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WHAT IS SDP?

Linear Programming
vector variable x ∈ Rn

min
x∈Rn

〈c, x〉

s.t. 〈ai, x〉 = bi, i = 1, . . . ,m
x ≥ 0

〈x, y〉 =
n∑
i=1

xiyi
x ≥ 0 iff
xi ≥ 0, ∀i

Semidefinite Programming
symmetric matrix variable X ∈ Sn

min
X∈Sn

〈C, X〉

s.t. 〈Ai, X〉 = bi, i = 1, . . . ,m
X � 0

〈X, Y〉 =
n∑

i,j=1
Xi,jYi,j

X � 0 iff

vTXv ≥ 0, ∀v ∈ Rn



TIME-VARYING SEMIDEFINITE PROGRAMMING

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions
depends on a time parameter t ∈ [0, T]:

min
X∈Sn

〈Ct, X〉

s.t. At(X) = bt,
X � 0.

(SDPt)
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Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions
depends on a time parameter t ∈ [0, T]:

min
X∈Sn

〈Ct, X〉

s.t. At(X) = bt,
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(SDPt)

max
y∈Rm

〈bt, y〉

s.t. Z +A∗
t (y) = Ct,

Z � 0.

(D-SDPt)

Assumptions for all t ∈ [0, T]

(A1) The linear operatorAt is surjective.

(A2) Problems (SDPt) and (D-SDPt) are strictly feasible.

(A3) There exists a solution Xt and a dual solution Zt such that:
• ker Xt = im Zt, strict complementarity

• kerA + TXt = Sn, primal non-degeneracy

• imA∗ + TZt = Sn. dual non-degeneracy

(A4) DataAt, bt, Ct are continuously differentiable functions of t.

Consequences

(C1) (SDPt) has a unique and smooth solution curve [0, T] 3 t 7→ Xt .

(C2) The curve t 7→ Xt is of constant rank r.



TIME-VARYING SEMIDEFINITE PROGRAMMING

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions
depends on a time parameter t ∈ [0, T]:

min
X∈Sn

〈Ct, X〉

s.t. At(X) = bt,
X � 0.

(SDPt)

max
y∈Rm

〈bt, y〉

s.t. Z +A∗
t (y) = Ct,

Z � 0.

(D-SDPt)

Assumptions for all t ∈ [0, T]

(A1) The linear operatorAt is surjective.

(A2) Problems (SDPt) and (D-SDPt) are strictly feasible.

(A3) There exists a solution Xt and a dual solution Zt such that:
• ker Xt = im Zt, strict complementarity

• kerA + TXt = Sn, primal non-degeneracy

• imA∗ + TZt = Sn. dual non-degeneracy

(A4) DataAt, bt, Ct are continuously differentiable functions of t.

Consequences

(C1) (SDPt) has a unique and smooth solution curve [0, T] 3 t 7→ Xt .

(C2) The curve t 7→ Xt is of constant rank r.



TIME-VARYING SEMIDEFINITE PROGRAMMING

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions
depends on a time parameter t ∈ [0, T]:

min
X∈Sn

〈Ct, X〉

s.t. At(X) = bt,
X � 0.

(SDPt)

max
y∈Rm

〈bt, y〉

s.t. Z +A∗
t (y) = Ct,

Z � 0.

(D-SDPt)

Assumptions for all t ∈ [0, T]

(A1) The linear operatorAt is surjective.

(A2) Problems (SDPt) and (D-SDPt) are strictly feasible.

(A3) There exists a solution Xt and a dual solution Zt such that:
• ker Xt = im Zt, strict complementarity

• kerA + TXt = Sn, primal non-degeneracy

• imA∗ + TZt = Sn. dual non-degeneracy

(A4) DataAt, bt, Ct are continuously differentiable functions of t.

Consequences

(C1) (SDPt) has a unique and smooth solution curve [0, T] 3 t 7→ Xt .

(C2) The curve t 7→ Xt is of constant rank r.



APPROACHES

A naive strategy: consider the instances of the problem (SDPtk ) for a sequence of times
{tk}k∈{1,...,K} ⊆ [0, T] and solve them one after another

, The best solvers for SDPs are interior point methods

/ However, these solvers do not scale well

/ the information collected by solving the previous instances is not used

A path-following strategy: track the trajectory of solutions by iteratively apply a Newton step for
solving first-order optimality conditions of the problem at the next time step.

X is optimal for (SDPt) ⇐⇒ Ft(X) = 0

{
Xt current solution
Ft+∆t(Xt + ∆X) = 0

−→ ∆x = −∇Ft+∆t(xt)−1Ft+∆t(xt)
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THE BURER–MONTEIRO FACTORIZATION

Issues:

How can we deal with the constraint X � 0?
Can we reduce the number of variables?

Key fact: Sn 3 X � 0 ⇐⇒ X = YYT for some Y ∈ Rn×r

min
X∈Sn

〈C, X〉

s.t. 〈Ai, X〉 = bi, i ∈ [m]

X � 0

−→
min

Y∈Rn×r
〈C, YYT〉

s.t. 〈Ai, YYT〉 = bi, i ∈ [m]

Number of variables: n2 + n
2

−→ nr

If the solution is unique: r ≤
√
8m+ 1− 1

2

Idea: apply a path-following algorithm to the Burer–Monteiro factorization
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A NEW ISSUE

We would like the optimal solutions for the time-varying problem

min
Y∈Rn×r

〈Ct, YYT〉

s.t. At(YYT) = bt
(BMt)

to be described by a curve t 7→ Y∗(t).

Problem: the map ϕ : Y 7→ YYT is invariant under the action of the orthogonal group

YYT = (YQ)(YQ)T for all Q ∈ Or

Solution: we restrict the solutions to the horizontal space, the space orthogonal to
the tangent space to the orbits of solutions at a given current solution Yt

YtOr = {YtQ : Q ∈ Or}

TYtYtOr = {YtS : ST = −S}

HYt := TYtYtOr
⊥ = {H : YTtH = HTYt}
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RESTRICTING Y 7→ YYT TO THE HORIZONTAL SPACEHYt

Define
BYt := {Yt + H ∈ HYt such that ‖H‖F ≤ σr(Yt)}

We have the following facts:

1. The restriction of ϕ to BYt is a local diffeomorphism between a neighborhood of
Yt inHYt and a neighborhood of Xt = YtYTt in Sn+,r

2. If X̃ ∈ Sn+,r and

‖X̃− YtYTt ‖F ≤
2λr(YtYTt )√
r+ 4+

√
r

then there exists a unique H ∈ BYt such that

X̃ = ϕ(Yt + H) = (Yt + H)(Yt + H)T

3. For
∆t < 2λ∗

L(
√
r+ 4+

√
r)

there is a unique and smooth solution curve s 7→ Ys for the problem (BMt)
restricted toHYt in the time interval s ∈ [t, t+∆t].



THE RESTRICTED PROBLEM

From a current solution Yt we want a new solution for our problem at t+∆t.

min
Y∈Rn×r

〈Ct+∆t, YYT〉

s.t. At+∆t(YYT) = bt+∆t

Y ∈ HYt

(BMYt,t+∆t)



THE RESTRICTED PROBLEM

From a current solution Yt we want a new solution for our problem at t+∆t.

min
Y∈Rn×r

ft+∆t(Y)

s.t. gt+∆t(Y) = 0,
hYt (Y) = 0.

(BMYt,t+∆t)

The KKT condition reads:
∇YLYt,t+∆t(Y, λ, µ) = 0,

gt+∆t(Y) = 0,
hYt (Y) = 0.

(KKT)

with LYt,t+∆t(Y, λ, µ) := ft+∆t(Y)− 〈λ, gt+∆t(Y)〉 − 〈µ, hYt (Y)〉 .

The linearization of (KKT) at (Yt, λt, 0) leads to the linear system∇2
YLt+∆t(λ) −g′t+∆t(Y)∗ −h∗Yt

−g′t+∆t(Y) 0 0
−hYt 0 0


∆Y∆λ

0

 =

g′t+∆t(Y)∗λt −∇Yft+∆t(Yt)
gt+∆t(Yt)

0


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PROVING INVERTIBILITY OF THE LINEARIZED KKT

We need to show that for ∆t small enough the matrix∇2
YLt+∆t(λ) −g′t+∆t(Y)∗ −h∗Yt

−g′t+∆t(Y) 0 0
−hYt 0 0


is invertible when Yt is a an optimal solution for the non-restricted problem (BMt).



PROVING INVERTIBILITY OF THE LINEARIZED KKT

We can show that for ∆t = 0 the matrix

M =

∇2
YLt(λ) −g′t(Y)∗ −h∗Yt

−g′t(Y) 0 0
−hYt 0 0


is invertible when Yt is a an optimal solution for the non-restricted problem (BMt).

We do that by proving the existence of a point satisfying optimality second order
sufficient conditions.

Theorem
Let (Xt = YtYTt , Zt) be an optimal primal-dual pair of solutions to (SDPt)-(D-SDPt)
which is strictly complementary and such that Xt is primal non-degenerate.
Then there exists a unique Lagrange multiplier λt for (BMYt,t+∆t) at∆t = 0 such that
the triple (Yt, λt, 0) is a KKT triple for (BMYt,t+∆t) at∆t = 0 fulfilling the second-order
sufficient conditions. In particular, M is invertible.
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AN ALGORITHM FOR TV-SDP

Input: an initial approximate primal-dual solution (X̂0, Z(λ̂0)) to (SDP0)–(D-SDP0)
initial stepsize ∆t
stepsize tuning parameters γ1 ∈ (0, 1), γ2 > 1
residual tolerance ϵ > 0
Output: solutions {X̂k}k=0,...,K to (SDPt) for t ∈ {0, . . . , tk, . . . , T}
1: k←− 0
2: t0 ←− 0
3: S = {X̂0}, r = (X̂0)
4: find Ŷ0 ∈ Rn×r such that Ŷ0ŶT0 = X̂0
5: while tk < T do
6: solve the linearized KKT system with data ∆t, tk, Ŷk, λ̂k and obtain ∆Y,∆λ

7: if resŶk,tk+∆t(Ŷk + ∆Y, λ̂k + ∆λ) > ϵ then
8: ∆t←− γ1∆t
9: go back to step 6
10: end if
11: (tk+1, Ŷk+1, λ̂k+1)←− (tk + ∆t, Ŷk + ∆Y, λ̂k + ∆λ)

12: append Ŷk+1Ŷ
T
k+1 to S

13: ∆t←− min(T− tk+1, γ2∆t)
14: k←− k + 1
15: end while
16: return S



A RESULT ON THE TRACKING ERROR

Theorem
Let δ > 0 and∆t > 0 be small enough such that the following three conditions are satisfied:

(2
√

Λ∗ + δ)δ + L∆t <
2λ∗√

r + 4 +
√
r
, (1)

δ <
2
3
m
M
, (2)[ 1

λ∗
((2

√
Λ∗ + δ)δ + L∆t)2 +

√
r(2

√
Λ∗ + δ)δ + L∆t

]2
+ (δ + K∆t)2 ≤

2
3
m
M
δ. (3)

Assume for the initial point (Ŷ0, λ̂0) that

min
Q∈Or

‖(Ŷ0, λ̂0)− (Y0Q, λ0)‖ ≤ δ. (4)

Then the path-following algorithm is well-defined and for all tk+1 = tk + ∆t the iterates satisfy

min
Q∈Or

‖(Ŷk, λ̂k)− (YtkQ, λtk )‖ ≤ δ.

It then holds that
‖X̂k − Xtk‖F ≤ (2

√
Λ∗ + δ)δ

for all tk .



NUMERICAL EXPERIMENTS

We tested the algorithm on SDP relaxations of 110 instances of time-varying Max-Cut problem
with 100 nodes.

• As the stepsize decreases the accuracy of the solutions increases

• The runtime is competitive compared to using IPMs iteratively



CONCLUSIONS

• We proposed an algorithm for solving time-varying SDPs based on a
path-following scheme for the Burer–Monteiro factorization.

• The restriction to a horizontal space ensures the invertibility of the linearized
KKT conditions under standard regularity assumptions on the TV-SDP problem.

• We proved that if the initial precision and the time-step are small enough the
tracking error is bounded

• Preliminary numerical experiments suggest that our algorithm is competitive
both in terms of runtime and accuracy when compared to the application of
standard IPMs
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