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WHAT IS SDP?

Linear Programming
vector variable x € R"

min (c, X)
XERN
st. {(a;,x) =b;, i=1...,m
x>0
. X > 0iff
(x WZZXM = .
= X;p >0, Vi

Semidefinite Programming
symmetric matrix variable X € 8"

min (C, X)
Xesh

s.t. <A,‘,X>:b,', i:1,...,m
X>=0

n
XYy =XV,

X = 0iff
ij=1 ViXv >0, v eR"




TIME-VARYING SEMIDEFINITE PROGRAMMING

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions
depends on a time parameter t € [0, T]:

in (C, X

i (X

st A«(X) = by, (SDPy)
X > 0.
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TIME-VARYING SEMIDEFINITE PROGRAMMING

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions
depends on a time parameter t € [0, T]:

in (Ci, X
iy, (€20

be,
ymax. {be,y)

=6 A = S st Z+ A (Y) = G, (D-SDP:)
Xz 0. Z-o0.

Assumptions forall t € [0, T]

(A1) The linear operator A; is surjective.
(A2) Problems (SDP;) and (D-SDP;) are strictly feasible.

(A3) There exists a solution X; and a dual solution Z; such that:

o ker Xy = imZ, strict complementarity

o ker A+ Ty, = s", primal non-degeneracy
e imA" + Tz = S". dual non-degeneracy

(A4) Data Ay, by, C; are continuously differentiable functions of t.



TIME-VARYING SEMIDEFINITE PROGRAMMING

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions
depends on a time parameter t € [0, T]:

i Ct, X by,
pin, (G X0 max (b, y)
=6 A = S st Z+ A (Y) = G, (D-SDP:)
%z Q. Z>o.

Assumptions forall t € [0, T]

(A1) The linear operator A; is surjective.

(A2) Problems (SDP;) and (D-SDP;) are strictly feasible.

(A3) There exists a solution X; and a dual solution Z; such that:
o ker Xy = imZ, strict complementarity
o ker A+ Ty, = s", primal non-degeneracy
e im A" + th =8".  dual non-degeneracy

(A4) Data Ay, by, C; are continuously differentiable functions of t.

Consequences

(C1) (SDP;) has a unique and smooth solution curve [0,T] 3 t ~ X;.

(C2) The curve t — X; is of constant rank r.
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APPROACHES

A naive strategy: consider the instances of the problem (SDPtk) for a sequence of times
{te}reqr,....ky € [0, T] and solve them one after another

© The best solvers for SDPs are interior point methods

® However, these solvers do not scale well

® the information collected by solving the previous instances is not used

A path-following strategy: track the trajectory of solutions by iteratively apply a Newton step for
solving first-order optimality conditions of the problem at the next time step.

Xis optimal for (SDP,) <= Fi(X) =0

Xt current solution -
{ ‘ DX = —VFene(Xt) Feene(Xe)

Ferat(Xe + AX) =0
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Issues:

How can we deal with the constraint X = 0?

Can we reduce the number of variables?

Key fact: S" 5 X = 0 <= X = YY" for some Y € R"%"

min (C, X) ) =
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Number of variables: nr
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THE BURER-MONTEIRO FACTORIZATION

Issues:

How can we deal with the constraint X = 0?

Can we reduce the number of variables?

Key fact: S" 5 X = 0 <= X = YY" for some Y € R"%"

min (C, X) ) =
Xesn min  (C,YY')
. YeRan

st <A17X> = bi7 re [m] — A YYT bi. i

s.t. f = (o) m
oo (4, YY') = by, i € [m]
. n?+n
Number of variables: nr

V8m+1—1

If the solution is unique: r < 7

Idea: apply a path-following algorithm to the Burer-Monteiro factorization
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We would like the optimal solutions for the time-varying problem

min  (C, YYT)
YERNXT (BMt)
s.t. At(YYT) = bt

to be described by a curve t — Y*(t).

Problem: the map ¢ : Y — YYT is invariant under the action of the orthogonal group
YY" = (YQ)(yQ)" forallQ € O
Solution: we restrict the solutions to the horizontal space, the space orthogonal to
the tangent space to the orbits of solutions at a given current solution Y;
YiOr = {Y:Q:Q € Or}
Ty, YtOr = {¥;S: ST = -5}
Hy, = Ty, YtOr- = {H: Y[H=H"Y;}



RESTRICTING Y > YY" TO THE HORIZONTAL SPACE Hy,

Define
E)“yt = {Yt +He Hyt such that ||H||F < O'r(yt)}

We have the following facts:
1. The restriction of ¢ to By, is a local diffeomorphism between a neighborhood of
Y¢ in Hy, and a neighborhood of X; = ;Y] in s,
2. IfXes? , and
2r(YeY])
VI+b+r

then there exists a unique H € By, such that

X = p(Ye+H) = (Ye + H)(Ye + H)T

IX — YeY{|lr <

3. For
2

< e —

L(Vr+&+r)
there is a unique and smooth solution curve s > Ys for the problem (BM;)
restricted to Hy, in the time interval s € [t,t + At].

At



THE RESTRICTED PROBLEM

From a current solution Y; we want a new solution for our problem at t + At.

: T
yin (Cerat, YY)

st Apae(YYT) = beyar (BMy, t4at)
Y € Hy,
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THE RESTRICTED PROBLEM

From a current solution Y; we want a new solution for our problem at t + At.

i Y
YeT&InnX . frrat(Y)

st Gerat(Y) =0, (BMy, t4at)
hy,(Y) = 0.

The KKT condition reads:

VyLy, trat(Y, A\, ) =0,
gerat(Y) =0, (KKT)
hy,(Y) = 0.

with Ly, e ae(Y; A 1) == frrae(Y) = (A gerad(Y)) = (s by (V) -

The linearization of (KKT) at (Y, At, 0) leads to the linear system

ViLerat(N) =9t ad(M* =hy | TA Frrac() At — Vvfryar(Y)
7g;+At(Y) 0 0 AN = gt+At(Yt)
—hy, 0 0 0 0



PROVING INVERTIBILITY OF THE LINEARIZED KKT

We need to show that for At small enough the matrix

V\z/ﬁwm()\) —g;+At(Y)* —h¢t
=i neY) 0 0
—hy, 0 0

is invertible when Y; is a an optimal solution for the non-restricted problem (BM;).
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PROVING INVERTIBILITY OF THE LINEARIZED KKT

We can show that for At = 0 the matrix

ViL(N)  —gi()r —hy
M= | —gi(V) 0 0
—hy, 0 0

is invertible when Y; is a an optimal solution for the non-restricted problem (BM;).
We do that by proving the existence of a point satisfying optimality second order
sufficient conditions.

Theorem

Let (X, = Y,Y],Z,) be an optimal primal-dual pair of solutions to (SDP;)-(D-SDP;)
which is strictly complementary and such that X; is primal non-degenerate.

Then there exists a unique Lagrange multiplier A; for (BMy, ¢+ a¢) at At = 0 such that
the triple (Y, A¢, 0) is a KKT triple for (BMy, t+a¢) at At = 0 fulfilling the second-order
sufficient conditions. In particular, M is invertible.



AN ALGORITHM FOR TV-SDP

Input: an initial approximate primal-dual solution (Xo, Z(Xo)) to (SDPy)-(D-SDPy)
initial stepsize At

stepsize tuning parameters v; € (0,1), 72 > 1

residual tolerance ¢ > 0

Output: solutions {Xx }r—o,. .« to (SDP;) fort € {0,... t,..., T}

1
ttp«— 0

0 S={Ko}, r = (%)

: find Yo € R™" such that ¥, ¥ = X,
: while t, < Tdo

[
GO

14:
15:
16:

= @ OFOESIE R Ly

R+ 0

solve the linearized KKT system with data At, ty,, ¥y, A, and obtain AY, AX
if reSVh,tRJrAt(?k + AY, A, + A)) > ethen
At <« At
go back to step 6
end if
(tes1s Vests Argr) < (te + AL Vi + AY, X + AN)
append ¥y, ¥}, to S
At < min(T — tpiq, 12AL)
R+ k+1
end while
return S



A RESULT ON THE TRACKING ERROR

Theorem

Let 5§ > 0 and At > 0 be small enough such that the following three conditions are satisfied:

2.
2V 4 68)5 + LAt < —— | (1)
( ) VIt h+r
2m
S 2
6<3M, (2)

[/\%((z\/ﬁ +6)8 + LAY + Vi2/A. + 8)6 + LAt] C G+ KAY? < ;%5 @3)
Assume for the initial point (Yo, Xo) that
o’é”o”, (Yo, R0) — (YoQ, X0)|| < 4. (4)
Then the path-following algorithm is well-defined and for all t,,1 = t, + At the iterates satisfy
o"e‘io”, (Vs M) = (Y Qs Mg )| < 6.

It then holds that
[IXe — Xt llF < 2V As +6)8
for all ty,.



NUMERICAL EXPERIMENTS
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We tested the algorithm on SDP relaxations of 110 instances of time-varying Max-Cut problem
with 100 nodes.

e As the stepsize decreases the accuracy of the solutions increases

e The runtime is competitive compared to using IPMs iteratively



CONCLUSIONS

e We proposed an algorithm for solving time-varying SDPs based on a
path-following scheme for the Burer-Monteiro factorization.

e The restriction to a horizontal space ensures the invertibility of the linearized
KKT conditions under standard regularity assumptions on the TV-SDP problem.

e We proved that if the initial precision and the time-step are small enough the
tracking error is bounded

e Preliminary numerical experiments suggest that our algorithm is competitive
both in terms of runtime and accuracy when compared to the application of
standard IPMs
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