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Introduction – Supervised learning and neural networks

Heuristic definition (Supervised learning)

Family of schemes used to learn a mapping f : X → Y by using

⋄ a series of inputs (x1, . . . , xN) ∈ XN ,

⋄ matching outputs (y1, . . . , yN) ∈ YN ,

⋄ a loss function ℓ : Y × Y → R to measure potential misfits.

Neural network (Illustration)

Input x0 ∈ R3

x(1) x(2)

Output x(3) ∈ R2

Mismatch ℓ(x(3), y)

Hidden layers
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Introduction – Mathematical model for neural networks

The update of x(·) from layer k to k + 1 writes

x(k + 1) = ρ(Wkx(k) + bk),

where k ∈ {0, . . . , n − 1}, and
⋄ Wk ∈ Rdk×dk+1 are weight matrices,

⋄ bk ∈ Rdk+1 are called the biases,

⋄ ρ : R → R is a componentwise activation function.

Idea: Network training ⇝ expected risk minimisation

Statement (Training as a stochastic optimisation problem)

Assuming that (xi , yi ) are sampled from µ0 ∈ P(X × Y), solve min
(Wk ,bk )

Eµ0

[
ℓ(x(n), y)

]
,

s.t. x(k + 1) = ρ(Wkx(k) + bk) for k ∈ {0, . . . , n − 1}.
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Introduction – The concept of residual block

Main limitations (Stability and explainability)

1. Their accuracy may decrease as the depth increases.

2. Few theoretical certificates explain why they work so well.

Idea: Regularise the network by inserting residual blocks [HZ’16]

x(k) x(k + 1)

k-th hidden layer

x 7→ ρ(Wkx + bk)

Remarks (Concerning residual blocks)

⋄ Con: rectangular networks only ⇝ need to add constraints

⋄ Pros: 1) Improved stability for deep networks.
2) Opens the door to mathematical analysis!
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NeurODEs – Continuous approximation of deep networks

Observation: For networks with many layers, the update

x(k + 1) = x(k) + ρ(Wkx(k) + bk),

can be seen as the Euler approximation of the NeurODE

ẋ(t) = ρ(W (t)x(t) + b(t)).

↪→ Recast questions on deep networks as control problems!

Control of NeurODEs (Some literature overview)

⋄ Learning procedure ⇝ stochastic optimal control problem
(see e.g. [E’17, EH’17, JSS’21]).

⋄ Expressivity of deep networks ⇝ controllability properties
of NeurODEs (see e.g. [AS’20&21, TG’20, S’21]).

↪→ Reformulation as a mean-field optimal control problem.
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NeurODEs – From stochastic to mean-field control

The continuous-time version of the training problem writes
min
θ(·)

[
Eµ0

[
ℓ(X (T ),Y (T ))

]
+
λ

2

∫ T

0
|θ(t)|2dt

]
,

s.t.

{
Ẋ (t) = F(t, θ(t),X (t)), Ẏ (t) = 0,

(X (0),Y (0)) ∼ µ0,

where θ(·) are controls and λ > 0 is regularisation parameter.

Facts: the law µ(t) := L(X (t),Y (t)) solves the transport PDE

∂tµ(t) + divx
(
F(t, θ(t))µ(t)

)
= 0,

and
Eµ0

[
ℓ(X (T ),Y (T ))

]
=

∫
X 2

ℓ(x , y)dµ(T )(x , y).

Idea: Learning as linear optimal control on measures!
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NeurODEs – Mean-field control formulation of learning

Definition (Training as a mean-field optimal control problem)
min
θ(·)

[ ∫
X 2

ℓ(x , y)dµ(T )(x , y) +
λ

2

∫ T

0
|θ(t)|2dt

]
,

s.t.

{
∂tµ(t) + divx

(
F(t, θ(t))µ(t)

)
= 0,

µ(0) = µ0 ∈ P(X 2).

↪→ Wealth of mathematical tools to study these problems!

Mean-field control (Short literature overview)

⋄ Existence, well-posedness and regularity results (see e.g.
[BF’20, BR’21, CLOS’22, FPR’14, FS’14, FLOS’19, P’16]).

⋄ Optimality conditions
1) DP [AL’19, AL’20, BaF’21, BF’22, CMNP’18, CMP’20, JMQ’21]

2) Pontryagin [B’19, BR’19, BF’21, BFRS’17, P’16, PS’21]

3) Lagrangian [BCFH’22, BPTT’20, BPTT’21].
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⋄ Existence, well-posedness and regularity results (see e.g.
[BF’20, BR’21, CLOS’22, FPR’14, FS’14, FLOS’19, P’16]).

⋄ Optimality conditions
1) DP [AL’19, AL’20, BaF’21, BF’22, CMNP’18, CMP’20, JMQ’21]

2) Pontryagin [B’19, BR’19, BF’21, BFRS’17, P’16, PS’21]

3) Lagrangian [BCFH’22, BPTT’20, BPTT’21].
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Optimality Conditions – General statement

Theorem (Characterisation of optimal solutions)[BCFH’22]

When λ > 0 is large, there exist optimal pairs (µ∗(·), θ∗(·)), and
they exactly coincide with the solutions of the optimality system

∂tµ
∗(t) + divx

(
F(t, θ∗(t))µ∗(t)

)
= 0, µ∗(0) = µ0,

∂tψ
∗(t) + ⟨∇xψ

∗(t),F(t, θ∗(t))⟩ = 0, ψ∗(T ) = ℓ,

θ∗(t) =− 1

λ

∫
X 2

DθF(t, θ∗(t))⊤ψ∗(t)dµ∗(t),

where ψ∗ ∈ C 0([0,T ]×X 2,X 2) is a Lagrange multiplier.

Remarks (On the optimality system)

⋄ NSC by fixed-point ⇝ ensures numerical convergence.

⋄ Efficient methods available to solve each equation.

⋄ Allows to derive quantitative generalisation errors.



12/17

Optimality Conditions – General statement

Theorem (Characterisation of optimal solutions)[BCFH’22]

When λ > 0 is large, there exist optimal pairs (µ∗(·), θ∗(·)), and
they exactly coincide with the solutions of the optimality system

∂tµ
∗(t) + divx

(
F(t, θ∗(t))µ∗(t)

)
= 0, µ∗(0) = µ0,

∂tψ
∗(t) + ⟨∇xψ

∗(t),F(t, θ∗(t))⟩ = 0, ψ∗(T ) = ℓ,

θ∗(t) =− 1

λ

∫
X 2

DθF(t, θ∗(t))⊤ψ∗(t)dµ∗(t),

where ψ∗ ∈ C 0([0,T ]×X 2,X 2) is a Lagrange multiplier.

Remarks (On the optimality system)

⋄ NSC by fixed-point ⇝ ensures numerical convergence.

⋄ Efficient methods available to solve each equation.

⋄ Allows to derive quantitative generalisation errors.



12/17

Optimality Conditions – General statement

Theorem (Characterisation of optimal solutions)[BCFH’22]

When λ > 0 is large, there exist optimal pairs (µ∗(·), θ∗(·)), and
they exactly coincide with the solutions of the optimality system

∂tµ
∗(t) + divx

(
F(t, θ∗(t))µ∗(t)

)
= 0, µ∗(0) = µ0,

∂tψ
∗(t) + ⟨∇xψ

∗(t),F(t, θ∗(t))⟩ = 0, ψ∗(T ) = ℓ,

θ∗(t) =− 1

λ

∫
X 2

DθF(t, θ∗(t))⊤ψ∗(t)dµ∗(t),

where ψ∗ ∈ C 0([0,T ]×X 2,X 2) is a Lagrange multiplier.

Remarks (On the optimality system)

⋄ NSC by fixed-point ⇝ ensures numerical convergence.

⋄ Efficient methods available to solve each equation.

⋄ Allows to derive quantitative generalisation errors.



12/17

Optimality Conditions – General statement

Theorem (Characterisation of optimal solutions)[BCFH’22]

When λ > 0 is large, there exist optimal pairs (µ∗(·), θ∗(·)), and
they exactly coincide with the solutions of the optimality system

∂tµ
∗(t) + divx

(
F(t, θ∗(t))µ∗(t)

)
= 0, µ∗(0) = µ0,

∂tψ
∗(t) + ⟨∇xψ

∗(t),F(t, θ∗(t))⟩ = 0, ψ∗(T ) = ℓ,

θ∗(t) =− 1

λ

∫
X 2

DθF(t, θ∗(t))⊤ψ∗(t)dµ∗(t),

where ψ∗ ∈ C 0([0,T ]×X 2,X 2) is a Lagrange multiplier.

Remarks (On the optimality system)

⋄ NSC by fixed-point ⇝ ensures numerical convergence.

⋄ Efficient methods available to solve each equation.

⋄ Allows to derive quantitative generalisation errors.



12/17

Optimality Conditions – General statement

Theorem (Characterisation of optimal solutions)[BCFH’22]

When λ > 0 is large, there exist optimal pairs (µ∗(·), θ∗(·)), and
they exactly coincide with the solutions of the optimality system

∂tµ
∗(t) + divx

(
F(t, θ∗(t))µ∗(t)

)
= 0, µ∗(0) = µ0,

∂tψ
∗(t) + ⟨∇xψ

∗(t),F(t, θ∗(t))⟩ = 0, ψ∗(T ) = ℓ,

θ∗(t) =− 1

λ

∫
X 2

DθF(t, θ∗(t))⊤ψ∗(t)dµ∗(t),

where ψ∗ ∈ C 0([0,T ]×X 2,X 2) is a Lagrange multiplier.

Remarks (On the optimality system)

⋄ NSC by fixed-point ⇝ ensures numerical convergence.

⋄ Efficient methods available to solve each equation.

⋄ Allows to derive quantitative generalisation errors.



12/17

Optimality Conditions – General statement

Theorem (Characterisation of optimal solutions)[BCFH’22]

When λ > 0 is large, there exist optimal pairs (µ∗(·), θ∗(·)), and
they exactly coincide with the solutions of the optimality system

∂tµ
∗(t) + divx

(
F(t, θ∗(t))µ∗(t)

)
= 0, µ∗(0) = µ0,

∂tψ
∗(t) + ⟨∇xψ

∗(t),F(t, θ∗(t))⟩ = 0, ψ∗(T ) = ℓ,

θ∗(t) =− 1

λ

∫
X 2

DθF(t, θ∗(t))⊤ψ∗(t)dµ∗(t),

where ψ∗ ∈ C 0([0,T ]×X 2,X 2) is a Lagrange multiplier.

Remarks (On the optimality system)

⋄ NSC by fixed-point ⇝ ensures numerical convergence.

⋄ Efficient methods available to solve each equation.

⋄ Allows to derive quantitative generalisation errors.



12/17

Optimality Conditions – General statement

Theorem (Characterisation of optimal solutions)[BCFH’22]

When λ > 0 is large, there exist optimal pairs (µ∗(·), θ∗(·)), and
they exactly coincide with the solutions of the optimality system

∂tµ
∗(t) + divx

(
F(t, θ∗(t))µ∗(t)

)
= 0, µ∗(0) = µ0,

∂tψ
∗(t) + ⟨∇xψ

∗(t),F(t, θ∗(t))⟩ = 0, ψ∗(T ) = ℓ,

θ∗(t) =− 1

λ

∫
X 2

DθF(t, θ∗(t))⊤ψ∗(t)dµ∗(t),

where ψ∗ ∈ C 0([0,T ]×X 2,X 2) is a Lagrange multiplier.

Remarks (On the optimality system)

⋄ NSC by fixed-point ⇝ ensures numerical convergence.

⋄ Efficient methods available to solve each equation.

⋄ Allows to derive quantitative generalisation errors.



13/17

Proof of the optimality conditions – Lagrangian approach

Proof of the optimality conditions (Lagrangian heuristic)

1. Define the Lagrangian of the problem by

L(µ, ψ, θ) :=
∫
X 2

ℓ dµ(T ) +
λ

2

∫ T

0

|θ(t)|2dt

+

∫
X 2

ψ(0)dµ0 −
∫
X 2

ψ(T )dµ(T )

+

∫ T

0

∫
X 2

(
∂tψ(t) +

〈
∇xψ(t),F(t, θ(t))

〉)
dµ(t)dt.

2. Abstract KKT rule in Banach spaces ⇝ there exists ψ∗ s.t.

δL
δµ

(µ∗, ψ∗, θ∗) = 0 and
δL
δθ

(µ∗, ψ∗, θ∗) = 0.

↪→ Constraint qualification “requires” continuous controls.

3. Well-posedness by Schauder’s fixed-point theorem ⇝ QED!
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Proof of the optimality conditions– Hamiltonian approach

Proof of the optimality conditions (Hamiltonian heuristic)

1. By the PMP of [B’19,BF’21,BR’19], there exists σ∗(·) s.t.
∂tσ

∗(t) = −DxF(t, θ∗(t))⊤σ∗(t), σ∗(T ) = −∇xℓ,

θ∗(t) ∈ argmax
θ∈Rm

[ ∫
X 2

⟨σ∗(t),F(t, θ)⟩dµ∗(t)− λ

2
|θ|2

]
.

2. Because λ > 0 is large ⇝ unique maximiser θ∗(t) satisfying

θ∗(t) =
1

λ

∫
X 2

DθF(t, θ∗(t))⊤σ∗(t) dµ∗(t).

3. Cauchy-Lip uniqueness ⇒ σ∗(t) = −∇xψ
∗(t) ⇝ QED!

Question (Link between both approaches)

We have Lagrangian ⊂ Hamiltonian ⇝ Equivalence ?
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Numerical illustrations – Algorithmic schemes

Idea: Solve the optimality system with a shooting method

Algorithm (General framework)

Fix initial layers θ0 and for k = 1 . . .Kmax

1. Solve simultaneously the forward-backward equations{
∂tµk(t) + divx

(
F(t, θk(t))µk(t)

)
= 0, µk(0) = µ0,

∂tψk(t) + ⟨∇xψk(t),F(t, θk(t))⟩ = 0, ψk(T ) = ℓ.

↪→ Particle approximation or semi-Lagrangian scheme.

2. Update the layers by solving

θk+1(t) +
1

λ

∫
X 2

DθF(t, θk+1(t))
⊤∇xψk(t) dµk(t) = 0.

↪→ Particle approximation of the integral and Newton.
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Numerical illustrations – Toy example
Example (Binary classification of points on the real line)

Let µ0x = N (0, 1), X 0
i ∼ µ0 for i ∈ {1, . . . ,N}, and find θ∗(·) s.t.{
Xi (T ) = −1 if X 0

i < 0,

Xi (T ) = 1 if X 0
i > 0.

↪→ Choose ℓ(x , y) := |x − y |2 and expect µx(T ) ∼ 1
2(δ−1 + δ1).

Particle trajectories after learning the classifier with λ > 0 large enough.
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Conclusion – That’s all folks!
Wrap-up (Summary of results)

1. ODE approach to deep networks ⇝ mathematically rich

2. Learning problem ⇝ linear optimal control on measures.

Thank you for your attention !
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