

A Mean-Field Optimal Control Approach to the Training of NeurODEs

Benoît Bonnet

(in collaboration with C. Cipriani, M. Fornasier and H. Huang)

BrainPOP Seminar

January 10, 2022

Outline of the talk

Quick primer on neural networks

NeurODE models and mean-field control

Optimality conditions: Lagrangian and Hamiltonian approaches

Numerical illustrations

Outline of the talk

Quick primer on neural networks

NeurODE models and mean-field control

Optimality conditions: Lagrangian and Hamiltonian approaches

Numerical illustrations

Introduction – *Supervised learning and neural networks* Heuristic definition (Supervised learning)

Family of schemes used to learn a mapping $f : \mathcal{X} \to \mathcal{Y}$ by using

- \diamond a series of **inputs** $(x_1, \ldots, x_N) \in \mathcal{X}^N$
- \diamond matching **outputs** $(y_1, \ldots, y_N) \in \mathcal{Y}^N$,
- $\diamond\,$ a loss function $\ell:\mathcal{Y} imes\mathcal{Y} o\mathbb{R}$ to measure potential misfits.

Heuristic definition (Supervised learning)

Family of schemes used to learn a mapping $f : \mathcal{X} \to \mathcal{Y}$ by using

- ♦ a series of inputs $(x_1, ..., x_N) \in \mathcal{X}^N$,
- $\diamond~$ matching outputs $(y_1,\ldots,y_N)\in \mathcal{Y}^N$,
- $\diamond\,$ a loss function $\ell:\mathcal{Y} imes\mathcal{Y} o\mathbb{R}$ to measure potential misfits.

Heuristic definition (Supervised learning)

Family of schemes used to learn a mapping $f : \mathcal{X} \to \mathcal{Y}$ by using

- ♦ a series of inputs $(x_1, ..., x_N) \in \mathcal{X}^N$,
- ♦ matching **outputs** $(y_1, ..., y_N) \in \mathcal{Y}^N$,
- $\diamond\,$ a loss function $\ell:\mathcal{Y} imes\mathcal{Y} o\mathbb{R}$ to measure potential misfits.

Heuristic definition (Supervised learning)

Family of schemes used to learn a mapping $f : \mathcal{X} \to \mathcal{Y}$ by using

- ♦ a series of inputs $(x_1, ..., x_N) \in \mathcal{X}^N$,
- ♦ matching **outputs** $(y_1, ..., y_N) \in \mathcal{Y}^N$,
- $\diamond\,$ a loss function $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ to measure potential misfits.

Heuristic definition (Supervised learning)

Family of schemes used to learn a mapping $f : \mathcal{X} \to \mathcal{Y}$ by using

- ♦ a series of inputs $(x_1, ..., x_N) \in \mathcal{X}^N$,
- ♦ matching **outputs** $(y_1, ..., y_N) \in \mathcal{Y}^N$,
- \diamond a loss function $\ell:\mathcal{Y}\times\mathcal{Y}\rightarrow\mathbb{R}$ to measure potential misfits.

The update of $x(\cdot)$ from layer k to k+1 writes

$$\mathbf{x}(k+1) = \rho(W_k \mathbf{x}(k) + b_k),$$

where $k \in \{0, \ldots, n-1\}$, and

- $\diamond \hspace{0.1 cm} W_k \in \mathbb{R}^{d_k imes d_{k+1}}$ are weight matrices,
- $\diamond \ b_k \in \mathbb{R}^{d_{k+1}}$ are called the **biases**,

 $\diamond \ \rho : \mathbb{R} \to \mathbb{R}$ is a componentwise **activation function**.

Idea: Network training ~ expected risk minimisation

$$\begin{cases} \min_{(W_k,b_k)} \mathbb{E}_{\mu^0} \Big[\ell(x(n),y) \Big], \\ \text{s.t. } x(k+1) = \rho(W_k x(k) + b_k) \text{ for } k \in \{0,\ldots,n-1\}. \end{cases}$$

The update of $x(\cdot)$ from layer k to k+1 writes

$$\mathbf{x}(k+1) = \rho(W_k \mathbf{x}(k) + b_k),$$

where $k \in \{0, \ldots, n-1\}$, and

- ♦ $W_k \in \mathbb{R}^{d_k \times d_{k+1}}$ are weight matrices,
- $\diamond \ b_k \in \mathbb{R}^{d_{k+1}}$ are called the **biases**,
- $\diamond \ \rho : \mathbb{R} \to \mathbb{R}$ is a componentwise activation function.

Idea: Network training ~> expected risk minimisation

$$\begin{cases} \min_{(W_k,b_k)} \mathbb{E}_{\mu^0} \Big[\ell(x(n),y) \Big], \\ \text{s.t. } x(k+1) = \rho(W_k x(k) + b_k) \text{ for } k \in \{0,\ldots,n-1\}. \end{cases}$$

The update of $x(\cdot)$ from layer k to k+1 writes

$$\mathbf{x}(k+1) = \rho(W_k \mathbf{x}(k) + b_k),$$

where $k \in \{0, \ldots, n-1\}$, and

- ♦ $W_k \in \mathbb{R}^{d_k \times d_{k+1}}$ are weight matrices,
- $\diamond \ b_k \in \mathbb{R}^{d_{k+1}}$ are called the **biases**,

 $\diamond \ \rho : \mathbb{R} \to \mathbb{R}$ is a componentwise activation function.

Idea: Network training ~ expected risk minimisation

$$\begin{cases} \min_{(W_k, b_k)} \mathbb{E}_{\mu^0} \Big[\ell(x(n), y) \Big], \\ \text{s.t. } x(k+1) = \rho(W_k x(k) + b_k) \text{ for } k \in \{0, \dots, n-1\}. \end{cases}$$

The update of $x(\cdot)$ from layer k to k+1 writes

$$\mathbf{x}(k+1) = \rho(W_k \mathbf{x}(k) + b_k),$$

where $k \in \{0, \ldots, n-1\}$, and

- ♦ $W_k \in \mathbb{R}^{d_k \times d_{k+1}}$ are weight matrices,
- $\diamond \ b_k \in \mathbb{R}^{d_{k+1}}$ are called the **biases**,

 $\diamond \ \rho : \mathbb{R} \to \mathbb{R}$ is a componentwise activation function.

Idea: Network training ~ expected risk minimisation

$$\begin{cases} \min_{(W_k,b_k)} \mathbb{E}_{\mu^0} \Big[\ell(\mathbf{x}(n), \mathbf{y}) \Big], \\ \text{s.t. } \mathbf{x}(k+1) = \rho(W_k \mathbf{x}(k) + b_k) \text{ for } k \in \{0, \dots, n-1\}. \end{cases}$$

Main limitations (Stability and explainability)

- 1. Their accuracy may **decrease** as the depth **increases**.
- 2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ'16]

k-th hidden layer

- ◊ Con: rectangular networks only → need to add constraints
- Pros: 1) Improved stability for deep networks.
 2) Opens the door to mathematical analysis!

Main limitations (Stability and explainability)

- 1. Their accuracy may **decrease** as the depth **increases**.
- 2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ'16]

$$\times(k) \longrightarrow \qquad \qquad \times \mapsto \rho(W_k \times + b_k) \longrightarrow \qquad \qquad \times (k+1)$$

k-th hidden layer

- \diamond Con: rectangular networks only \leadsto need to add constraints
- Pros: 1) Improved stability for deep networks.
 2) Opens the door to mathematical analysis!

Main limitations (Stability and explainability)

- 1. Their accuracy may **decrease** as the depth **increases**.
- 2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ'16]

k-th hidden layer

- ◊ Con: rectangular networks only → need to add constraints
- Pros: 1) Improved stability for deep networks.
 2) Opens the door to mathematical analysis!

Main limitations (Stability and explainability)

- 1. Their accuracy may **decrease** as the depth **increases**.
- 2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ'16]

$$\begin{array}{c} \times(k) & & \times(k+1) \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\$$

- ◊ Con: rectangular networks only → need to add constraints
- Pros: 1) Improved stability for deep networks.
 2) Opens the door to multi-entitical analysis!

Main limitations (Stability and explainability)

- 1. Their accuracy may **decrease** as the depth **increases**.
- 2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ'16]

- ◊ Con: rectangular networks only → need to add constraints
- Pros: 1) Improved stability for deep networks.
 2) Opene the door to methematical analysis

Main limitations (Stability and explainability)

- 1. Their accuracy may **decrease** as the depth **increases**.
- 2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ'16]

- ◊ Con: rectangular networks only → need to add constraints
- **Pros:** 1) Improved stability for deep networks.
 2) Opens the door to mathematical analysis

Main limitations (Stability and explainability)

- 1. Their accuracy may **decrease** as the depth **increases**.
- 2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ'16]

Remarks (Concerning residual blocks)

- ◊ Con: rectangular networks only → need to add constraints
- ◇ Pros: 1) Improved stability for deep networks.

Opens the door to mathematical analysis!

Main limitations (Stability and explainability)

- 1. Their accuracy may **decrease** as the depth **increases**.
- 2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ'16]

- ◊ Con: rectangular networks only → need to add constraints
- **Pros:** 1) Improved stability for deep networks.
 2) Opens the door to mathematical analysis!

Outline of the talk

Quick primer on neural networks

NeurODE models and mean-field control

Optimality conditions: Lagrangian and Hamiltonian approaches

Numerical illustrations

Observation: For networks with many layers, the update

$$\mathbf{x}(k+1) = \mathbf{x}(k) + \rho(W_k \mathbf{x}(k) + b_k),$$

can be seen as the Euler approximation of the NeurODE

$$\dot{x}(t) = \rho(W(t)x(t) + b(t)).$$

→ Recast questions on deep networks as control problems!

Control of NeurODEs (Some literature overview)

- Learning procedure --- stochastic optimal control problem (see e.g. [E'17, EH'17, JSS'21]).
- Expressivity of deep networks --- controllability properties of NeurODEs (see e.g. [AS'20&21, TG'20, S'21]).

Observation: For networks with many layers, the update

$$\mathbf{x}(k+1) = \mathbf{x}(k) + \rho(W_k \mathbf{x}(k) + b_k),$$

can be seen as the Euler approximation of the NeurODE

$$\dot{\mathbf{x}}(t) = \rho(W(t)\mathbf{x}(t) + b(t)).$$

→ Recast questions on deep networks as control problems!

Control of NeurODEs (Some literature overview)

- Learning procedure --- stochastic optimal control problem (see e.g. [E'17, EH'17, JSS'21]).
- Expressivity of deep networks ---- controllability properties of NeurODEs (see e.g. [AS'20&21, TG'20, S'21]).

Observation: For networks with many layers, the update

$$\mathbf{x}(k+1) = \mathbf{x}(k) + \rho(W_k \mathbf{x}(k) + b_k),$$

can be seen as the Euler approximation of the NeurODE

$$\dot{\mathbf{x}}(t) = \rho(W(t)\mathbf{x}(t) + b(t)).$$

 \hookrightarrow Recast questions on **deep networks** as **control problems**!

Control of NeurODEs (Some literature overview)

- Learning procedure --- stochastic optimal control problem (see e.g. [E'17, EH'17, JSS'21]).
- Expressivity of deep networks --- controllability properties of NeurODEs (see e.g. [AS'20&21, TG'20, S'21]).

Observation: For networks with many layers, the update

$$\mathbf{x}(k+1) = \mathbf{x}(k) + \rho(W_k \mathbf{x}(k) + b_k),$$

can be seen as the Euler approximation of the NeurODE

$$\dot{\mathbf{x}}(t) = \rho(W(t)\mathbf{x}(t) + b(t)).$$

 \hookrightarrow Recast questions on **deep networks** as **control problems**!

Control of NeurODEs (Some literature overview)

- ◇ Learning procedure → stochastic optimal control problem (see e.g. [E'17, EH'17, JSS'21]).
- ◊ Expressivity of deep networks → controllability properties of NeurODEs (see e.g. [AS'20&21, TG'20, S'21]).

Observation: For networks with many layers, the update

$$\mathbf{x}(k+1) = \mathbf{x}(k) + \rho(W_k \mathbf{x}(k) + b_k),$$

can be seen as the Euler approximation of the NeurODE

$$\dot{\mathbf{x}}(t) = \rho(W(t)\mathbf{x}(t) + b(t)).$$

 \hookrightarrow Recast questions on deep networks as control problems!

Control of NeurODEs (Some literature overview)

- ◇ Learning procedure → stochastic optimal control problem (see e.g. [E'17, EH'17, JSS'21]).
- ◇ Expressivity of deep networks → controllability properties of NeurODEs (see e.g. [AS'20&21, TG'20, S'21]).

Observation: For networks with many layers, the update

$$\mathbf{x}(k+1) = \mathbf{x}(k) + \rho(W_k \mathbf{x}(k) + b_k),$$

can be seen as the Euler approximation of the NeurODE

$$\dot{\mathbf{x}}(t) = \rho(W(t)\mathbf{x}(t) + b(t)).$$

 \hookrightarrow Recast questions on **deep networks** as **control problems**!

Control of NeurODEs (Some literature overview)

- ◇ Learning procedure → stochastic optimal control problem (see e.g. [E'17, EH'17, JSS'21]).
- ◊ Expressivity of deep networks → controllability properties of NeurODEs (see e.g. [AS'20&21, TG'20, S'21]).

Observation: For networks with many layers, the update

$$\mathbf{x}(k+1) = \mathbf{x}(k) + \rho(W_k \mathbf{x}(k) + b_k),$$

can be seen as the Euler approximation of the NeurODE

$$\dot{\mathbf{x}}(t) = \rho(W(t)\mathbf{x}(t) + b(t)).$$

 \hookrightarrow Recast questions on deep networks as control problems!

Control of NeurODEs (Some literature overview)

- ◇ Learning procedure → stochastic optimal control problem (see e.g. [E'17, EH'17, JSS'21]).
- ◊ Expressivity of deep networks → controllability properties of NeurODEs (see e.g. [AS'20&21, TG'20, S'21]).

The continuous-time version of the training problem writes

$$\begin{cases} \min_{\theta(\cdot)} \left[\mathbb{E}_{\mu^0} \Big[\ell(\boldsymbol{X}(\boldsymbol{T}), \boldsymbol{Y}(\boldsymbol{T})) \Big] + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \Big], \\ \text{s.t.} \begin{cases} \dot{\boldsymbol{X}}(t) = \mathcal{F}(t, \theta(t), \boldsymbol{X}(t)), & \dot{\boldsymbol{Y}}(t) = 0, \\ (\boldsymbol{X}(0), \boldsymbol{Y}(0)) \sim \mu^0, \end{cases} \end{cases}$$

where $\theta(\cdot)$ are controls and $\lambda > 0$ is regularisation parameter.

Facts: the law $\mu(t) := \mathcal{L}(X(t), Y(t))$ solves the **transport PDE**

$$\partial_t \mu(t) + \operatorname{div}_{\mathsf{X}} ig(\mathcal{F}(t, \theta(t)) \mu(t) ig) = 0,$$

and

$$\mathbb{E}_{\mu^0}\Big[\ell(X(\mathcal{T}),Y(\mathcal{T}))\Big] = \int_{\mathcal{X}^2}\ell(x,y)\mathrm{d}\mu(\mathcal{T})(x,y).$$

The continuous-time version of the training problem writes

$$\left\{egin{aligned} &\min_{ heta(\cdot)} \ \left[\mathbb{E}_{\mu^0}\Big[\ell(X(T),Y(T))\Big]+rac{\lambda}{2}\int_0^T | heta(t)|^2 \mathrm{d}t
ight], \ &\mathrm{s.t.} \ \left\{\dot{X}(t)=\mathcal{F}(t, heta(t),X(t)), \quad \dot{Y}(t)=0, \ (X(0),Y(0))\sim\mu^0, \end{aligned}
ight.$$

where $\theta(\cdot)$ are controls and $\lambda > 0$ is regularisation parameter.

Facts: the law $\mu(t) := \mathcal{L}(X(t), Y(t))$ solves the **transport PDE**

$$\partial_t \mu(t) + \operatorname{div}_{\mathsf{X}} ig(\mathcal{F}(t, \theta(t)) \mu(t) ig) = 0,$$

and

$$\mathbb{E}_{\mu^0}\Big[\ell(X(\mathcal{T}),Y(\mathcal{T}))\Big] = \int_{\mathcal{X}^2}\ell(x,y)\mathrm{d}\mu(\mathcal{T})(x,y).$$

The continuous-time version of the training problem writes

$$\begin{cases} \min_{\theta(\cdot)} \left[\mathbb{E}_{\mu^0} \Big[\ell(X(T), Y(T)) \Big] + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \Big], \\ \text{s.t.} \begin{cases} \dot{X}(t) = \mathcal{F}(t, \theta(t), X(t)), & \dot{Y}(t) = 0, \\ (X(0), Y(0)) \sim \mu^0, \end{cases} \end{cases}$$

where $\theta(\cdot)$ are **controls** and $\lambda > 0$ is **regularisation** parameter.

Facts: the law $\mu(t) := \mathcal{L}(X(t), Y(t))$ solves the **transport PDE**

$$\partial_t \mu(t) + \operatorname{div}_{\times} \bigl(\mathcal{F}(t, \theta(t)) \mu(t) \bigr) = 0,$$

and

$$\mathbb{E}_{\mu^0}\Big[\ell(X(\mathcal{T}),Y(\mathcal{T}))\Big] = \int_{\mathcal{X}^2}\ell(x,y)\mathrm{d}\mu(\mathcal{T})(x,y).$$

The continuous-time version of the training problem writes

$$\begin{cases} \min_{\theta(\cdot)} \left[\mathbb{E}_{\mu^0} \Big[\ell(X(T), Y(T)) \Big] + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \Big], \\ \text{s.t.} \begin{cases} \dot{X}(t) = \mathcal{F}(t, \theta(t), X(t)), & \dot{Y}(t) = 0, \\ (X(0), Y(0)) \sim \mu^0, \end{cases} \end{cases}$$

where $\theta(\cdot)$ are **controls** and $\lambda > 0$ is **regularisation** parameter.

Facts: the law $\mu(t) := \mathcal{L}(X(t), Y(t))$ solves the **transport PDE**

$$\partial_t \mu(t) + \operatorname{div}_{\times} (\mathcal{F}(t, \theta(t))\mu(t)) = 0,$$

and

$$\mathbb{E}_{\mu^0}\Big[\ell(X(T),Y(T))\Big] = \int_{\mathcal{X}^2} \ell(x,y) \mathrm{d}\mu(T)(x,y).$$

The continuous-time version of the training problem writes

$$\begin{cases} \min_{\theta(\cdot)} \left[\mathbb{E}_{\mu^0} \Big[\ell(X(T), Y(T)) \Big] + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \Big], \\ \text{s.t.} \begin{cases} \dot{X}(t) = \mathcal{F}(t, \theta(t), X(t)), & \dot{Y}(t) = 0, \\ (X(0), Y(0)) \sim \mu^0, \end{cases} \end{cases}$$

where $\theta(\cdot)$ are **controls** and $\lambda > 0$ is **regularisation** parameter.

Facts: the law $\mu(t) := \mathcal{L}(X(t), Y(t))$ solves the **transport PDE**

$$\partial_t \mu(t) + \operatorname{div}_x igl(\mathcal{F}(t, heta(t)) \mu(t) igr) = 0,$$

and

$$\mathbb{E}_{\mu^0}\Big[\ell(X(T),Y(T))\Big] = \int_{\mathcal{X}^2} \ell(x,y) \mathsf{d}\mu(T)(x,y).$$

The continuous-time version of the training problem writes

$$\begin{cases} \min_{\theta(\cdot)} \left[\mathbb{E}_{\mu^0} \Big[\ell(X(T), Y(T)) \Big] + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \Big], \\ \text{s.t.} \begin{cases} \dot{X}(t) = \mathcal{F}(t, \theta(t), X(t)), & \dot{Y}(t) = 0, \\ (X(0), Y(0)) \sim \mu^0, \end{cases} \end{cases}$$

where $\theta(\cdot)$ are **controls** and $\lambda > 0$ is **regularisation** parameter.

Facts: the law $\mu(t) := \mathcal{L}(X(t), Y(t))$ solves the **transport PDE**

$$\partial_t \mu(t) + \operatorname{div}_{\times} (\mathcal{F}(t, \theta(t))\mu(t)) = 0,$$

and

$$\mathbb{E}_{\mu^0}\Big[\ell(X(T),Y(T))\Big] = \int_{\mathcal{X}^2} \ell(x,y) \mathrm{d}\mu(T)(x,y).$$

NeurODEs - Mean-field control formulation of learning

Definition (Training as a mean-field optimal control problem)

$$\begin{cases} \min_{\theta(\cdot)} \left[\int_{\mathcal{X}^2} \ell(x, y) d\mu(T)(x, y) + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \right], \\ \text{s.t.} \quad \begin{cases} \partial_t \mu(t) + \operatorname{div}_x (\mathcal{F}(t, \theta(t))\mu(t)) = 0, \\ \mu(0) = \mu^0 \in \mathcal{P}(\mathcal{X}^2). \end{cases} \end{cases}$$

 \hookrightarrow Wealth of **mathematical tools** to study these problems!

Mean-field control (Short literature overview)

 Existence, well-posedness and regularity results (see e.g. [BF'20, BR'21, CLOS'22, FPR'14, FS'14, FLOS'19, P'16]).

Optimality conditions

- 1) DP [AL'19, AL'20, BaF'21, BF'22, CMNP'18, CMP'20, JMQ'21]
- 2) Pontryagin [B'19, BR'19, BF'21, BFRS'17, P'16, PS'21]
- 3) Lagrangian [BCFH'22, BPTT'20, BPTT'21].

NeurODEs - Mean-field control formulation of learning

Definition (Training as a mean-field optimal control problem)

$$\begin{cases} \min_{\theta(\cdot)} \left[\int_{\mathcal{X}^2} \ell(x, y) d\mu(T)(x, y) + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \right], \\ \text{s.t.} \quad \begin{cases} \partial_t \mu(t) + \operatorname{div}_x (\mathcal{F}(t, \theta(t))\mu(t)) = 0, \\ \mu(0) = \mu^0 \in \mathcal{P}(\mathcal{X}^2). \end{cases} \end{cases}$$

 \hookrightarrow Wealth of $mathematical \ tools$ to study these problems!

Mean-field control (Short literature overview)

 Existence, well-posedness and regularity results (see e.g. [BF'20, BR'21, CLOS'22, FPR'14, FS'14, FLOS'19, P'16]).

Optimality conditions

- 1) DP [AL'19, AL'20, BaF'21, BF'22, CMNP'18, CMP'20, JMQ'21]
- 2) Pontryagin [B'19, BR'19, BF'21, BFRS'17, P'16, PS'21]
- 3) Lagrangian [BCFH'22, BPTT'20, BPTT'21].
NeurODEs - Mean-field control formulation of learning

Definition (Training as a mean-field optimal control problem)

$$\begin{cases} \min_{\theta(\cdot)} \left[\int_{\mathcal{X}^2} \ell(x, y) d\mu(T)(x, y) + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \right], \\ \text{s.t.} \quad \begin{cases} \partial_t \mu(t) + \operatorname{div}_x (\mathcal{F}(t, \theta(t))\mu(t)) = 0, \\ \mu(0) = \mu^0 \in \mathcal{P}(\mathcal{X}^2). \end{cases} \end{cases}$$

 \hookrightarrow Wealth of $mathematical \ tools$ to study these problems!

Mean-field control (Short literature overview)

- Existence, well-posedness and regularity results (see e.g. [BF'20, BR'21, CLOS'22, FPR'14, FS'14, FLOS'19, P'16]).
- Optimality conditions
 - 1) DP [AL'19, AL'20, BaF'21, BF'22, CMNP'18, CMP'20, JMQ'21]
 - 2) Pontryagin [B'19, BR'19, BF'21, BFRS'17, P'16, PS'21]
 - 3) Lagrangian [BCFH'22, BPTT'20, BPTT'21].

NeurODEs – Mean-field control formulation of learning

Definition (Training as a mean-field optimal control problem)

$$\begin{cases} \min_{\theta(\cdot)} \left[\int_{\mathcal{X}^2} \ell(x, y) d\mu(T)(x, y) + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \right], \\ \text{s.t.} \quad \begin{cases} \partial_t \mu(t) + \operatorname{div}_x (\mathcal{F}(t, \theta(t))\mu(t)) = 0, \\ \mu(0) = \mu^0 \in \mathcal{P}(\mathcal{X}^2). \end{cases} \end{cases}$$

 \hookrightarrow Wealth of $mathematical \ tools$ to study these problems!

Mean-field control (Short literature overview)

 Existence, well-posedness and regularity results (see e.g. [BF'20, BR'21, CLOS'22, FPR'14, FS'14, FLOS'19, P'16]).

Optimality conditions

- 1) DP [AL'19, AL'20, BaF'21, BF'22, CMNP'18, CMP'20, JMQ'21]
- 2) Pontryagin [B'19, BR'19, BF'21, BFRS'17, P'16, PS'21]
- 3) Lagrangian [BCFH'22, BPTT'20, BPTT'21].

NeurODEs - Mean-field control formulation of learning

Definition (Training as a mean-field optimal control problem)

$$\begin{cases} \min_{\theta(\cdot)} \left[\int_{\mathcal{X}^2} \ell(x, y) d\mu(T)(x, y) + \frac{\lambda}{2} \int_0^T |\theta(t)|^2 dt \right], \\ \text{s.t.} \quad \begin{cases} \partial_t \mu(t) + \operatorname{div}_x (\mathcal{F}(t, \theta(t))\mu(t)) = 0, \\ \mu(0) = \mu^0 \in \mathcal{P}(\mathcal{X}^2). \end{cases} \end{cases}$$

 \hookrightarrow Wealth of $mathematical \ tools$ to study these problems!

Mean-field control (Short literature overview)

 Existence, well-posedness and regularity results (see e.g. [BF'20, BR'21, CLOS'22, FPR'14, FS'14, FLOS'19, P'16]).

◊ Optimality conditions

- 1) DP [AL'19, AL'20, BaF'21, BF'22, CMNP'18, CMP'20, JMQ'21]
- 2) Pontryagin [B'19, BR'19, BF'21, BFRS'17, P'16, PS'21]
- 3) Lagrangian [BCFH'22, BPTT'20, BPTT'21].

Outline of the talk

Quick primer on neural networks

NeurODE models and mean-field control

Optimality conditions: Lagrangian and Hamiltonian approaches

Numerical illustrations

Theorem (Characterisation of optimal solutions)[BCFH'22] When $\lambda > 0$ is large, there exist **optimal pairs** ($\mu^*(\cdot), \theta^*(\cdot)$), and they **exactly coincide** with the solutions of the **optimality system**

 $egin{aligned} &igl(\partial_t\mu^*(t)+\operatorname{div}_{\mathsf{X}}igl(\mathcal{F}(t, heta^*(t))\mu^*(t)igr)=0, \quad \mu^*(0)=\mu^0, \ &igl(\partial_t\psi^*(t)+\langle
abla_{\mathsf{X}}\psi^*(t),\mathcal{F}(t, heta^*(t))
angle=0, \quad \psi^*(\mathcal{T})=\ell, \ &igl(heta^*(t)=-rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_ heta\mathcal{F}(t, heta^*(t))^ op\psi^*(t)\mathsf{d}\mu^*(t), \end{aligned}$

where $\psi^*\in \mathcal{C}^0([0,\mathcal{T}] imes\mathcal{X}^2,\mathcal{X}^2)$ is a Lagrange multiplier.

- NSC by fixed-point ~> ensures numerical convergence.
- Efficient methods available to solve each equation.
- ♦ Allows to derive **quantitative generalisation errors**.

Theorem (Characterisation of optimal solutions)[BCFH'22]

When $\lambda > 0$ is large, there exist **optimal pairs** $(\mu^*(\cdot), \theta^*(\cdot))$, and they **exactly coincide** with the solutions of the **optimality system**

$$egin{split} \partial_t \mu^*(t) + \operatorname{div}_{\mathsf{x}}ig(\mathcal{F}(t, heta^*(t))\mu^*(t)ig) = 0, & \mu^*(0) = \mu^0, \ \partial_t \psi^*(t) + \langle
abla_{\mathsf{x}} \psi^*(t), \mathcal{F}(t, heta^*(t))
angle = 0, & \psi^*(\mathcal{T}) = \ell, \ heta^*(t) = -rac{1}{\lambda} \int_{\mathcal{X}^2} \mathsf{D}_ heta \mathcal{F}(t, heta^*(t))^ op \psi^*(t) \mathsf{d} \mu^*(t), \end{split}$$

where $\psi^* \in C^0([0, T] \times \mathcal{X}^2, \mathcal{X}^2)$ is a Lagrange multiplier.

- NSC by fixed-point ~> ensures numerical convergence.
- Efficient methods available to solve each equation.
- ♦ Allows to derive **quantitative generalisation errors**.

Theorem (Characterisation of optimal solutions)[BCFH'22]

When $\lambda > 0$ is large, there exist **optimal pairs** $(\mu^*(\cdot), \theta^*(\cdot))$, and they **exactly coincide** with the solutions of the **optimality system**

$$egin{split} \partial_t \mu^*(t) + \operatorname{div}_{\mathsf{x}}ig(\mathcal{F}(t, heta^*(t))\mu^*(t)ig) &= 0, \quad \mu^*(0) = \mu^0, \ \partial_t \psi^*(t) + \langle
abla_{\mathsf{x}}\psi^*(t), \mathcal{F}(t, heta^*(t))
angle &= 0, \quad \psi^*(\mathcal{T}) = \ell, \ heta^*(t) &= -rac{1}{\lambda}\int_{\mathcal{X}^2} \mathsf{D}_ heta\mathcal{F}(t, heta^*(t))^ op \psi^*(t) \mathrm{d}\mu^*(t), \end{split}$$

where $\psi^* \in C^0([0, T] \times \mathcal{X}^2, \mathcal{X}^2)$ is a Lagrange multiplier.

- NSC by fixed-point ~> ensures numerical convergence.
- Efficient methods available to solve each equation.
- ♦ Allows to derive **quantitative generalisation errors**.

Theorem (Characterisation of optimal solutions)[BCFH'22]

When $\lambda > 0$ is large, there exist **optimal pairs** $(\mu^*(\cdot), \theta^*(\cdot))$, and they **exactly coincide** with the solutions of the **optimality system**

$$\left\{egin{aligned} &\partial_t\mu^*(t)+{
m div}_{\scriptscriptstyle X}ig(\mathcal{F}(t, heta^*(t))\mu^*(t)ig)=0, \quad \mu^*(0)=\mu^0,\ &\partial_t\psi^*(t)+\langle
abla_x\psi^*(t),\mathcal{F}(t, heta^*(t))
angle=0, \quad \psi^*(\mathcal{T})=\ell,\ & heta^*(t)=-rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_ heta\mathcal{F}(t, heta^*(t))^{ op}\psi^*(t)\mathsf{d}\mu^*(t), \end{aligned}
ight.$$

where $\psi^* \in C^0([0, T] \times \mathcal{X}^2, \mathcal{X}^2)$ is a Lagrange multiplier.

- NSC by fixed-point ~> ensures numerical convergence.
- Efficient methods available to solve each equation.
- ♦ Allows to derive **quantitative generalisation errors**.

Theorem (Characterisation of optimal solutions)[BCFH'22]

When $\lambda > 0$ is large, there exist **optimal pairs** $(\mu^*(\cdot), \theta^*(\cdot))$, and they **exactly coincide** with the solutions of the **optimality system**

$$\left\{egin{aligned} &\partial_t\mu^*(t)+{
m div}_{ imes}ig(\mathcal{F}(t, heta^*(t))\mu^*(t)ig)=0,\quad \mu^*(0)=\mu^0,\ &\partial_t\psi^*(t)+\langle
abla_x\psi^*(t),\mathcal{F}(t, heta^*(t))
angle=0,\quad \psi^*(\mathcal{T})=\ell,\ & heta^*(t)=-rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_ heta\mathcal{F}(t, heta^*(t))^{ op}\psi^*(t)\mathsf{d}\mu^*(t), \end{aligned}
ight.$$

where $\psi^* \in C^0([0, T] \times \mathcal{X}^2, \mathcal{X}^2)$ is a Lagrange multiplier.

- ♦ NSC by **fixed-point** → ensures **numerical convergence**.
- Efficient methods available to solve each equation.
- ♦ Allows to derive **quantitative generalisation errors**.

Theorem (Characterisation of optimal solutions)[BCFH'22]

When $\lambda > 0$ is large, there exist **optimal pairs** $(\mu^*(\cdot), \theta^*(\cdot))$, and they **exactly coincide** with the solutions of the **optimality system**

$$\left\{egin{aligned} &\partial_t\mu^*(t)+{
m div}_{ imes}ig(\mathcal{F}(t, heta^*(t))\mu^*(t)ig)=0,\quad \mu^*(0)=\mu^0,\ &\partial_t\psi^*(t)+\langle
abla_x\psi^*(t),\mathcal{F}(t, heta^*(t))
angle=0,\quad \psi^*(\mathcal{T})=\ell,\ & heta^*(t)=-rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_ heta\mathcal{F}(t, heta^*(t))^{ op}\psi^*(t)\mathsf{d}\mu^*(t), \end{aligned}
ight.$$

where $\psi^* \in C^0([0, T] \times \mathcal{X}^2, \mathcal{X}^2)$ is a Lagrange multiplier.

- ♦ NSC by **fixed-point** → ensures **numerical convergence**.
- Efficient methods available to solve each equation.
- Allows to derive quantitative generalisation errors.

Theorem (Characterisation of optimal solutions)[BCFH'22]

When $\lambda > 0$ is large, there exist **optimal pairs** $(\mu^*(\cdot), \theta^*(\cdot))$, and they **exactly coincide** with the solutions of the **optimality system**

$$\left\{egin{aligned} &\partial_t\mu^*(t)+{
m div}_{ imes}ig(\mathcal{F}(t, heta^*(t))\mu^*(t)ig)=0,\quad \mu^*(0)=\mu^0,\ &\partial_t\psi^*(t)+\langle
abla_x\psi^*(t),\mathcal{F}(t, heta^*(t))
angle=0,\quad \psi^*(\mathcal{T})=\ell,\ & heta^*(t)=-rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_ heta\mathcal{F}(t, heta^*(t))^ op\psi^*(t)\mathsf{d}\mu^*(t), \end{aligned}
ight.$$

where $\psi^* \in C^0([0, T] \times \mathcal{X}^2, \mathcal{X}^2)$ is a Lagrange multiplier.

- ♦ NSC by **fixed-point** → ensures **numerical convergence**.
- Efficient methods available to solve each equation.
- ♦ Allows to derive quantitative generalisation errors.

Proof of the optimality conditions (Lagrangian heuristic)

1. Define the $\ensuremath{\textbf{Lagrangian}}$ of the problem by

$$\begin{split} \mathcal{L}(\mu,\psi,\theta) &:= \int_{\mathcal{X}^2} \ell \, \mathsf{d}\mu(\mathcal{T}) + \frac{\lambda}{2} \int_0^{\mathcal{T}} |\theta(t)|^2 \mathsf{d}t \\ &+ \int_{\mathcal{X}^2} \psi(0) \mathsf{d}\mu^0 - \int_{\mathcal{X}^2} \psi(\mathcal{T}) \mathsf{d}\mu(\mathcal{T}) \\ &+ \int_0^{\mathcal{T}} \int_{\mathcal{X}^2} \left(\partial_t \psi(t) + \left\langle \nabla_x \psi(t), \mathcal{F}(t,\theta(t)) \right\rangle \right) \mathsf{d}\mu(t) \mathsf{d}t. \end{split}$$

2. Abstract **KKT rule** in **Banach spaces** \rightsquigarrow there exists ψ^* s.t.

$$rac{\delta \mathcal{L}}{\delta \mu}(\mu^*,\psi^*,\theta^*)=0 \qquad ext{and} \qquad rac{\delta \mathcal{L}}{\delta heta}(\mu^*,\psi^*,\theta^*)=0.$$

↔ Constraint qualification "requires" continuous controls.

3. Well-posedness by **Schauder's fixed-point** theorem ~> **QED**!

Proof of the optimality conditions (Lagrangian heuristic)

1. Define the $\ensuremath{\textbf{Lagrangian}}$ of the problem by

$$egin{aligned} \mathcal{L}(\mu,\psi, heta) &:= \int_{\mathcal{X}^2} \ell \ \mathsf{d} \mu(\mathcal{T}) + rac{\lambda}{2} \int_0^{\mathcal{T}} | heta(t)|^2 \mathsf{d} t \ &+ \int_{\mathcal{X}^2} \psi(0) \mathsf{d} \mu^0 - \int_{\mathcal{X}^2} \psi(\mathcal{T}) \mathsf{d} \mu(\mathcal{T}) \ &+ \int_0^{\mathcal{T}} \int_{\mathcal{X}^2} \left(\partial_t \psi(t) + ig\langle
abla_{\mathsf{x}} \psi(t), \mathcal{F}(t, heta(t)) ig
angle
ight) \mathsf{d} \mu(t) \mathsf{d} t. \end{aligned}$$

2. Abstract **KKT rule** in **Banach spaces** \rightsquigarrow there exists ψ^* s.t.

$$rac{\delta \mathcal{L}}{\delta \mu}(\mu^*,\psi^*, heta^*)=0 \qquad ext{and} \qquad rac{\delta \mathcal{L}}{\delta heta}(\mu^*,\psi^*, heta^*)=0.$$

↔ Constraint qualification "requires" continuous controls.

3. Well-posedness by Schauder's fixed-point theorem ~~ QED!

Proof of the optimality conditions (Lagrangian heuristic)

1. Define the $\ensuremath{\textbf{Lagrangian}}$ of the problem by

$$\begin{split} \mathcal{L}(\mu,\psi,\theta) &:= \int_{\mathcal{X}^2} \ell \, \mathsf{d}\mu(\mathcal{T}) + \frac{\lambda}{2} \int_0^{\mathcal{T}} |\theta(t)|^2 \mathsf{d}t \\ &+ \int_{\mathcal{X}^2} \psi(0) \mathsf{d}\mu^0 - \int_{\mathcal{X}^2} \psi(\mathcal{T}) \mathsf{d}\mu(\mathcal{T}) \\ &+ \int_0^{\mathcal{T}} \int_{\mathcal{X}^2} \left(\partial_t \psi(t) + \langle \nabla_x \psi(t), \mathcal{F}(t,\theta(t)) \rangle \right) \mathsf{d}\mu(t) \mathsf{d}t. \end{split}$$

2. Abstract **KKT rule** in **Banach spaces** \rightsquigarrow there exists ψ^* s.t.

$$rac{\delta \mathcal{L}}{\delta \mu}(\mu^*,\psi^*, heta^*)=0 \qquad ext{and} \qquad rac{\delta \mathcal{L}}{\delta heta}(\mu^*,\psi^*, heta^*)=0.$$

↔ Constraint qualification "requires" continuous controls.

3. Well-posedness by **Schauder's fixed-point** theorem ~> **QED**!

Proof of the optimality conditions (Lagrangian heuristic)

1. Define the Lagrangian of the problem by

$$egin{aligned} \mathcal{L}(\mu,\psi, heta) &:= \int_{\mathcal{X}^2} \ell \ \mathsf{d}\mu(\mathcal{T}) + rac{\lambda}{2} \int_0^\mathcal{T} | heta(t)|^2 \mathsf{d}t \ &+ \int_{\mathcal{X}^2} \psi(0) \mathsf{d}\mu^0 - \int_{\mathcal{X}^2} \psi(\mathcal{T}) \mathsf{d}\mu(\mathcal{T}) \ &+ \int_0^\mathcal{T} \int_{\mathcal{X}^2} \left(\partial_t \psi(t) + \left<
abla_x \psi(t), \mathcal{F}(t, heta(t)) \right>
ight) \mathsf{d}\mu(t) \mathsf{d}t. \end{aligned}$$

2. Abstract KKT rule in Banach spaces \rightsquigarrow there exists ψ^* s.t.

$$rac{\delta \mathcal{L}}{\delta \mu}(\mu^*,\psi^*, heta^*)=0 \qquad ext{and} \qquad rac{\delta \mathcal{L}}{\delta heta}(\mu^*,\psi^*, heta^*)=0.$$

 \hookrightarrow Constraint qualification "requires" continuous controls.

3. Well-posedness by Schauder's fixed-point theorem ~~ QED!

Proof of the optimality conditions (Lagrangian heuristic)

1. Define the Lagrangian of the problem by

$$\begin{split} \mathcal{L}(\mu,\psi,\theta) &:= \int_{\mathcal{X}^2} \ell \, \mathsf{d}\mu(\mathcal{T}) + \frac{\lambda}{2} \int_0^{\mathcal{T}} |\theta(t)|^2 \mathsf{d}t \\ &+ \int_{\mathcal{X}^2} \psi(0) \mathsf{d}\mu^0 - \int_{\mathcal{X}^2} \psi(\mathcal{T}) \mathsf{d}\mu(\mathcal{T}) \\ &+ \int_0^{\mathcal{T}} \int_{\mathcal{X}^2} \left(\partial_t \psi(t) + \left\langle \nabla_x \psi(t), \mathcal{F}(t,\theta(t)) \right\rangle \right) \mathsf{d}\mu(t) \mathsf{d}t. \end{split}$$

2. Abstract KKT rule in Banach spaces \rightsquigarrow there exists ψ^* s.t.

$$rac{\delta \mathcal{L}}{\delta \mu}(\mu^*,\psi^*, heta^*)=0 \qquad ext{and} \qquad rac{\delta \mathcal{L}}{\delta heta}(\mu^*,\psi^*, heta^*)=0.$$

 $\hookrightarrow \textbf{Constraint qualification "requires" continuous controls.}$

3. Well-posedness by Schauder's fixed-point theorem ~~ QED!

Proof of the optimality conditions (Lagrangian heuristic)

1. Define the Lagrangian of the problem by

$$\begin{split} \mathcal{L}(\mu,\psi,\theta) &:= \int_{\mathcal{X}^2} \ell \, \mathsf{d}\mu(\mathcal{T}) + \frac{\lambda}{2} \int_0^{\mathcal{T}} |\theta(t)|^2 \mathsf{d}t \\ &+ \int_{\mathcal{X}^2} \psi(0) \mathsf{d}\mu^0 - \int_{\mathcal{X}^2} \psi(\mathcal{T}) \mathsf{d}\mu(\mathcal{T}) \\ &+ \int_0^{\mathcal{T}} \int_{\mathcal{X}^2} \left(\partial_t \psi(t) + \left\langle \nabla_x \psi(t), \mathcal{F}(t,\theta(t)) \right\rangle \right) \mathsf{d}\mu(t) \mathsf{d}t. \end{split}$$

2. Abstract KKT rule in Banach spaces \rightsquigarrow there exists ψ^* s.t.

$$\frac{\delta \mathcal{L}}{\delta \mu}(\mu^*,\psi^*,\theta^*)=0 \qquad \text{and} \qquad \frac{\delta \mathcal{L}}{\delta \theta}(\mu^*,\psi^*,\theta^*)=0.$$

- $\hookrightarrow \textbf{Constraint qualification} ~``requires'' ~ \textbf{continuous} ~ controls.$
- 3. Well-posedness by Schauder's fixed-point theorem ~~ QED!

Proof of the optimality conditions (Hamiltonian heuristic)

1. By the PMP of [B'19,BF'21,BR'19], there exists $\sigma^*(\cdot)$ s.t.

$$\begin{cases} \partial_t \sigma^*(t) = -\mathsf{D}_{\mathsf{x}} \mathcal{F}(t, \theta^*(t))^{\mathsf{T}} \sigma^*(t), \quad \sigma^*(\mathsf{T}) = -\nabla_{\mathsf{x}} \ell, \\ \theta^*(t) \in \operatorname*{argmax}_{\theta \in \mathbb{R}^m} \left[\int_{\mathcal{X}^2} \langle \sigma^*(t), \mathcal{F}(t, \theta) \rangle \mathsf{d} \mu^*(t) - \frac{\lambda}{2} |\theta|^2 \right]. \end{cases}$$

2. Because $\lambda > 0$ is large \rightsquigarrow **unique maximiser** $\theta^*(t)$ satisfying $\theta^*(t) = \frac{1}{\lambda} \int_{\mathcal{X}^2} \mathsf{D}_{\theta} \mathcal{F}(t, \theta^*(t))^\top \sigma^*(t) \, \mathrm{d}\mu^*(t).$

3. Cauchy-Lip uniqueness $\Rightarrow \sigma^*(t) = -\nabla_x \psi^*(t) \rightsquigarrow \mathsf{QED}!$

Question (Link between both approaches) We have Lagrangian ⊂ Hamiltonian --> Equivalence ?

Proof of the optimality conditions (Hamiltonian heuristic)

1. By the PMP of [B'19,BF'21,BR'19], there exists $\sigma^*(\cdot)$ s.t.

$$\begin{cases} \partial_t \sigma^*(t) = -\mathsf{D}_{\mathsf{x}} \mathcal{F}(t, \theta^*(t))^\top \sigma^*(t), \quad \sigma^*(\mathcal{T}) = -\nabla_{\mathsf{x}} \ell, \\ \theta^*(t) \in \operatorname*{argmax}_{\theta \in \mathbb{R}^m} \bigg[\int_{\mathcal{X}^2} \langle \sigma^*(t), \mathcal{F}(t, \theta) \rangle \mathsf{d} \mu^*(t) - \frac{\lambda}{2} |\theta|^2 \bigg]. \end{cases}$$

2. Because $\lambda > 0$ is large \rightsquigarrow **unique maximiser** $\theta^*(t)$ satisfying $\theta^*(t) = \frac{1}{\lambda} \int_{\mathcal{X}^2} \mathsf{D}_{\theta} \mathcal{F}(t, \theta^*(t))^\top \sigma^*(t) \, \mathrm{d}\mu^*(t).$

3. Cauchy-Lip uniqueness $\Rightarrow \sigma^*(t) = -\nabla_x \psi^*(t) \rightsquigarrow \mathsf{QED}!$

Question (Link between both approaches) We have Lagrangian ⊂ Hamiltonian --> Equivalence ?

Proof of the optimality conditions (Hamiltonian heuristic)

1. By the PMP of [B'19,BF'21,BR'19], there exists $\sigma^*(\cdot)$ s.t.

$$\begin{cases} \partial_t \sigma^*(t) = -\mathsf{D}_{\mathsf{x}} \mathcal{F}(t, \theta^*(t))^\top \sigma^*(t), \quad \sigma^*(\mathcal{T}) = -\nabla_{\mathsf{x}} \ell, \\ \theta^*(t) \in \operatorname*{argmax}_{\theta \in \mathbb{R}^m} \bigg[\int_{\mathcal{X}^2} \langle \sigma^*(t), \mathcal{F}(t, \theta) \rangle \mathsf{d} \mu^*(t) - \frac{\lambda}{2} |\theta|^2 \bigg]. \end{cases}$$

2. Because $\lambda > 0$ is large \rightsquigarrow **unique maximiser** $\theta^*(t)$ satisfying $\theta^*(t) = \frac{1}{\lambda} \int_{\mathcal{X}^2} \mathsf{D}_{\theta} \mathcal{F}(t, \theta^*(t))^\top \sigma^*(t) \, \mathsf{d}\mu^*(t).$

3. Cauchy-Lip uniqueness $\Rightarrow \sigma^*(t) = -\nabla_x \psi^*(t) \rightsquigarrow \text{QED}!$

Question (Link between both approaches) We have Lagrangian ⊂ Hamiltonian ---> Equivalence ?

Proof of the optimality conditions (Hamiltonian heuristic)

1. By the PMP of [B'19,BF'21,BR'19], there exists $\sigma^*(\cdot)$ s.t.

$$\begin{cases} \partial_t \sigma^*(t) = -\mathsf{D}_{\mathsf{x}} \mathcal{F}(t, \theta^*(t))^\top \sigma^*(t), \quad \sigma^*(\mathcal{T}) = -\nabla_{\mathsf{x}} \ell, \\ \theta^*(t) \in \operatorname*{argmax}_{\theta \in \mathbb{R}^m} \bigg[\int_{\mathcal{X}^2} \langle \sigma^*(t), \mathcal{F}(t, \theta) \rangle \mathsf{d} \mu^*(t) - \frac{\lambda}{2} |\theta|^2 \bigg]. \end{cases}$$

2. Because $\lambda > 0$ is large \rightsquigarrow **unique** maximiser $\theta^*(t)$ satisfying

$$heta^*(t) = rac{1}{\lambda} \int_{\mathcal{X}^2} \mathsf{D}_ heta \mathcal{F}(t, heta^*(t))^ op \sigma^*(t) \, \mathsf{d} \mu^*(t).$$

3. Cauchy-Lip uniqueness $\Rightarrow \sigma^*(t) = -\nabla_x \psi^*(t) \rightsquigarrow \text{QED}!$

Question (Link between both approaches) We have Lagrangian ⊂ Hamiltonian --> Equivalence ?

Proof of the optimality conditions (Hamiltonian heuristic)

1. By the PMP of [B'19,BF'21,BR'19], there exists $\sigma^*(\cdot)$ s.t.

$$\begin{cases} \partial_t \sigma^*(t) = -\mathsf{D}_{\mathsf{x}} \mathcal{F}(t, \theta^*(t))^\top \sigma^*(t), \quad \sigma^*(\mathcal{T}) = -\nabla_{\mathsf{x}} \ell, \\ \theta^*(t) \in \operatorname*{argmax}_{\theta \in \mathbb{R}^m} \bigg[\int_{\mathcal{X}^2} \langle \sigma^*(t), \mathcal{F}(t, \theta) \rangle \mathsf{d} \mu^*(t) - \frac{\lambda}{2} |\theta|^2 \bigg]. \end{cases}$$

2. Because $\lambda > 0$ is large \rightsquigarrow **unique maximiser** $\theta^*(t)$ satisfying

$$heta^*(t) = rac{1}{\lambda} \int_{\mathcal{X}^2} \mathsf{D}_ heta \mathcal{F}(t, heta^*(t))^ op \sigma^*(t) \, \mathsf{d} \mu^*(t).$$

3. Cauchy-Lip uniqueness $\Rightarrow \sigma^*(t) = -\nabla_x \psi^*(t) \rightsquigarrow \text{QED}!$

Question (Link between both approaches)We have Lagrangian ⊂ Hamiltonian → Equivalence ?

Proof of the optimality conditions (Hamiltonian heuristic)

1. By the PMP of [B'19,BF'21,BR'19], there exists $\sigma^*(\cdot)$ s.t.

$$\begin{cases} \partial_t \sigma^*(t) = -\mathsf{D}_{\mathsf{x}} \mathcal{F}(t, \theta^*(t))^\top \sigma^*(t), \quad \sigma^*(\mathcal{T}) = -\nabla_{\mathsf{x}} \ell, \\ \theta^*(t) \in \operatorname*{argmax}_{\theta \in \mathbb{R}^m} \bigg[\int_{\mathcal{X}^2} \langle \sigma^*(t), \mathcal{F}(t, \theta) \rangle \mathsf{d} \mu^*(t) - \frac{\lambda}{2} |\theta|^2 \bigg]. \end{cases}$$

2. Because $\lambda > 0$ is large \rightsquigarrow **unique maximiser** $\theta^*(t)$ satisfying

$$heta^*(t) = rac{1}{\lambda} \int_{\mathcal{X}^2} \mathsf{D}_ heta \mathcal{F}(t, heta^*(t))^ op \sigma^*(t) \, \mathsf{d} \mu^*(t).$$

3. Cauchy-Lip uniqueness $\Rightarrow \sigma^*(t) = -\nabla_x \psi^*(t) \rightsquigarrow \text{QED}!$

Question (Link between both approaches)We have Lagrangian ⊂ Hamiltonian → Equivalence ?

Outline of the talk

Quick primer on neural networks

NeurODE models and mean-field control

Optimality conditions: Lagrangian and Hamiltonian approaches

Numerical illustrations

Idea: Solve the optimality system with a shooting method

Algorithm (General framework)

Fix initial layers $heta^0$ and for $k=1\ldots K_{\mathsf{max}}$

1. Solve simultaneously the forward-backward equations

 $egin{cases} \partial_t \mu_k(t) + {
m div}_xig(\mathcal{F}(t, heta_k(t))\mu_k(t)ig) = 0, & \mu_k(0) = \mu^0, \ \partial_t \psi_k(t) + \langle
abla_x \psi_k(t), \mathcal{F}(t, heta_k(t))
angle = 0, & \psi_k(T) = \ell. \end{cases}$

→ Particle approximation or semi-Lagrangian scheme.

2. Update the layers by solving

$$heta_{k+1}(t) + rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_ heta\mathcal{F}(t, heta_{k+1}(t))^{ op}
abla_x\psi_k(t)\,\mathsf{d}\mu_k(t) = 0.$$

→ Particle approximation of the integral and Newton.

Idea: Solve the optimality system with a shooting method

Algorithm (General framework)

Fix initial layers $heta^0$ and for $k=1\ldots K_{\max}$

1. Solve simultaneously the forward-backward equations

$$\left\{ egin{aligned} &\partial_t \mu_k(t) + \operatorname{div}_xig(\mathcal{F}(t, heta_k(t))\mu_k(t)ig) = 0, \quad \mu_k(0) = \mu^0, \ &\partial_t \psi_k(t) + \langle
abla_x \psi_k(t), \mathcal{F}(t, heta_k(t))
angle = 0, \quad \psi_k(T) = \ell. \end{aligned}
ight.$$

 \hookrightarrow Particle approximation or semi-Lagrangian scheme.

2. Update the layers by solving

$$heta_{k+1}(t) + rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_ heta\mathcal{F}(t, heta_{k+1}(t))^{ op}
abla_x\psi_k(t)\,\mathsf{d}\mu_k(t) = 0.$$

Idea: Solve the optimality system with a shooting method

Algorithm (General framework)

Fix initial layers $heta^0$ and for $k=1\ldots K_{\max}$

1. Solve simultaneously the forward-backward equations

$$\left\{ egin{aligned} &\partial_t \mu_k(t) + {
m div}_xig(\mathcal{F}(t, heta_k(t))\mu_k(t)ig) = 0, \quad \mu_k(0) = \mu^0, \ &\partial_t \psi_k(t) + \langle
abla_x \psi_k(t), \mathcal{F}(t, heta_k(t))
angle = 0, \quad \psi_k(T) = \ell. \end{aligned}
ight.$$

 \hookrightarrow Particle approximation or semi-Lagrangian scheme.

2. Update the layers by solving

$$heta_{k+1}(t) + rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_ heta\mathcal{F}(t, heta_{k+1}(t))^{ op}
abla_x\psi_k(t)\,\mathsf{d}\mu_k(t) = 0.$$

Idea: Solve the optimality system with a shooting method

Algorithm (General framework)

Fix initial layers $heta^0$ and for $k=1\ldots K_{\max}$

1. Solve simultaneously the forward-backward equations

$$\begin{cases} \partial_t \mu_k(t) + \operatorname{div}_x \big(\mathcal{F}(t, \theta_k(t)) \mu_k(t) \big) = 0, & \mu_k(0) = \mu^0, \\ \partial_t \psi_k(t) + \langle \nabla_x \psi_k(t), \mathcal{F}(t, \theta_k(t)) \rangle = 0, & \psi_k(T) = \ell. \end{cases}$$

 \hookrightarrow Particle approximation or semi-Lagrangian scheme.

2. Update the layers by solving

$$heta_{k+1}(t) + rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_{ heta}\mathcal{F}(t, heta_{k+1}(t))^{ op}
abla_x\psi_k(t)\,\mathsf{d}\mu_k(t) = 0.$$

Idea: Solve the optimality system with a shooting method

Algorithm (General framework)

Fix initial layers $heta^0$ and for $k=1\ldots K_{\max}$

1. Solve simultaneously the forward-backward equations

$$\begin{cases} \partial_t \mu_k(t) + \operatorname{div}_xig(\mathcal{F}(t, heta_k(t))\mu_k(t)ig) = 0, & \mu_k(0) = \mu^0, \ \partial_t \psi_k(t) + \langle
abla_x \psi_k(t), \mathcal{F}(t, heta_k(t))
angle = 0, & \psi_k(T) = \ell. \end{cases}$$

 \hookrightarrow Particle approximation or semi-Lagrangian scheme.

2. Update the layers by solving

$$heta_{k+1}(t) + rac{1}{\lambda}\int_{\mathcal{X}^2}\mathsf{D}_ heta\mathcal{F}(t, heta_{k+1}(t))^{ op}
abla_x\psi_k(t)\,\mathsf{d}\mu_k(t) = 0.$$

Numerical illustrations – *Toy example* Example (Binary classification of points on the real line) Let $\mu_x^0 = \mathcal{N}(0, 1)$, $X_i^0 \sim \mu^0$ for $i \in \{1, ..., N\}$, and find $\theta^*(\cdot)$ s.t. $\begin{cases} X_i(T) = -1 & \text{if } X_i^0 < 0, \\ X_i(T) = 1 & \text{if } X_i^0 > 0. \end{cases}$ \hookrightarrow Choose $\ell(x, y) := |x - y|^2$ and expect $\mu_x(T) \sim \frac{1}{2}(\delta_{-1} + \delta_1)$.

Particle trajectories after learning the classifier with $\lambda > 0$ large enough.

Numerical illustrations – *Toy example* Example (Binary classification of points on the real line) Let $\mu_x^0 = \mathcal{N}(0, 1), X_i^0 \sim \mu^0$ for $i \in \{1, ..., N\}$, and find $\theta^*(\cdot)$ s.t. $\begin{cases} X_i(T) = -1 & \text{if } X_i^0 < 0, \\ X_i(T) = -1 & \text{if } X_i^0 > 0. \end{cases}$

 \hookrightarrow Choose $\ell(x,y) := |x-y|^2$ and expect $\mu_x(T) \sim \frac{1}{2}(\delta_{-1} + \delta_1)$.

Particle trajectories after learning the classifier with $\lambda > 0$ large enough.

Numerical illustrations – *Toy example* Example (Binary classification of points on the real line) Let $\mu_x^0 = \mathcal{N}(0, 1)$, $X_i^0 \sim \mu^0$ for $i \in \{1, ..., N\}$, and find $\theta^*(\cdot)$ s.t. $\begin{cases} X_i(T) = -1 & \text{if } X_i^0 < 0, \\ X_i(T) = 1 & \text{if } X_i^0 > 0. \end{cases}$ \hookrightarrow Choose $\ell(x, y) := |x - y|^2$ and expect $\mu_x(T) \sim \frac{1}{2}(\delta_{-1} + \delta_1)$.

Particle trajectories after learning the classifier with $\lambda > 0$ large enough.

Numerical illustrations – Toy example Example (Binary classification of points on the real line) Let $\mu_x^0 = \mathcal{N}(0, 1), X_i^0 \sim \mu^0$ for $i \in \{1, ..., N\}$, and find $\theta^*(\cdot)$ s.t. $\begin{cases} X_i(T) = -1 & \text{if } X_i^0 < 0, \\ X_i(T) = -1 & \text{if } X_i^0 > 0. \end{cases}$

 \hookrightarrow Choose $\ell(x,y) := |x-y|^2$ and expect $\mu_x(T) \sim \frac{1}{2}(\delta_{-1} + \delta_1)$.

Particle trajectories after learning the classifier with $\lambda > 0$ too large.

Numerical illustrations – *Toy example* Example (Binary classification of points on the real line) Let $\mu_x^0 = \mathcal{N}(0, 1), X_i^0 \sim \mu^0$ for $i \in \{1, ..., N\}$, and find $\theta^*(\cdot)$ s.t. $\begin{cases} X_i(T) = -1 & \text{if } X_i^0 < 0, \\ X_i(T) = 1 & \text{if } X_i^0 > 0. \end{cases}$

 \hookrightarrow Choose $\ell(x,y) := |x-y|^2$ and expect $\mu_x(T) \sim \frac{1}{2}(\delta_{-1} + \delta_1)$.

Particle trajectories after learning the classifier with $\lambda > 0$ too small.

Conclusion – That's all folks! Wrap-up (Summary of results)

1. **ODE** approach to deep networks \rightsquigarrow mathematically rich

2. Learning problem ~> linear optimal control on measures.

Thank you for your attention !

Conclusion – That's all folks! Wrap-up (Summary of results)

- 1. **ODE** approach to deep networks ~> mathematically rich
- 2. Learning problem ~> linear optimal control on measures.

Thank you for your attention !
Conclusion – That's all folks! Wrap-up (Summary of results)

- 1. **ODE** approach to deep networks ~> mathematically rich
- 2. Learning problem ~> linear optimal control on measures.

Thank you for your attention !