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WHAT IS TIME-VARYING SEMIDEFINITE PROGRAMMING?

Time-Varying Semidefinite Programming (TV-SDP) is linear optimization over the cone of positive
semidefinite matrices where the problem data (and solutions) depends on time t ∈ [t0, tf]:

min
X∈Sn

⟨C(t), X⟩

s.t. ⟨Ai(t), X⟩ = bi(t), i = 1, . . . ,m
X ⪰ 0

(SDPt)

Previous references

• On parametric semidefinite programming, D. Goldfarb, K. Scheinberg, 1999

• On computing the nonlinearity interval in parametric semidefinite optimization, J.
Hauenstein et al., 2019

• Time-varying semidefinite programs, A.A. Ahmadi, B. El Khadir, 2021

We wanted to geometrically characterize the trajectory of solutions to TV-SDP and classify the
possible irregular behaviors, as in

• Parametric Optimization, J. Guddat, F. Guerra Vasquez, H.T. Jongen, 1990



MAIN MESSAGES

What have we done?
This research resulted in a paper arxiv.org/abs/2104.05445, where our original contributions were:

• definition of 6 types of points in the trajectory of solutions to TV-SDPs
• a classification theorem: only these types can appear
• under generic assumptions, only three types of points can appear

Why is this useful?

• we now know what in TV-SDP can go wrong and why

• extra knowledge for algorithms design

• prepares the way for future research on TV-POP

Summary

• Crash course on SDP properties and set-valued analysis

• Exposition of the 6 types of points

• The classification theorem

• Sketch of the proof

• An example

https://arxiv.org/abs/2104.05445


FACIAL STRUCTURE OF SPECTRAHEDRA

• A spectrahedron Σ is an affine section of the PSD cone:

Σ = Sn+ ∩ {Ax = b}

• A face F of a spectrahedron Σ is a set such that

F = Σ ∩H

whereH is a supporting hyperplane.
• An extreme point is a 0-dimensional face.

• The optimal set of an SDP is always a face.
• The solution is unique if and only if the optimal set is
an extreme point

• Generically, the solutions to SDP are unique, hence
extreme points

A spectrahedron Σ



SDP PROPERTIES

For a primal-dual pair of SDPs (P,D)

min
X∈Sn

〈C, X〉

s.t. A[ X ] = b
X � 0

(P)

max
y∈Rm, Z∈Sn

〈b, y〉

s.t. A∗[ y ] + Z = C
Z � 0

(D)

we have a set of first-order optimality conditions for (P,D):

A[ X ] = b
A∗[ y ] + Z = C
X, Z � 0
〈X, Z〉 = 0

(KKT)

Strict feasibility: there exists a strictly feasible primal-dual point:

A[ X ] = b
A∗[ y ] + Z = C
X, Z � 0

(SF)

If strict feasibility holds the (KKT) conditions are necessary & sufficient for optimality.



STRICT COMPLEMENTARITY, NON-DEGENERACY AND UNIQUENESS

QUESTION: how do we know that a primal-dual solution (X, Z) is unique?

• Strict complementarity: rank(X) + rank(Z) = n
• Primal non-degeneracy: ker(A) + TXSn+ = Sn

• Dual non-degeneracy: span(A) + TZSn+ = Sn

Linear-algebraic equivalent conditions for non-degeneracy are available.

In general:
primal non-deg. =⇒ dual uniqueness
dual non-deg. =⇒ primal uniqueness

Under strict complementarity:

primal non-deg. ⇐⇒ dual uniqueness
dual non-deg. ⇐⇒ primal uniqueness

Strict complementarity and non-degeneracy hold generically [Alizadeh et al., 1995]
=⇒ solution uniqueness holds generically.



KKT INVERTIBILITY

A(X) = b
A∗(y) + Z = C
〈X, Z〉 = 0
X, Z � 0

−→ F(X, y, Z, t̄) :=

 Ã vec(X)− b
ÃTy+ vec(Z)− vec(C)

1
2 vec (XZ+ ZX)

 = 0

X, Z � 0

where Ã := (svec(A1), . . . , svec(Am))T.

If strict complementarity and primal-dual non-degeneracy hold

JF(X, y, Z, t) =

 Ã 0 0
0 ÃT I 1

2 (n+1)n
Z⊗s In 0 In ⊗s X


is invertible [Alizadeh et al., 1998].



OUR OBJECTS

For a primal-dual pair of TV-SDPs (Pt,Dt) with t ∈ T = [t0, tf]

min
X∈Sn

〈C(t), X〉

s.t. A(t)[ X ] = b(t)
X � 0

(Pt)
max

y∈Rm, Z∈Sn
〈b(t), y〉

s.t. A∗(t)[ y ] + Z = C(t)
Z � 0

(Dt)

we define the primal and dual feasible set maps:

P(t) = {X ∈ Sn
∣∣ A(t)[ X ] = b(t), X � 0}

D(t) = {(y, Z) ∈ Rm × Sn
∣∣ A∗(t)[ y ] + Z = C(t), Z � 0}

the primal and dual optimal value functions:

p∗(t) = min
X∈Sn

{〈C(t), X〉
∣∣ A(t)[ X ] = b(t), X � 0}

d∗(t) = max
y∈Rn, Z∈Sn

{〈b(t), y〉
∣∣ A∗(t)[ y ] + Z = C(t), Z � 0}

and the primal and dual optimal set maps:

P∗(t) = {X ∈ P(t)
∣∣ 〈C(t), X〉 = p∗(t)}

D∗(t) = {(y, Z) ∈ D(t)
∣∣ 〈b(t), y〉 = d∗(t)}



SET-VALUED ANALYSIS

A set-valued map F from a set T to another set X maps a point in t ∈ T to a
non-empty subset F(t) ⊆ X:

F : T⇒ X
t 7→ F(t) ⊆ X

The inner limit of F for t that goes to t̄ is
lim inf
t→t̄

F(t) :=
{
x̄ ∣∣ ∀{tk}∞k=1 ⊆ T such that tk → t̄, ∃{xk}∞k=1 ⊆ X, xk → x̄ and xk ∈ F(tk)

}
while its outer limit for t that goes to t̄ is
lim sup
t→t̄

F(t) :=
{
x̄ ∣∣ ∃{tk}∞k=1 ⊆ T such that tk → t̄, ∃{xk}∞k=1 ⊆ X, xk → x̄ and xk ∈ F(tk)

}
F(t)

tt̄



PAINLEVÉ-KURATOWSKI CONTINUITY

A set-valued map F : T⇒ X is inner semi-continuous at t̄ ∈ T if

lim inf
t→t̄

F(t) = F(̄t)

while is outer semi-continuous at t̄ ∈ T if

lim sup
t→t̄

F(t) = F(̄t)

A set-valued map F : T⇒ X is Painlevé-Kuratowski continuous at t̄ if it is
both inner and outer semi-continuous at t̄.

F(t)

tt̄

(A)

F(t)

tt̄

(B)

F(t)

tt̄

(C)

F(t)

tt̄

(D)



CONTINUITY RESULTS

Theorem 1 [e.g. Rockafellar and Wets, 2009]
If the problem data are continuous functions of time, the primal and dual feasible set
maps P(t),D(t) are outer semi-continuous.

Theorem 2 [Hauenstein et al., 2019; Bellon et al., 2021]
If the problem data are continuous functions of time, strict feasibility holds, the
linear constraints are linearly independent, and the operator A is uniformly bounded
in t, the primal and dual feasible set maps P(t),D(t) are inner semi-continuous.

Theorem 3 [Hogan, 1974]
If the problem data are continuous functions of time, the primal and dual optimal set
maps P∗(t),D∗(t) are outer semi-continuous. In particular, if P∗(t),D∗(t) are single
valued then they are continuous.

Theorem 4 [e.g. Rockafeller and Wets, 2009]
The primal and dual optimal set maps P∗(t),D∗(t) can fail to be inner
semi-continuous. The subset of points t ∈ T at which P∗(t) or D∗(t) fails to be
continuous it is a meager set, i.e. the union of countably many sets that are nowhere
dense in T, in particular, it has empty interior.

Can we say more?



OUR ASSUMPTIONS

For a primal-dual pair of TV-SDPs (Pt,Dt) with t ∈ T = [t0, tf]

min
X∈Sn

〈C(t), X〉

s.t. A(t)[ X ] = b(t)
X � 0

(Pt)

max
y∈Rm, Z∈Sn

〈b(t), y〉

s.t. A∗(t)[ y ] + Z = C(t)
Z � 0

(Dt)

we assume that the following assumptions hold:

LICQ and uniform boundedness ofA: for every t ∈ T, the m matrices
{Ai(t)}i=1,...,m defining A(t) are linearly independent in Sn, so that A(t) is
surjective. The norm of A(t) is uniformly bounded.

Strict feasibility: for every t ∈ T, problem (Pt) and its dual (Dt) are strictly
feasible.

Data differentiability: data b(t) and C(t) are continuous functions of the
time parameter t.



TYPES OF POINTS SUMMARY

GOAL: classify points (X∗, t∗) such that X∗ ∈ P∗(t∗)

OUR APPROACH: consider a trajectory of solution to TV-SDP in primal (or dual) form
given by a smooth branch of a single-valued curve:

t 7→ X∗(t) ∈ Sn

QUESTION 1: how can be sure that a solutions trajectory behave so well?
−→ strict complementarity and primal-dual non-degeneracy

QUESTION 2: how can this good behavior be affected?
(I) regular points
(II) loss of differentiability points
(III) discontinuous isolated multiple points
(IV) discontinuous non-isolated loss of multiple points
(V) continuous bifurcations points
(VI) irregular accumulation points



TYPES OF POINTS (I)

A regular point (X∗, t∗) is such that P∗(t∗) = {X∗} and there exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗ + ε)

• P∗(t) is differentiable at t∗

P∗(t)

t

(X∗, t∗)
P∗(t∗)



TYPES OF POINTS (II)

A non-differentiable point (X∗, t∗) is such that P∗(t∗) = {X∗} and there exists ε > 0
such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗ + ε)

• P∗(t) is not differentiable at t∗

P∗(t)

t

(X∗, t∗)
P∗(t∗)



TYPES OF POINTS (III)

A discontinuous isolated multiple point (X∗, t∗) is such that X∗ ∈ P∗(t∗) and there
exists ε > 0 such that

• P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗) ∪ (t∗, t∗ + ε)

• P∗(t) is multi-valued at t∗

P∗(t)

t

(X∗, t∗)
P∗(t∗)

(A)

P∗(t)

t

(X∗, t∗)P∗(t∗)

(B)



TYPES OF POINTS (IV)

A discontinuous non-isolated multiple point (X∗, t∗) is such that X∗ ∈ P∗(t∗) and
there exists ε > 0 such that

• P∗(t) is continuous at any t ∈ (t∗ − ε, t∗) ∪ (t∗, t∗ + ε)

• P∗(t) is single-valued for every t ∈ (t∗ − ε, t∗)
• P∗(t) is multi-valued for every t ∈ [t∗, t∗ + ε)

P∗(t)

t

P∗(t∗) (X∗, t∗)



TYPES OF POINTS (V)

A continuous bifurcation point (X∗, t∗) is such that P∗(t∗) = {X∗} and there exists
ε > 0 such that

• P∗(t) is continuous at any t ∈ (t∗ − ε, t∗ + ε)

• P∗(t) is single-valued for every t ∈ (t∗ − ε, t∗]
• P∗(t) is multi-valued for every t ∈ (t∗, t∗ + ε)

P∗(t)

t

(X∗, t∗)
P∗(t∗)



TYPES OF POINTS (VI)

An irregular accumulation point (X∗, t∗) is such that X∗ ∈ P∗(t∗) and there exists
ε > 0 such that P∗(t) is single-valued and continuous for every t ∈ (t∗ − ε, t∗) and
for any δ > 0 there exists {tk}∞k=1 ⊆ (t∗, t∗ + δ) such that

• either a continuous bifurcation or a loss of inner semi-continuity occurs at any tk
• limk→∞ tk = t∗

min z

s.t.


1 x y 0 0
x 1 z 0 0
y z 1 0 0
0 0 0 2h(t) x− y
0 0 0 x− y 2h(t)

 � 0

where h(t) :=
{
t sin2 π

t if t > 0
0 otherwise



MAIN THEOREM

Theorem [Bellon et al. 2021]
For a primal-dual pair of TV-SDPs (Pt,Dt), t ∈ T = [t0, tf], satisfying LICQ, uniform
boundedness of A, strict feasibility, and data are continuous, then:

(i) there can only be points of type (I), (II), (III), (IV), (V), (VI)

(ii) if the data dependence is polynomial and at some t̂ ∈ T all the points (X, y, Z)
satisfying  A(̂t)[ X ]− b(̂t)

A∗ (̂t)[ y ] + Z− C(̂t)
〈X, Z〉

 = 0

are strictly complementary and primal-dual non-degenerate, only these points
can appear:

•regular points (I)
•non-differentiable points (II) in a finite number
•discontinuous isolated multiple points (III) in a finite number



PROOF OF MAIN THEOREM (PART II)

We consider a trajectory of solution to TV-SDP form given by a smooth branch of a
single-valued curve:

(̂t− ε, t̂) 3 t 7→ X∗(t) ∈ Sn

We combine two logical cases partition:

A P∗ (̂t) is a single-valued
B P∗ (̂t) is multi-valued

1 ∃ε > 0 such that P∗(t) is single-valued for every t ∈ (̂t, t̂+ ε)

2 ∃ε > 0 such that P∗(t) is multi-valued for every t ∈ (̂t, t̂+ ε)

3 ∀δ > 0 ∃t′, t′′ ∈ (̂t, t̂+ δ) such that
{
P∗(t′) is single-valued
P∗(t′′) is multi-valued

A1:
{
regular point
non-differentiable point

B1: discontinuous isolated multiple point

A2:
{
continuous bifurcation point
irregular accumulation point

B2:
{
discontinuous non-isolated multiple point
irregular accumulation point

A3: irregular accumulation point B3: irregular accumulation point



THE IMPLICIT FUNCTION THEOREM IN ACTION

Lemma A
For a pair (Pt,Dt) of TV-SDPs with data continuously differentiable in t ∈ T suppose
that (X∗, y∗, Z∗) is a strictly complementary primal-dual non-degenerate optimal
solution for (Pt̂,Dt̂) for at t̂ ∈ T.

Then there exists ε > 0 and a unique continuously differentiable curve
(X∗(·), y∗(·), Z∗(·)) defined on (̂t− ε, t̂+ ε) such that (X∗(t), y∗(t), Z∗(t)) is the unique
strictly complementary optimal solution for (Pt,Dt) for all t ∈ (̂t− ε, t̂+ ε).

Sketch of proof

• KKT conds. ≡
{
F(X, y, Z, t) = 0
X, Z � 0

• non-degeneracy+strict complementarity =⇒ JF(X∗, y∗, Z∗, t̂) is invertible
• F(X(t), y(t), Z(t), t) = 0 around t̂
• if X(t) ⪰̸ 0 (Pt) would be infeasible, contradicting primal-dual strict feasibility.



ON THE FINITENESS OF BAD POINTS

Lemma B [Hauenstein et al., 2019]
For a pair (Pt,Dt) of TV-SDPs parameterized by t ∈ T assume that the data
dependence is polynomial and at some t̂ ∈ T all the points (X, y, Z) satisfying

 A(t)[ X ]− b(t)
A∗(t)[ y ] + Z− C(t)

〈X, Z〉

 = 0

are strictly complementary and primal-dual non-degenerate

Then the set of values of the parameter t at which the optimal primal-dual solution
to the primal-dual pair of SDPs associated to t is not unique or not strictly
complementary is finite.

Sketch of proof

• the set of points where I can’t apply the implicit function theorem is a
constructible set

• a constructible set is either finite or has a finite complement
• the complement of this set is the set where I can apply the implicit function
theorem, which cannot be finite



AN EXAMPLE

For t ∈ (−2, 3) consider the TV-SDP

min tx+ ty+ z

s.t.

1 x y
x 1 z
y z 1

 � 0. (P1t )



AN EXAMPLE

We have:

P∗(t) =




1 −t/2 −t/2

−t/2 1 t2
2 − 1

−t/2 t2
2 − 1 1

 for t ∈ (−2, 2) \ {0}


1 η θ

η 1 −1
θ −1 1

∣∣∣∣∣ η + θ = 0
η, θ ∈ [−1, 1]

 at t = 0

 1 −1 −1
−1 1 1
−1 1 1

 for t ∈ [2, 3)

• regular points for t ∈ (−2, 3) \ {0, 2}
• discontinuous isolated multiple point at t = 0
• loss of differentiability point at t = 2

At t = −1 there is a strictly complementary and non-degenerate primal-dual solution.
At t = 0 and t = 2 strict complementarity fails.
At t = 0 the dual solution is degenerate.



MAIN MESSAGES

What have we done?
This research resulted in a paper arxiv.org/abs/2104.05445, where our original contributions were:

• definition of 6 types of points in the trajectory of solutions to TV-SDPs
• a classification theorem: only these types can appear
• under generic assumptions, only three types of points can appear

Why is this useful?

• we now know what in TV-SDP can go wrong and why

• extra knowledge for algorithms design

• prepares the way for future research on TV-POP

Summary

• Crash course on SDP properties and set-valued analysis

• Exposition of the 6 types of points

• The classification theorem

• Sketch of the proof

• An example

https://arxiv.org/abs/2104.05445



