pros: 1) Improved stability for deep networks.
2) Opens the door to mathematical analysis!
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Control of NeurODEs (Some literature overview)

o Learning procedure ~~ stochastic optimal control problem
(see e.g. [E'17, EH'17, JSS'21]).

o Expressivity of deep networks ~~ controllability properties
of NeurODEs (see e.g. [AS'20&21, TG'20, S'21]).

< Reformulation as a mean-field optimal control problem.
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The continuous-time version of the training problem writes

. A T )
min [Eyo [y, ()] + 5 /0 0(0) dt],
5.t {X(t):f(w(t)’x(f)), V(t) =0,
7L, v (@) ~ 1,

where 0(-) are controls and A > 0 is regularisation parameter.

v

Facts: the law u(t) := L(X(t), Y(t)) solves the transport PDE

() + divi (F(t, 0(t))(t)) = 0,

and

B0 [N VT = [ txn)an(Txn).

Idea: Learning as linear optimal control on measures!
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NeurODEs — Mean-field control formulation of learning

Definition (Training as a mean-field optimal control problem)

min | [ txonanMn +5 /M)Fdr],

() + divie (F(t,0(t))1(t)) = 0,
s.t.
11(0) = 1° € P(X?).

— Wealth of mathematical tools to study these problems!

Mean-field control (Short literature overview)

o Existence, well-posedness and regularity results (see e.g.
[BF'20, BR'21, CLOS'22, FPR'14, FS'14, FLOS'19, P'16]).

< Optimality conditions
1) DP [AL'19, AL'20, BaF'21, BF'22, CMNP’18, CMP'20, JMQ'21]
2) Pontryagin [B'19, BR'19, BF'21, BFRS'17, P'16, PS'21]
3) Lagrangian [BCFH'22, BPTT'20, BPTT 21].
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Optimality Conditions — General statement

Theorem (Characterisation of optimal solutions)[BCFH'22]
When X > 0 is large, there exist optimal pairs (1°(-),0"(-)), and
they exactly coincide with the solutions of the optimality system
A" (t) + divie (F(£,07° ()" (8)) = 0, 17(0) = u°,
O™ (t) + (V" (t), F(t,07°(t))) =0, o°(T)=¢,
1
(0= [ D0 ()7 (0 (o),
A Sy

where 1" € CO([0, T] x X2, X?) is a Lagrange multiplier.

Remarks (On the optimality system)
© NSC by fixed-point ~~ ensures numerical convergence.
< Efficient methods available to solve each equation.

< Allows to derive quantitative generalisation errors.
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Proof of the optimality conditions (Lagrangian heuristic)

1. Define the Lagrangian of the problem by
T
L(p,10,0) ::/ 0du(T)+ é/ |0(t)|°dt
X2 2 0

+/X2 1,;(0)d/1,0—/X2 O(T)dp(T)
+/OT/Xz <3t’l’(t)+<V><lf!(t)7]:(t,(9(t))>)d/1(t)dt.

2. Abstract KKT rule in Banach spaces - there exists 1" s.t.
((i':‘(/.z,*,u*,ﬁ*) =0 and %(

< Constraint qualification “requires’ continuous controls.

ph vt 07) = 0.

3. Well-posedness by Schauder’s fixed-point theorem ~~ QED!
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Numerical illustrations — Algorithmic schemes

Idea: Solve the optimality system with a shooting method

Algorithm (General framework)
Fix initial layers #° and for k = 1... Knax

1. Solve simultaneously the forward-backward equations

O (t) + divX(}"(t, Hk(t))/z,k(t)) =0, u(0)= ,uo,
atl“““f’k(t) + <vxlx‘°“‘”k(t)7]:(ta Qk(t)» =0, Lﬁ‘bk(T) =/

— Particle approximation or semi-Lagrangian scheme.

2. Update the layers by solving
1 ‘
Orin(t) + 5 / DoZ(t, Ok 1()) " Vtor(t) dpug(£) = 0.
x

— Particle approximation of the integral and Newton.
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Plot of the points moving over time
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Particle trajectories after learning the classifier with A\ > 0 large enough.



Numerical illustrations — Toy example
Example (Binary classification of points on the real line)

Let 4% = N(0,1), X ~ 10 for i € {1,..., N}, and find 0°(-) s.t.
X(Ty=-1 ifX°<o,
X(Ty= 1 ifX*>o0.

< Choose /(x,y) := |x — y|? and expect 11,(T) ~ 3(6_1 + 61).

v

Plot of the points moving over time
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Particle trajectories after learning the classifier with A > 0 too large.



Numerical illustrations — Toy example
Example (Binary classification of points on the real line)

Let 4% = N(0,1), X ~ 10 for i € {1,..., N}, and find 0°(-) s.t.
X(Ty=-1 ifX°<o,
X(Ty= 1 ifX*>o0.

< Choose /(x,y) := |x — y|? and expect 11,(T) ~ 3(6_1 + 61).

v

Plot of the points moving over time
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Particle trajectories after learning the classifier with A\ > 0 too small.



Conclusion — That's all folks!
Wrap-up (Summary of results)

1. ODE approach to deep networks ~~ mathematically rich
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Conclusion — That's all folks!

Wrap-up (Summary of results)
1. ODE approach to deep networks ~ rich
2. problem ~~ linear optimal control on measures.

Thank you for your attention !
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