AI CENTER FEE CTU

Time-Varying Semidefinite Programming:
 Geometry of the Trajectory of Solutions

Antonio Bellon, PhD candidate at CTU
Supervisors: D. Henrion, V. Kungurtsev, J. Mareček

LAAS-CNRS, MAC BrainPOP
28 February 2022

Czech Technical University in Prague
Faculty of Electrical Engineering
Computer Science Department
Artificial Intelligence Center

What is Time-Varying Semidefinite Programming?

Time-Varying Semidefinite Programming (TV-SDP) is linear optimization over the cone of positive semidefinite matrices where the problem data (and solutions) depends on time $t \in\left[t_{0}, t_{f}\right]$:

$$
\begin{aligned}
\min _{x \in \mathbb{S}^{n}} & \langle C(t), X\rangle \\
\text { s.t. } & \left\langle A_{i}(t), X\right\rangle=b_{i}(t), \quad i=1, \ldots, m \\
& X \succeq 0
\end{aligned}
$$

Previous references

- On parametric semidefinite programming, D. Goldfarb, K. Scheinberg, 1999
- On computing the nonlinearity interval in parametric semidefinite optimization, J. Hauenstein et al., 2019
- Time-varying semidefinite programs, A.A. Ahmadi, B. El Khadir, 2021

We wanted to geometrically characterize the trajectory of solutions to TV-SDP and classify the possible irregular behaviors, as in

- Parametric Optimization, J. Guddat, F. Guerra Vasquez, H.T. Jongen, 1990

MAIN MESSAGES

What have we done?

This research resulted in a paper arxiv.org/abs/2104.05445, where our original contributions were:

- definition of 6 types of points in the trajectory of solutions to TV-SDPs
- a classification theorem: only these types can appear
- under generic assumptions, only three types of points can appear

Why is this useful?

- we now know what in TV-SDP can go wrong and why
- extra knowledge for algorithms design
- prepares the way for future research on TV-POP

Summary

- Crash course on SDP properties and set-valued analysis
- Exposition of the 6 types of points
- The classification theorem
- Sketch of the proof
- An example

FACIAL STRUCTURE OF SPECTRAHEDRA

- A spectrahedron Σ is an affine section of the PSD cone:

$$
\Sigma=\mathbb{S}_{+}^{n} \cap\{A x=b\}
$$

- A face F of a spectrahedron Σ is a set such that

$$
F=\Sigma \cap \mathcal{H}
$$

where \mathcal{H} is a supporting hyperplane.

- An extreme point is a 0 -dimensional face.
- The optimal set of an SDP is always a face.
- The solution is unique if and only if the optimal set is an extreme point
- Generically, the solutions to SDP are unique, hence extreme points

A spectrahedron Σ

SDP PROPERTIES

For a primal-dual pair of SDPs (P, D)

$$
\begin{array}{c|cl}
\min _{X \in \mathbb{S}^{n}}\langle C, X\rangle & & \max _{y \in \mathbb{R}^{m}, Z \in \mathbb{S}^{n}}\langle b, y\rangle \\
\text { s.t. } \mathcal{A}[X]=b & \text { (P) } & \text { s.t. } \tag{D}\\
\mathcal{A}^{*}[y]+Z=C \\
X \succeq 0 & & Z \succeq 0
\end{array}
$$

we have a set of first-order optimality conditions for (P, D):

$$
\begin{align*}
& \mathcal{A}[X]=b \\
& \mathcal{A}^{*}[y]+Z=C \tag{ККТ}\\
& X, Z \succeq 0 \\
& \langle X, Z\rangle=0
\end{align*}
$$

Strict feasibility: there exists a strictly feasible primal-dual point:

$$
\begin{align*}
& \mathcal{A}[X]=b \\
& \mathcal{A}^{*}[y]+Z=C \tag{SF}\\
& X, Z \succ 0
\end{align*}
$$

If strict feasibility holds the (KKT) conditions are necessary \& sufficient for optimality.

STRICT COMPLEMENTARITY, NON-DEGENERACY AND UNIQUENESS

QUESTION: how do we know that a primal-dual solution (X, Z) is unique?

- Strict complementarity: $\operatorname{rank}(X)+\operatorname{rank}(Z)=n$
- Primal non-degeneracy: $\operatorname{ker}(\mathcal{A})+T_{\chi} \mathbb{S}_{+}^{n}=\mathbb{S}^{n}$
- Dual non-degeneracy: $\operatorname{span}(\mathcal{A})+T_{Z} \mathbb{S}_{+}^{n}=\mathbb{S}^{n}$

Linear-algebraic equivalent conditions for non-degeneracy are available.
In general:

$$
\begin{aligned}
& \text { primal non-deg. } \Longrightarrow \text { dual uniqueness } \\
& \text { dual non-deg. } \Longrightarrow \text { primal uniqueness }
\end{aligned}
$$

Under strict complementarity:
primal non-deg. \Longleftrightarrow dual uniqueness dual non-deg. \Longleftrightarrow primal uniqueness

Strict complementarity and non-degeneracy hold generically [Alizadeh et al., 1995] \Longrightarrow solution uniqueness holds generically.

KKT INVERTIBILITY

$$
\begin{aligned}
& \mathcal{A}(X)=b \\
& \mathcal{A}^{*}(y)+Z=C \\
& \langle X, Z\rangle=0 \\
& X, Z \succeq 0
\end{aligned}
$$

$\longrightarrow \quad F(X, y, Z, \bar{t}):=\left(\begin{array}{c}\tilde{\mathcal{A}} \operatorname{vec}(X)-b \\ \tilde{\mathcal{A}}^{\top} y+\operatorname{vec}(Z)-\operatorname{vec}(C) \\ \frac{1}{2} \operatorname{vec}(X Z+Z X)\end{array}\right)=0$
where $\tilde{\mathcal{A}}:=\left(\operatorname{svec}\left(A_{1}\right), \ldots, \operatorname{svec}\left(A_{m}\right)\right)^{T}$.
If strict complementarity and primal-dual non-degeneracy hold

$$
J_{F}(X, y, Z, t)=\left(\begin{array}{ccc}
\tilde{\mathcal{A}} & 0 & 0 \\
0 & \tilde{\mathcal{A}}^{T} & I_{\frac{1}{2}(n+1) n} \\
Z \otimes_{s} I_{n} & 0 & I_{n} \otimes_{s} X
\end{array}\right)
$$

is invertible [Alizadeh et al., 1998].

OUR OBJECTS

For a primal-dual pair of TV-SDPs $\left(P_{t}, D_{t}\right)$ with $t \in T=\left[t_{0}, t_{f}\right]$

$$
\begin{array}{c|c}
\min _{X \in \mathbb{S}^{n}}\langle C(t), X\rangle & \\
\text { s.t. } \mathcal{A}(t)[X]=b(t) & \left(P_{t}\right) \tag{t}\\
X \succeq 0 & \max _{y \in \mathbb{R}^{m}, Z \in \mathbb{S}^{n}}\langle b(t), y\rangle \\
X & \text { s.t. } \mathcal{A}^{*}(t)[y]+Z=C(t) \\
Z \succeq 0
\end{array}
$$

we define the primal and dual feasible set maps:

$$
\begin{aligned}
& \mathcal{P}(t)=\left\{X \in \mathbb{S}^{n} \mid \mathcal{A}(t)[X]=b(t), X \succeq 0\right\} \\
& \mathcal{D}(t)=\left\{(y, Z) \in \mathbb{R}^{m} \times \mathbb{S}^{n} \mid \mathcal{A}^{*}(t)[y]+Z=C(t), Z \succeq 0\right\}
\end{aligned}
$$

the primal and dual optimal value functions:

$$
\begin{aligned}
& p^{*}(t)=\min _{X \in \mathbb{S}^{n}}\{\langle C(t), X\rangle \mid \mathcal{A}(t)[X]=b(t), X \succeq 0\} \\
& d^{*}(t)=\max _{y \in \mathbb{R}^{n}, Z \in \mathbb{S}^{n}}\left\{\langle b(t), y\rangle \mid \mathcal{A}^{*}(t)[y]+Z=C(t), Z \succeq 0\right\}
\end{aligned}
$$

and the primal and dual optimal set maps:

$$
\begin{aligned}
& \mathcal{P}^{*}(t)=\left\{X \in \mathcal{P}(t) \mid\langle C(t), X\rangle=p^{*}(t)\right\} \\
& \mathcal{D}^{*}(t)=\left\{(y, z) \in \mathcal{D}(t) \mid\langle b(t), y\rangle=d^{*}(t)\right\}
\end{aligned}
$$

SET-VALUED ANALYSIS

A set-valued map F from a set T to another set X maps a point in $t \in T$ to a non-empty subset $F(t) \subseteq X$:

$$
\begin{aligned}
F: & T \rightrightarrows X \\
& t \mapsto F(t) \subseteq X
\end{aligned}
$$

The inner limit of F for t that goes to \bar{t} is
$\liminf _{t \rightarrow \bar{t}} F(t):=\left\{\bar{x} \mid \forall\left\{t_{k}\right\}_{k=1}^{\infty} \subseteq T_{\text {such that }} t_{k} \rightarrow \bar{t}, \exists\left\{x_{k}\right\}_{k=1}^{\infty} \subseteq X, x_{k} \rightarrow \bar{X}_{\text {and }} x_{k} \in F\left(t_{k}\right)\right\}$
while its outer limit for t that goes to \bar{t} is
$\limsup _{t \rightarrow \bar{t}} F(t):=\left\{\bar{x} \mid \exists\left\{t_{k}\right\}_{k=1}^{\infty} \subseteq T_{\text {such that }} t_{k} \rightarrow \bar{t}, \exists\left\{x_{k}\right\}_{k=1}^{\infty} \subseteq X, x_{k} \rightarrow \bar{x}_{\text {and }} x_{k} \in F\left(t_{k}\right)\right\}$

PAINLEVÉ-KURATOWSKI CONTINUITY

A set-valued map $F: T \rightrightarrows X$ is inner semi-continuous at $\bar{t} \in T$ if

$$
\liminf _{t \rightarrow \bar{t}} F(t)=F(\bar{t})
$$

while is outer semi-continuous at $\bar{t} \in T$ if

$$
\limsup _{t \rightarrow \bar{t}} F(t)=F(\bar{t})
$$

A set-valued map F: $T \rightrightarrows X$ is Painlevé-Kuratowski continuous at \bar{t} if it is both inner and outer semi-continuous at \bar{t}.

(A)

(B)

(C)

(D)

CONTINUITY RESULTS

Theorem 1 [e.g. Rockafellar and Wets, 2009]
If the problem data are continuous functions of time, the primal and dual feasible set maps $\mathcal{P}(t), \mathcal{D}(t)$ are outer semi-continuous.

Theorem 2 [Hauenstein et al., 2019; Bellon et al., 2021]
If the problem data are continuous functions of time, strict feasibility holds, the linear constraints are linearly independent, and the operator \mathcal{A} is uniformly bounded in t, the primal and dual feasible set maps $\mathcal{P}(t), \mathcal{D}(t)$ are inner semi-continuous.

Theorem 3 [Hogan, 1974]

If the problem data are continuous functions of time, the primal and dual optimal set maps $\mathcal{P}^{*}(t), \mathcal{D}^{*}(t)$ are outer semi-continuous. In particular, if $\mathcal{P}^{*}(t), \mathcal{D}^{*}(t)$ are single valued then they are continuous.

Theorem 4 [e.g. Rockafeller and Wets, 2009]

The primal and dual optimal set maps $\mathcal{P}^{*}(t), \mathcal{D}^{*}(t)$ can fail to be inner semi-continuous. The subset of points $t \in T$ at which $\mathcal{P}^{*}(t)$ or $\mathcal{D}^{*}(t)$ fails to be continuous it is a meager set, i.e. the union of countably many sets that are nowhere dense in T , in particular, it has empty interior.

Can we say more?

OUR ASSUMPTIONS

For a primal-dual pair of TV-SDPs $\left(P_{t}, D_{t}\right)$ with $t \in T=\left[t_{0}, t_{f}\right]$

$$
\begin{align*}
& \min _{X \in \mathbb{S}^{n}}\langle C(t), X\rangle \tag{t}\\
& \text { s.t. } \tag{t}\\
& \\
& \\
& \\
& \\
& X \succeq 0
\end{align*}
$$

$$
\begin{aligned}
\max _{y \in \mathbb{R}^{m}, Z \in \mathbb{S}^{n}} & \langle b(t), y\rangle \\
\text { s.t. } & \mathcal{A}^{*}(t)[y]+Z=C(t) \quad\left(D_{t}\right) \\
& Z \succeq 0
\end{aligned}
$$

we assume that the following assumptions hold:

LICQ and uniform boundedness of \mathcal{A} : for every $t \in T$, the m matrices $\left\{A_{i}(t)\right\}_{i=1, \ldots, m}$ defining $\mathcal{A}(t)$ are linearly independent in \mathbb{S}^{n}, so that $\mathcal{A}(t)$ is surjective. The norm of $\mathcal{A}(t)$ is uniformly bounded.

Strict feasibility: for every $t \in T$, problem $\left(P_{t}\right)$ and its dual $\left(D_{t}\right)$ are strictly feasible.

Data differentiability: data $b(t)$ and $C(t)$ are continuous functions of the time parameter t.

TYPES OF POINTS SUMMARY

GOAL: classify points $\left(X^{*}, t^{*}\right)$ such that $X^{*} \in \mathcal{P}^{*}\left(t^{*}\right)$
OUR APPROACH: consider a trajectory of solution to TV-SDP in primal (or dual) form given by a smooth branch of a single-valued curve:

$$
t \mapsto X^{*}(t) \in \mathbb{S}^{n}
$$

QUESTION 1: how can be sure that a solutions trajectory behave so well?
\longrightarrow strict complementarity and primal-dual non-degeneracy
QUESTION 2: how can this good behavior be affected?
(I) regular points
(II) loss of differentiability points
(III) discontinuous isolated multiple points
(IV) discontinuous non-isolated loss of multiple points
(V) continuous bifurcations points
(VI) irregular accumulation points

TYPES OF POINTS (I)

A regular point $\left(X^{*}, t^{*}\right)$ is such that $\mathcal{P}^{*}\left(t^{*}\right)=\left\{X^{*}\right\}$ and there exists $\varepsilon>0$ such that

- $\mathcal{P}^{*}(t)$ is single-valued and continuous for every $t \in\left(t^{*}-\varepsilon, t^{*}+\varepsilon\right)$
- $\mathcal{P}^{*}(t)$ is differentiable at t^{*}

TYPES OF POINTS (II)

A non-differentiable point $\left(X^{*}, t^{*}\right)$ is such that $\mathcal{P}^{*}\left(t^{*}\right)=\left\{X^{*}\right\}$ and there exists $\varepsilon>0$ such that

- $\mathcal{P}^{*}(t)$ is single-valued and continuous for every $t \in\left(t^{*}-\varepsilon, t^{*}+\varepsilon\right)$
- $\mathcal{P}^{*}(t)$ is not differentiable at t^{*}

TYpes of points (III)

A discontinuous isolated multiple point $\left(X^{*}, t^{*}\right)$ is such that $X^{*} \in \mathcal{P}^{*}\left(t^{*}\right)$ and there exists $\varepsilon>0$ such that

- $\mathcal{P}^{*}(t)$ is single-valued and continuous for every $t \in\left(t^{*}-\varepsilon, t^{*}\right) \cup\left(t^{*}, t^{*}+\varepsilon\right)$
- $\mathcal{P}^{*}(t)$ is multi-valued at t^{*}

(A)

(B)

TYpes of points (IV)

A discontinuous non-isolated multiple point $\left(X^{*}, t^{*}\right)$ is such that $X^{*} \in \mathcal{P}^{*}\left(t^{*}\right)$ and there exists $\varepsilon>0$ such that

- $\mathcal{P}^{*}(t)$ is continuous at any $t \in\left(t^{*}-\varepsilon, t^{*}\right) \cup\left(t^{*}, t^{*}+\varepsilon\right)$
- $\mathcal{P}^{*}(t)$ is single-valued for every $t \in\left(t^{*}-\varepsilon, t^{*}\right)$
- $\mathcal{P}^{*}(t)$ is multi-valued for every $t \in\left[t^{*}, t^{*}+\varepsilon\right)$

TYpes of points (V)

A continuous bifurcation point $\left(X^{*}, t^{*}\right)$ is such that $\mathcal{P}^{*}\left(t^{*}\right)=\left\{X^{*}\right\}$ and there exists $\varepsilon>0$ such that

- $\mathcal{P}^{*}(t)$ is continuous at any $t \in\left(t^{*}-\varepsilon, t^{*}+\varepsilon\right)$
- $\mathcal{P}^{*}(t)$ is single-valued for every $t \in\left(t^{*}-\varepsilon, t^{*}\right]$
- $\mathcal{P}^{*}(t)$ is multi-valued for every $t \in\left(t^{*}, t^{*}+\varepsilon\right)$

TYpes of points (VI)

An irregular accumulation point $\left(X^{*}, t^{*}\right)$ is such that $X^{*} \in \mathcal{P}^{*}\left(t^{*}\right)$ and there exists $\varepsilon>0$ such that $\mathcal{P}^{*}(t)$ is single-valued and continuous for every $t \in\left(t^{*}-\varepsilon, t^{*}\right)$ and for any $\delta>0$ there exists $\left\{t_{k}\right\}_{k=1}^{\infty} \subseteq\left(t^{*}, t^{*}+\delta\right)$ such that

- either a continuous bifurcation or a loss of inner semi-continuity occurs at any t_{k}
- $\lim _{k \rightarrow \infty} t_{k}=t^{*}$

$\min z$
s.t. $\quad\left(\begin{array}{ccccc}1 & x & y & 0 & 0 \\ x & 1 & z & 0 & 0 \\ y & z & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 h(t) & x-y \\ 0 & 0 & 0 & x-y & 2 h(t)\end{array}\right) \succeq 0$
where $h(t):$

0 \& otherwise\end{array}\right.\)

MAIN THEOREM

Theorem [Bellon et al. 2021]

For a primal-dual pair of TV-SDPs $\left(P_{t}, D_{t}\right), t \in T=\left[t_{0}, t_{f}\right]$, satisfying LICQ, uniform boundedness of \mathcal{A}, strict feasibility, and data are continuous, then:
(i) there can only be points of type (I), (II), (III), (IV), (V), (VI)
(ii) if the data dependence is polynomial and at some $\hat{t} \in T$ all the points (X, y, Z) satisfying

$$
\left(\begin{array}{c}
\mathcal{A}(\hat{t})[X]-b(\hat{t}) \\
\mathcal{A}^{*}(\hat{t})[y]+Z-C(\hat{t}) \\
\langle X, Z\rangle
\end{array}\right)=0
$$

are strictly complementary and primal-dual non-degenerate, only these points can appear:

- regular points (I)
- non-differentiable points (II) in a finite number
- discontinuous isolated multiple points (III) in a finite number

PROOF OF MAIN THEOREM (PART II)

We consider a trajectory of solution to TV-SDP form given by a smooth branch of a single-valued curve:

$$
(\hat{t}-\varepsilon, \hat{t}) \ni t \mapsto X^{*}(t) \in \mathbb{S}^{n}
$$

We combine two logical cases partition:
A $\mathcal{P}^{*}(\hat{t})$ is a single-valued
B $\mathcal{P}^{*}(\hat{t})$ is multi-valued
$1 \exists \varepsilon>0$ such that $\mathcal{P}^{*}(t)$ is single-valued for every $t \in(\hat{t}, \hat{t}+\varepsilon)$
$2 \exists \varepsilon>0$ such that $\mathcal{P}^{*}(t)$ is multi-valued for every $t \in(\hat{t}, \hat{t}+\varepsilon)$
$\mathbf{3} \forall \delta>0 \exists t^{\prime}, t^{\prime \prime} \in(\hat{t}, \hat{t}+\delta)$ such that $\left\{\begin{array}{l}\mathcal{P}^{*}\left(t^{\prime}\right) \text { is single-valued } \\ \mathcal{P}^{*}\left(t^{\prime \prime}\right) \text { is multi-valued }\end{array}\right.$

A1: $\left\{\begin{array}{l}\text { regular point } \\ \text { non-differentiable point }\end{array}\right.$
B1: discontinuous isolated multiple point

A2: $\left\{\begin{array}{l}\text { continuous bifurcation point } \\ \text { irregular accumulation point }\end{array}\right.$
B2: $\left\{\begin{array}{l}\text { discontinuous non-isolated multiple point } \\ \text { irregular accumulation point }\end{array}\right.$
A3: irregular accumulation point
B3: irregular accumulation point

THE IMPLICIT FUNCTION THEOREM IN ACTION

Lemma A

For a pair $\left(P_{t}, D_{t}\right)$ of TV-SDPs with data continuously differentiable in $t \in T$ suppose that $\left(X^{*}, y^{*}, Z^{*}\right)$ is a strictly complementary primal-dual non-degenerate optimal solution for $\left(P_{\hat{t}}, D_{\hat{t}}\right)$ for at $\hat{t} \in T$.

Then there exists $\varepsilon>0$ and a unique continuously differentiable curve $\left(X^{*}(\cdot), y^{*}(\cdot), Z^{*}(\cdot)\right)$ defined on $(\hat{t}-\varepsilon, \hat{t}+\varepsilon)$ such that $\left(X^{*}(t), y^{*}(t), Z^{*}(t)\right)$ is the unique strictly complementary optimal solution for $\left(P_{t}, D_{t}\right)$ for all $t \in(\hat{t}-\varepsilon, \hat{t}+\varepsilon)$.

Sketch of proof

- KKT conds. $\equiv\left\{\begin{array}{l}F(X, y, Z, t)=0 \\ X, Z \succeq 0\end{array}\right.$
- non-degeneracy+strict complementarity $\Longrightarrow J_{F}\left(X^{*}, y^{*}, Z^{*}, \hat{t}\right)$ is invertible
- $F(X(t), y(t), Z(t), t)=0$ around \hat{t}
- if $X(t) \nsucceq 0\left(P_{t}\right)$ would be infeasible, contradicting primal-dual strict feasibility.

ON THE FINITENESS OF BAD POINTS

Lemma B [Hauenstein et al., 2019]

For a pair $\left(P_{t}, D_{t}\right)$ of TV-SDPs parameterized by $t \in T$ assume that the data dependence is polynomial and at some $\hat{t} \in T$ all the points (X, y, Z) satisfying

$$
\left(\begin{array}{c}
\mathcal{A}(t)[X]-b(t) \\
\mathcal{A}^{*}(t)[y]+Z-C(t) \\
\langle X, Z\rangle
\end{array}\right)=0
$$

are strictly complementary and primal-dual non-degenerate
Then the set of values of the parameter t at which the optimal primal-dual solution to the primal-dual pair of SDPs associated to t is not unique or not strictly complementary is finite.

Sketch of proof

- the set of points where I can't apply the implicit function theorem is a constructible set
- a constructible set is either finite or has a finite complement
- the complement of this set is the set where I can apply the implicit function theorem, which cannot be finite

AN EXAMPLE

For $t \in(-2,3)$ consider the TV-SDP

$$
\begin{aligned}
& \quad \min t x+t y+z \\
& \text { s.t. } \quad\left(\begin{array}{lll}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{array}\right) \succeq 0 .
\end{aligned}
$$

AN EXAMPLE

We have:

$$
\mathcal{P}^{*}(t)= \begin{cases}\left(\begin{array}{ccc}
1 & -t / 2 & -t / 2 \\
-t / 2 & 1 & \frac{t^{2}}{2}-1 \\
-t / 2 & \frac{t^{2}}{2}-1 & 1
\end{array}\right) & \text { for } t \in(-2,2) \backslash\{0\} \\
\left\{\left.\left(\begin{array}{ccc}
1 & \eta & \theta \\
\eta & 1 & -1 \\
\theta & -1 & 1
\end{array}\right) \right\rvert\, \begin{array}{c}
\eta+\theta=0 \\
\eta, \theta \in[-1,1]
\end{array}\right\} & \text { at } t=0 \\
\left(\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 1 \\
-1 & 1 & 1
\end{array}\right) & \text { for } t \in[2,3)\end{cases}
$$

- regular points for $t \in(-2,3) \backslash\{0,2\}$
- discontinuous isolated multiple point at $t=0$
- loss of differentiability point at $t=2$

At $t=-1$ there is a strictly complementary and non-degenerate primal-dual solution.
At $t=0$ and $t=2$ strict complementarity fails.
At $t=0$ the dual solution is degenerate.

MAIN MESSAGES

What have we done?

This research resulted in a paper arxiv.org/abs/2104.05445, where our original contributions were:

- definition of 6 types of points in the trajectory of solutions to TV-SDPs
- a classification theorem: only these types can appear
- under generic assumptions, only three types of points can appear

Why is this useful?

- we now know what in TV-SDP can go wrong and why
- extra knowledge for algorithms design
- prepares the way for future research on TV-POP

Summary

- Crash course on SDP properties and set-valued analysis
- Exposition of the 6 types of points
- The classification theorem
- Sketch of the proof
- An example

