

CZECH TECHNICAL UNIVERSITY IN FEE CTU

How to solve Time-Varying Semidefinite Programs: Path Following a Burer-Monteiro Factorization

Antonio Bellon, PhD candidate at CTU^{1}, Coauthors: M. Dressler ${ }^{2}$, V. Kungurtsev ${ }^{1}$, J. Mareček ${ }^{1}$, A. Uschmajew ${ }^{3}$

${ }^{1}$ Czech Technical University, Faculty of Electrical Engineering
${ }^{1}$ University of New South Wales, School of Mathematics and Statistics
${ }^{3}$ University of Augsburg, Institute of Mathematics

WHAT IS SDP?

Linear Programming
vector variable $x \in \mathbb{R}^{n}$

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & \langle c, x\rangle \\
\text { s.t. } & \left\langle a_{i}, x\right\rangle=b_{i}, \quad i=1, \ldots, m \\
& x \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\langle x, y\rangle & =\sum_{i=1}^{n} x_{i} y_{i}
\end{aligned} \quad x \geq 0 \text { iff }, ~ x_{i} \geq 0, \forall i
$$

Semidefinite Programming

 symmetric matrix variable $X \in \mathcal{S}^{n}$$$
\begin{aligned}
\min _{X \in \mathbb{S}^{n}} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{i}, X\right\rangle=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0
\end{aligned}
$$

$$
\langle X, Y\rangle=\sum_{i, j=1}^{n} X_{i, j} Y_{i, j} \quad X \succeq 0 \text { iff } \quad v^{\top} X v \geq 0, \forall v \in \mathbb{R}^{n}
$$

Time-Varying Semidefinite Programming

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions depends on a time parameter $t \in[0, T]$:

$$
\begin{aligned}
\min _{X \in \mathbb{S}^{n}} & \left\langle C_{t}, X\right\rangle \\
\text { s.t. } & \mathcal{A}_{t}(X)=b_{t}, \\
& X \succeq 0
\end{aligned}
$$

Time-Varying Semidefinite Programming

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions depends on a time parameter $t \in[0, T]$:

$$
\begin{align*}
\min _{X \in \mathbb{S}^{n}} & \left\langle C_{t}, X\right\rangle \\
\text { s.t. } & \mathcal{A}_{t}(X)=b_{t} \tag{t}\\
& X \succeq 0
\end{align*}
$$

$$
\begin{aligned}
\max _{y \in \mathbb{R}^{m}} & \left\langle b_{t}, y\right\rangle \\
\text { s.t. } & Z+\mathcal{A}_{t}^{*}(y)=C_{t} \\
& Z \succeq 0
\end{aligned}
$$

Time-Varying Semidefinite Programming

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions depends on a time parameter $t \in[0, T]$:

$$
\begin{align*}
\min _{X \in \mathbb{S}^{n}} & \left\langle C_{t}, X\right\rangle \\
\text { s.t. } & \mathcal{A}_{t}(X)=b_{t} \tag{t}\\
& X \succeq 0
\end{align*}
$$

$$
\begin{aligned}
\max _{y \in \mathbb{R}^{m}} & \left\langle b_{t}, y\right\rangle \\
\text { s.t. } & Z+\mathcal{A}_{t}^{*}(y)=C_{t}, \\
& Z \succeq 0
\end{aligned}
$$

Assumptions for all $t \in[0, T]$
(A1) The linear operator \mathcal{A}_{t} is surjective.
(A2) Problems $\left(\mathrm{SDP}_{t}\right)$ and ($\mathrm{D}-\mathrm{SDP}_{t}$) are strictly feasible.
(A3) There exists a solution X_{t} and a dual solution Z_{t} such that:

- $\operatorname{ker} X_{t}=\operatorname{im} Z_{t}, \quad$ strict complementarity
- $\operatorname{ker} \mathcal{A}+\mathcal{T}_{X_{t}}=\mathbb{S}^{n}, \quad$ primal non-degeneracy
- $\operatorname{im} \mathcal{A}^{*}+\mathcal{T}_{z_{t}}=\mathbb{S}^{n}$. dual non-degeneracy
(A4) Data $\mathcal{A}_{t}, b_{t}, C_{t}$ are continuously differentiable functions of t.

Time-Varying Semidefinite Programming

Time-Varying Semidefinite Programming (TV-SDP) is SDP where the problem data and solutions depends on a time parameter $t \in[0, T]$:

$$
\begin{aligned}
\min _{x \in \mathbb{S}^{n}} & \left\langle C_{t}, X\right\rangle \\
\text { s.t. } & \mathcal{A}_{t}(X)=b_{t} \\
& X \succeq 0
\end{aligned}
$$

$$
\begin{aligned}
\max _{y \in \mathbb{R}^{m}} & \left\langle b_{t}, y\right\rangle \\
\text { s.t. } & Z+\mathcal{A}_{t}^{*}(y)=C_{t}, \\
& Z \succeq 0
\end{aligned}
$$

Assumptions for all $t \in[0, T]$
(A1) The linear operator \mathcal{A}_{t} is surjective.
(A2) Problems $\left(\mathrm{SDP}_{t}\right)$ and ($\mathrm{D}-\mathrm{SDP}_{t}$) are strictly feasible.
(A3) There exists a solution X_{t} and a dual solution Z_{t} such that:

- $\operatorname{ker} X_{t}=\operatorname{im} Z_{t}, \quad$ strict complementarity
- $\operatorname{ker} \mathcal{A}+\mathcal{T}_{X_{t}}=\mathbb{S}^{n}, \quad$ primal non-degeneracy
- $\operatorname{im} \mathcal{A}^{*}+\mathcal{T}_{Z_{t}}=\mathbb{S}^{n}$. dual non-degeneracy
(A4) Data $\mathcal{A}_{t}, b_{t}, C_{t}$ are continuously differentiable functions of t.

Consequences

(C1) $\left(\mathrm{SDP}_{t}\right)$ has a unique and smooth solution curve $[0, T] \ni t \mapsto X_{t}$.
(C2) The curve $t \mapsto X_{t}$ is of constant rank r.

APPROACHES

A naive strategy: consider the instances of the problem ($\mathrm{SDP}_{t_{k}}$) for a sequence of times $\left\{t_{k}\right\}_{k \in\{1, \ldots, K\}} \subseteq[0, T]$ and solve them one after another

APPROACHES

A naive strategy: consider the instances of the problem ($\mathrm{SDP}_{t_{k}}$) for a sequence of times $\left\{t_{k}\right\}_{k \in\{1, \ldots, K\}} \subseteq[0, T]$ and solve them one after another
() The best solvers for SDPs are interior point methods
(3) However, these solvers do not scale well
(3) the information collected by solving the previous instances is not used

APPROACHES

A naive strategy: consider the instances of the problem ($\mathrm{SDP}_{t_{k}}$) for a sequence of times $\left\{t_{k}\right\}_{k \in\{1, \ldots, K\}} \subseteq[0, T]$ and solve them one after another
() The best solvers for SDPs are interior point methods
(3) However, these solvers do not scale well
(3) the information collected by solving the previous instances is not used

A path-following strategy: track the trajectory of solutions by iteratively apply a Newton step for solving first-order optimality conditions of the problem at the next time step.

APPROACHES

A naive strategy: consider the instances of the problem ($\mathrm{SDP}_{t_{k}}$) for a sequence of times $\left\{t_{k}\right\}_{k \in\{1, \ldots, K\}} \subseteq[0, T]$ and solve them one after another
() The best solvers for SDPs are interior point methods
(3) However, these solvers do not scale well
(3) the information collected by solving the previous instances is not used

A path-following strategy: track the trajectory of solutions by iteratively apply a Newton step for solving first-order optimality conditions of the problem at the next time step.

$$
X \text { is optimal for }\left(\mathrm{SDP}_{t}\right) \Longleftrightarrow F_{t}(X)=0
$$

APPROACHES

A naive strategy: consider the instances of the problem ($\mathrm{SDP}_{t_{k}}$) for a sequence of times $\left\{t_{k}\right\}_{k \in\{1, \ldots, K\}} \subseteq[0, T]$ and solve them one after another
© The best solvers for SDPs are interior point methods
© However, these solvers do not scale well
© the information collected by solving the previous instances is not used

A path-following strategy: track the trajectory of solutions by iteratively apply a Newton step for solving first-order optimality conditions of the problem at the next time step.

$$
\begin{gathered}
x \text { is optimal for }\left(\mathrm{SDP}_{t}\right) \Longleftrightarrow F_{t}(X)=0 \\
\left\{\begin{array}{l}
x_{t} \text { current solution } \\
F_{t+\Delta t}\left(X_{t}+\Delta X\right)=0
\end{array} \longrightarrow \quad \Delta x=-\nabla F_{t+\Delta t}\left(x_{t}\right)^{-1} F_{t+\Delta t}\left(x_{t}\right)\right.
\end{gathered}
$$

THE BURER-MONTEIRO FACTORIZATION

Issues:

How can we deal with the constraint $X \succeq 0$?
Can we reduce the number of variables?

THE BURER-MONTEIRO FACTORIZATION

Issues:
How can we deal with the constraint $X \succeq 0$?
Can we reduce the number of variables?
Key fact: $\mathbb{S}^{n} \ni X \succeq 0 \Longleftrightarrow X=Y Y^{\top}$ for some $Y \in \mathbb{R}^{n \times r}$

THE BURER-MONTEIRO FACTORIZATION

Issues:

How can we deal with the constraint $X \succeq 0$?
Can we reduce the number of variables?
Key fact: $\mathbb{S}^{n} \ni X \succeq 0 \Longleftrightarrow X=Y Y^{\top}$ for some $Y \in \mathbb{R}^{n \times r}$

$$
\left.\begin{array}{|ll}
\min _{X \in \mathbb{S}^{n}} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{i}, X\right\rangle=b_{i}, \quad i \in[m] \\
& X \succeq 0
\end{array}\right] \quad \begin{array}{r}
\min _{Y \in \mathbb{R}^{n \times r}}\left\langle C, Y Y^{\top}\right\rangle \\
\text { s.t. }\left\langle A_{i}, Y Y^{\top}\right\rangle=b_{i}, \quad i \in[m]
\end{array}
$$

THE BURER-MONTEIRO FACTORIZATION

Issues:

How can we deal with the constraint $X \succeq 0$?
Can we reduce the number of variables?
Key fact: $\mathbb{S}^{n} \ni X \succeq 0 \Longleftrightarrow X=Y Y^{\top}$ for some $Y \in \mathbb{R}^{n \times r}$

$$
\begin{array}{|ll}
\min _{X \in \mathbb{S}^{n}} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{i}, X\right\rangle=b_{i}, \quad i \in[m] \quad \rightarrow \quad \begin{aligned}
& \min _{Y \in \mathbb{R}^{n \times r}}\left\langle C, Y Y^{\top}\right\rangle \\
& \text { s.t. }\left\langle A_{i}, Y Y^{\top}\right\rangle=b_{i}, \quad i \in[m]
\end{aligned} \\
& X \succeq 0
\end{array}
$$

$$
\begin{aligned}
& \qquad \text { Number of variables: } \quad \frac{n^{2}+n}{2} \longrightarrow n r \\
& \text { If the solution is unique: } \quad r \leq \frac{\sqrt{8 m+1}-1}{2}
\end{aligned}
$$

THE BURER-MONTEIRO FACTORIZATION

Issues:

How can we deal with the constraint $X \succeq 0$?
Can we reduce the number of variables?
Key fact: $\mathbb{S}^{n} \ni X \succeq 0 \Longleftrightarrow X=Y Y^{\top}$ for some $Y \in \mathbb{R}^{n \times r}$

$$
\begin{array}{|ll}
\min _{X \in \mathbb{S}^{n}} & \langle C, X\rangle \\
\text { s.t. } & \left\langle A_{i}, X\right\rangle=b_{i}, \quad i \in[m] \\
& X \succeq 0
\end{array} \rightarrow \begin{array}{r}
\min _{Y \in \mathbb{R}^{n \times r}}\left\langle C, Y Y^{\top}\right\rangle \\
\text { s.t. }\left\langle A_{i}, Y Y^{\top}\right\rangle=b_{i}, \quad i \in[m]
\end{array}
$$

$$
\begin{aligned}
& \text { Number of variables: } \frac{n^{2}+n}{2} \longrightarrow n r \\
& \text { If the solution is unique: } r \leq \frac{\sqrt{8 m+1}-1}{2}
\end{aligned}
$$

Idea: apply a path-following algorithm to the Burer-Monteiro factorization

A NEW ISSUE

We would like the optimal solutions for the time-varying problem

$$
\begin{align*}
\min _{Y \in \mathbb{R}^{n \times r}} & \left\langle C_{t}, Y Y^{\top}\right\rangle \tag{t}\\
\text { s.t. } & \mathcal{A}_{t}\left(Y Y^{\top}\right)=b_{t}
\end{align*}
$$

to be described by a curve $t \mapsto Y^{*}(t)$.

A NEW ISSUE

We would like the optimal solutions for the time-varying problem

$$
\begin{align*}
\min _{Y \in \mathbb{R}^{n \times r}} & \left\langle C_{t}, Y Y^{\top}\right\rangle \tag{t}\\
\text { s.t. } & \mathcal{A}_{t}\left(Y Y^{\top}\right)=b_{t}
\end{align*}
$$

to be described by a curve $t \mapsto Y^{*}(t)$.

Problem: the map $\phi: Y \mapsto Y Y^{\top}$ is invariant under the action of the orthogonal group

$$
Y Y^{\top}=(Y Q)(Y Q)^{T} \quad \text { for all } Q \in \mathcal{O}_{r}
$$

A NEW ISSUE

We would like the optimal solutions for the time-varying problem

$$
\begin{align*}
\min _{Y \in \mathbb{R}^{n \times r}} & \left\langle C_{t}, Y Y^{\top}\right\rangle \tag{t}\\
\text { s.t. } & \mathcal{A}_{t}\left(Y Y^{\top}\right)=b_{t}
\end{align*}
$$

to be described by a curve $t \mapsto Y^{*}(t)$.

Problem: the map $\phi: Y \mapsto Y Y^{\top}$ is invariant under the action of the orthogonal group

$$
Y Y^{T}=(Y Q)(Y Q)^{T} \quad \text { for all } Q \in \mathcal{O}_{r}
$$

Solution: we restrict the solutions to the horizontal space, the space orthogonal to the tangent space to the orbits of solutions at a given current solution Y_{t}

A NEW ISSUE

We would like the optimal solutions for the time-varying problem

$$
\begin{align*}
\min _{Y \in \mathbb{R}^{n \times r}} & \left\langle C_{t}, Y Y^{\top}\right\rangle \tag{t}\\
\text { s.t. } & \mathcal{A}_{t}\left(Y Y^{\top}\right)=b_{t}
\end{align*}
$$

to be described by a curve $t \mapsto Y^{*}(t)$.

Problem: the map $\phi: Y \mapsto Y Y^{\top}$ is invariant under the action of the orthogonal group

$$
Y Y^{T}=(Y Q)(Y Q)^{T} \quad \text { for all } Q \in \mathcal{O}_{r}
$$

Solution: we restrict the solutions to the horizontal space, the space orthogonal to the tangent space to the orbits of solutions at a given current solution Y_{t}

$$
\begin{aligned}
Y_{t} \mathcal{O}_{r} & =\left\{Y_{t} Q: Q \in \mathcal{O}_{r}\right\} \\
\mathcal{T}_{Y_{t}} Y_{t} \mathcal{O}_{r} & =\left\{Y_{t} S: S^{\top}=-S\right\} \\
\mathcal{H}_{Y_{t}}:=\mathcal{T}_{Y_{t}} Y_{t} \mathcal{O}_{r}{ }^{\perp} & =\left\{H: Y_{t}^{\top} H=H^{\top} Y_{t}\right\}
\end{aligned}
$$

Define

$$
\mathcal{B}_{Y_{t}}:=\left\{Y_{t}+H \in \mathcal{H}_{Y_{t}} \text { such that }\|H\|_{F} \leq \sigma_{r}\left(Y_{t}\right)\right\}
$$

We have the following facts:

1. The restriction of ϕ to $\mathcal{B}_{Y_{t}}$ is a local diffeomorphism between a neighborhood of Y_{t} in $\mathcal{H}_{Y_{t}}$ and a neighborhood of $X_{t}=Y_{t} Y_{t}^{T}$ in $\mathbb{S}_{+, r}^{n}$
2. If $\tilde{X} \in \mathbb{S}_{+, r}^{n}$ and

$$
\left\|\tilde{X}-Y_{t} Y_{t}^{T}\right\|_{F} \leq \frac{2 \lambda_{r}\left(Y_{t} Y_{t}^{T}\right)}{\sqrt{r+4}+\sqrt{r}}
$$

then there exists a unique $H \in \mathcal{B}_{Y_{t}}$ such that

$$
\tilde{X}=\phi\left(Y_{t}+H\right)=\left(Y_{t}+H\right)\left(Y_{t}+H\right)^{T}
$$

3. For

$$
\Delta t<\frac{2 \lambda_{*}}{L(\sqrt{r+4}+\sqrt{r})}
$$

there is a unique and smooth solution curve $s \mapsto Y_{s}$ for the problem $\left(B M_{t}\right)$ restricted to $\mathcal{H}_{Y_{t}}$ in the time interval $s \in[t, t+\Delta t]$.

THE RESTRICTED PROBLEM

From a current solution Y_{t} we want a new solution for our problem at $t+\Delta t$.

$$
\begin{aligned}
\min _{Y \in \mathbb{R}^{n \times r}} & \left\langle C_{t+\Delta t}, Y Y^{\top}\right\rangle \\
\text { s.t. } & \mathcal{A}_{t+\Delta t}\left(Y Y^{\top}\right)=b_{t+\Delta t} \\
& Y \in \mathcal{H}_{Y_{t}}
\end{aligned}
$$

$$
\left(\mathrm{BM} Y_{Y_{t}, t+\Delta t}\right)
$$

THE RESTRICTED PROBLEM

From a current solution Y_{t} we want a new solution for our problem at $t+\Delta t$.

$$
\begin{array}{|cl|}
\hline \min _{Y \in \mathbb{R}^{n \times r}} & f_{t+\Delta t}(Y) \\
\text { s.t. } & g_{t+\Delta t}(Y)=0 \\
& h_{Y_{t}}(Y)=0
\end{array}
$$

$$
\left(B M_{Y_{t}, t+\Delta t}\right)
$$

THE RESTRICTED PROBLEM

From a current solution Y_{t} we want a new solution for our problem at $t+\Delta t$.

$$
\begin{array}{|cl|}
\hline \min _{Y \in \mathbb{R}^{n \times r}} & f_{t+\Delta t}(Y) \\
\text { s.t. } & g_{t+\Delta t}(Y)=0, \\
& h_{Y_{t}}(Y)=0 \\
\hline
\end{array}
$$

$$
\left(B M_{Y_{t}, t+\Delta t}\right)
$$

The KKT condition reads:

$$
\begin{array}{r}
\nabla_{Y} \mathcal{L}_{Y_{t}, t+\Delta t}(Y, \lambda, \mu)=0, \\
g_{t+\Delta t}(Y)=0, \tag{ККТ}\\
h_{Y_{t}}(Y)=0 .
\end{array}
$$

with $\mathcal{L}_{Y_{t}, t+\Delta t}(Y, \lambda, \mu):=f_{t+\Delta t}(Y)-\left\langle\lambda, g_{t+\Delta t}(Y)\right\rangle-\left\langle\mu, h_{Y_{t}}(Y)\right\rangle$.

THE RESTRICTED PROBLEM

From a current solution Y_{t} we want a new solution for our problem at $t+\Delta t$.

$$
\begin{array}{cl}
\min _{Y \in \mathbb{R}^{n} \times r} & f_{t+\Delta t}(Y) \\
\text { s.t. } & g_{t+\Delta t}(Y)=0, \\
& h_{Y_{t}}(Y)=0
\end{array}
$$

$$
\left(B M_{Y_{t}, t+\Delta t}\right)
$$

The KKT condition reads:

$$
\begin{array}{r}
\nabla_{Y} \mathcal{L}_{Y_{t}, t+\Delta t}(Y, \lambda, \mu)=0, \\
g_{t+\Delta t}(Y)=0, \tag{ККТ}\\
h_{Y_{t}}(Y)=0 .
\end{array}
$$

with $\mathcal{L}_{Y_{t}, t+\Delta t}(Y, \lambda, \mu):=f_{t+\Delta t}(Y)-\left\langle\lambda, g_{t+\Delta t}(Y)\right\rangle-\left\langle\mu, h_{Y_{t}}(Y)\right\rangle$.
The linearization of (KKT) at $\left(Y_{t}, \lambda_{t}, 0\right)$ leads to the linear system

$$
\left[\begin{array}{ccc}
\nabla_{Y}^{2} \mathcal{L}_{t+\Delta t}(\lambda) & -g_{t+\Delta t}^{\prime}(Y)^{*} & -h_{Y_{t}}^{*} \\
-g_{t+\Delta t}^{\prime}(Y) & 0 & 0 \\
-h_{Y_{t}} & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\Delta Y \\
\Delta \lambda \\
0
\end{array}\right]=\left[\begin{array}{c}
g_{t+\Delta t}^{\prime}(Y)^{*} \lambda_{t}-\nabla_{Y} f_{t+\Delta t}\left(Y_{t}\right) \\
g_{t+\Delta t}\left(Y_{t}\right) \\
0
\end{array}\right]
$$

PROVING INVERTIBILITY OF THE LINEARIZED KKT

We need to show that for Δt small enough the matrix

$$
\left[\begin{array}{ccc}
\nabla_{Y}^{2} \mathcal{L}_{t+\Delta t}(\lambda) & -g_{t+\Delta t}^{\prime}(Y)^{*} & -h_{Y_{t}}^{*} \\
-g_{t+\Delta t}^{\prime}(Y) & 0 & 0 \\
-h_{Y_{t}} & 0 & 0
\end{array}\right]
$$

is invertible when Y_{t} is a an optimal solution for the non-restricted problem $\left(B M_{t}\right)$.

Proving invertibility of the linearized KKT

We can show that for $\Delta t=0$ the matrix

$$
M=\left[\begin{array}{ccc}
\nabla_{Y}^{2} \mathcal{L}_{t}(\lambda) & -g_{t}^{\prime}(Y)^{*} & -h_{Y_{t}}^{*} \\
-g_{t}^{\prime}(Y) & 0 & 0 \\
-h_{Y_{t}} & 0 & 0
\end{array}\right]
$$

is invertible when Y_{t} is a an optimal solution for the non-restricted problem $\left(B M_{t}\right)$.
We do that by proving the existence of a point satisfying optimality second order sufficient conditions.

Proving invertibility of the linearized KKT

We can show that for $\Delta t=0$ the matrix

$$
M=\left[\begin{array}{ccc}
\nabla_{Y}^{2} \mathcal{L}_{t}(\lambda) & -g_{t}^{\prime}(Y)^{*} & -h_{Y_{t}}^{*} \\
-g_{t}^{\prime}(Y) & 0 & 0 \\
-h_{Y_{t}} & 0 & 0
\end{array}\right]
$$

is invertible when Y_{t} is a an optimal solution for the non-restricted problem $\left(B M_{t}\right)$.
We do that by proving the existence of a point satisfying optimality second order sufficient conditions.

Theorem

Let $\left(X_{t}=Y_{t} Y_{t}^{\top}, Z_{t}\right)$ be an optimal primal-dual pair of solutions to $\left(\right.$ SDP $\left._{t}\right)-\left(\mathrm{D}^{\left.- \text {SDP }_{t}\right)}\right.$ which is strictly complementary and such that X_{t} is primal non-degenerate.
Then there exists a unique Lagrange multiplier λ_{t} for $\left(\mathrm{BM}_{Y_{t}, t+\Delta t}\right)$ at $\Delta t=0$ such that the triple $\left(Y_{t}, \lambda_{t}, 0\right)$ is a KKT triple for $\left(B M_{Y_{t}, t+\Delta t}\right)$ at $\Delta t=0$ fulfilling the second-order sufficient conditions. In particular, M is invertible.

AN ALGORITHM FOR TV-SDP

Input: an initial approximate primal-dual solution $\left(\hat{X}_{0}, Z\left(\hat{\lambda}_{0}\right)\right)$ to $\left(\mathrm{SDP}_{0}\right)$-(D-SDP $\left.)_{0}\right)$ initial stepsize Δt
stepsize tuning parameters $\gamma_{1} \in(0,1), \gamma_{2}>1$
residual tolerance $\epsilon>0$
Output: solutions $\left\{\hat{X}_{k}\right\}_{k=0, \ldots, K}$ to $\left(\operatorname{SDP}_{t}\right)$ for $t \in\left\{0, \ldots, t_{k}, \ldots, T\right\}$
$1: k \leftarrow 0$
$t_{0} \leftarrow 0$
$S=\left\{\hat{X}_{0}\right\}, r=\left(\hat{X}_{0}\right)$
find $\hat{Y}_{0} \in \mathbb{R}^{n \times r}$ such that $\hat{Y}_{0} \hat{Y}_{0}^{T}=\hat{X}_{0}$
while $t_{k}<T$ do
solve the linearized KKT system with data $\Delta t, t_{k}, \hat{Y}_{k}, \hat{\lambda}_{k}$ and obtain $\Delta Y, \Delta \lambda$
if $\operatorname{res}_{\hat{\gamma}_{k}, t_{k}+\Delta t}\left(\hat{Y}_{k}+\Delta Y, \hat{\lambda}_{k}+\Delta \lambda\right)>\epsilon$ then
$\Delta t \leftarrow \gamma_{1} \Delta t$
go back to step 6
end if
$\left(t_{k+1}, \hat{Y}_{k+1}, \hat{\lambda}_{k+1}\right) \leftarrow\left(t_{k}+\Delta t, \hat{Y}_{k}+\Delta Y, \hat{\lambda}_{k}+\Delta \lambda\right)$
append $\hat{Y}_{k+1} \hat{Y}_{k+1}^{\top}$ to S
$\Delta t \leftarrow \min \left(T-t_{k+1}, \gamma_{2} \Delta t\right)$
$k \leftarrow k+1$
end while
return S

A RESULT ON THE TRACKING ERROR

Theorem

Let $\delta>0$ and $\Delta t>0$ be small enough such that the following three conditions are satisfied:

$$
\begin{gather*}
\left(2 \sqrt{\Lambda_{*}}+\delta\right) \delta+L \Delta t<\frac{2 \lambda_{*}}{\sqrt{r+4}+\sqrt{r}}, \tag{1}\\
\delta<\frac{2}{3} \frac{m}{M} \tag{2}\\
{\left[\frac{1}{\lambda_{*}}\left(\left(2 \sqrt{\Lambda_{*}}+\delta\right) \delta+L \Delta t\right)^{2}+\sqrt{r}\left(2 \sqrt{\Lambda_{*}}+\delta\right) \delta+L \Delta t\right]^{2}+(\delta+K \Delta t)^{2} \leq \frac{2}{3} \frac{m}{M} \delta .} \tag{3}
\end{gather*}
$$

Assume for the initial point $\left(\hat{Y}_{0}, \hat{\lambda}_{0}\right)$ that

$$
\begin{equation*}
\min _{Q \in \mathcal{O}_{r}}\left\|\left(\hat{Y}_{0}, \hat{\lambda}_{0}\right)-\left(Y_{0} Q, \lambda_{0}\right)\right\| \leq \delta \tag{4}
\end{equation*}
$$

Then the path-following algorithm is well-defined and for all $t_{k+1}=t_{k}+\Delta t$ the iterates satisfy

$$
\min _{Q \in \mathcal{O}_{r}}\left\|\left(\hat{Y}_{k}, \hat{\lambda}_{k}\right)-\left(Y_{t_{k}} Q, \lambda_{t_{k}}\right)\right\| \leq \delta
$$

It then holds that

$$
\left\|\hat{X}_{k}-X_{t_{k}}\right\|_{F} \leq\left(2 \sqrt{\Lambda_{*}}+\delta\right) \delta
$$

for all t_{k}.

NUMERICAL EXPERIMENTS

We tested the algorithm on SDP relaxations of 110 instances of time-varying Max-Cut problem with 100 nodes.

- As the stepsize decreases the accuracy of the solutions increases
- The runtime is competitive compared to using IPMs iteratively
－We proposed an algorithm for solving time－varying SDPs based on a path－following scheme for the Burer－Monteiro factorization．
－The restriction to a horizontal space ensures the invertibility of the linearized KKT conditions under standard regularity assumptions on the TV－SDP problem．
－We proved that if the initial precision and the time－step are small enough the tracking error is bounded
－Preliminary numerical experiments suggest that our algorithm is competitive both in terms of runtime and accuracy when compared to the application of standard IPMs

References

国 A．Bellon et al．，TV－SDP：Path Following a Burer－Monteiro Factorization， arxiv．org／abs／2210．08387（2022）
⿴囗大一一 A．Bellon et al．，TV－SDP：Geometry of the Trajectory of Solutions， arxiv．org／abs／2104．05445（2021）

THANK YOU!

antonio.bellon@fel.cvut.cz

