

TIME-VARYING SEMIDEFINITE PROGRAMMING: GEOMETRY OF THE TRAJECTORY OF SOLUTIONS

Antonio Bellon, PhD candidate at CTU Supervisors: D. Henrion, V. Kungurtsev, J. Mareček

LAAS-CNRS, MAC BrainPOP 28 February 2022

> Czech Technical University in Prague Faculty of Electrical Engineering Computer Science Department Artificial Intelligence Center

> > antonio.bellon@fel.cvut.cz

Time-Varying Semidefinite Programming (TV-SDP) is linear optimization over the cone of positive semidefinite matrices where the problem data (and solutions) depends on time $t \in [t_0, t_f]$:

```
 \min_{X \in \mathbb{S}^n} \langle C(\mathbf{t}), X \rangle 
s.t. \langle A_i(\mathbf{t}), X \rangle = b_i(\mathbf{t}), \quad i = 1, \dots, m
 X \succeq 0
```

```
(SDP_{t})
```

Previous references

- On parametric semidefinite programming, D. Goldfarb, K. Scheinberg, 1999
- On computing the nonlinearity interval in parametric semidefinite optimization, J. Hauenstein et al., 2019
- Time-varying semidefinite programs, A.A. Ahmadi, B. El Khadir, 2021

We wanted to geometrically characterize the **trajectory of solutions to TV-SDP** and classify the possible irregular behaviors, as in

• Parametric Optimization, J. Guddat, F. Guerra Vasquez, H.T. Jongen, 1990

What have we done?

This research resulted in a paper arxiv.org/abs/2104.05445, where our original contributions were:

- definition of 6 types of points in the trajectory of solutions to TV-SDPs
- a classification theorem: only these types can appear
- under generic assumptions, only three types of points can appear

Why is this useful?

- · we now know what in TV-SDP can go wrong and why
- · extra knowledge for algorithms design
- · prepares the way for future research on TV-POP

Summary

- Crash course on SDP properties and set-valued analysis
- · Exposition of the 6 types of points
- The classification theorem
- · Sketch of the proof
- An example

• A **spectrahedron** Σ is an affine section of the PSD cone:

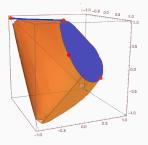
$$\Sigma = \mathbb{S}^n_+ \cap \{Ax = b\}$$

- A face F of a spectrahedron $\boldsymbol{\Sigma}$ is a set such that

 $F = \Sigma \cap \mathcal{H}$

where ${\cal H}$ is a supporting hyperplane.

- An extreme point is a 0-dimensional face.
- The optimal set of an SDP is always a face.
- The solution is unique if and only if the optimal set is an extreme point
- Generically, the solutions to SDP are unique, hence extreme points



A spectrahedron Σ

For a primal-dual pair of SDPs (P, D)

$$\min_{X \in \mathbb{S}^{n}} \langle C, X \rangle$$
s.t. $\mathcal{A}[X] = b$ (P)
$$X \succeq 0$$

$$\max_{y \in \mathbb{R}^{m}, Z \in \mathbb{S}^{n}} \langle b, y \rangle$$
s.t. $\mathcal{A}^{*}[y] + Z = C$ (D)
$$Z \succeq 0$$

we have a set of first-order optimality conditions for (P, D):

$$\begin{array}{l} \mathcal{A}[X] = b \\ \mathcal{A}^*[y] + Z = C \\ X, Z \succeq 0 \\ \langle X, Z \rangle = 0 \end{array}$$
 (KKT)

Strict feasibility: there exists a strictly feasible primal-dual point:

$$\mathcal{A}[X] = b$$

$$\mathcal{A}^*[y] + Z = C$$

$$X, Z \succ 0$$

(SF)

If strict feasibility holds the (KKT) conditions are necessary & sufficient for optimality.

QUESTION: how do we know that a primal-dual solution (X, Z) is unique?

- Strict complementarity: rank(X) + rank(Z) = n
- Primal non-degeneracy: $ker(\mathcal{A}) + T_X \mathbb{S}^n_+ = \mathbb{S}^n$
- Dual non-degeneracy: $span(A) + T_Z \mathbb{S}^n_+ = \mathbb{S}^n$

Linear-algebraic equivalent conditions for non-degeneracy are available.

In general:

primal non-deg. \implies dual uniqueness dual non-deg. \implies primal uniqueness

Under strict complementarity:

primal non-deg. \iff dual uniqueness dual non-deg. \iff primal uniqueness

Strict complementarity and non-degeneracy hold generically [Alizadeh et al., 1995] \implies solution uniqueness holds generically.

where $\tilde{\mathcal{A}} := (\operatorname{svec}(A_1), \dots, \operatorname{svec}(A_m))^T$.

If strict complementarity and primal-dual non-degeneracy hold

$$J_F(X, y, Z, t) = \begin{pmatrix} \tilde{\mathcal{A}} & 0 & 0\\ 0 & \tilde{\mathcal{A}}^T & I_{\frac{1}{2}(n+1)n}\\ Z \otimes_{S} I_n & 0 & I_n \otimes_{S} X \end{pmatrix}$$

is invertible [Alizadeh et al., 1998].

OUR OBJECTS

For a primal-dual pair of TV-SDPs (P_t, D_t) with $t \in T = [t_0, t_f]$

$$\begin{array}{c} \min_{X \in \mathbb{S}^n} \langle C(t), X \rangle \\ \text{s.t. } \mathcal{A}(t)[X] = b(t) \quad (\mathsf{P}_t) \\ X \succeq 0 \end{array} \qquad \qquad \begin{array}{c} \max_{y \in \mathbb{R}^m, Z \in \mathbb{S}^n} \langle b(t), y \rangle \\ \text{s.t. } \mathcal{A}^*(t)[y] + Z = C(t) \quad (\mathsf{D}_t) \\ Z \succeq 0 \end{array}$$

we define the primal and dual feasible set maps:

$$\mathcal{P}(t) = \{X \in \mathbb{S}^n \mid \mathcal{A}(t)[X] = b(t), X \succeq 0\}$$
$$\mathcal{D}(t) = \{(y, Z) \in \mathbb{R}^m \times \mathbb{S}^n \mid \mathcal{A}^*(t)[y] + Z = C(t), Z \succeq 0\}$$

the primal and dual optimal value functions:

$$p^{*}(t) = \min_{X \in \mathbb{S}^{n}} \{ \langle C(t), X \rangle \mid \mathcal{A}(t)[X] = b(t), X \succeq 0 \}$$

$$d^{*}(t) = \max_{y \in \mathbb{R}^{n}, Z \in \mathbb{S}^{n}} \{ \langle b(t), y \rangle \mid \mathcal{A}^{*}(t)[y] + Z = C(t), Z \succeq 0 \}$$

and the primal and dual optimal set maps:

$$\mathcal{P}^{*}(t) = \{ X \in \mathcal{P}(t) \mid \langle C(t), X \rangle = p^{*}(t) \}$$
$$\mathcal{D}^{*}(t) = \{ (y, Z) \in \mathcal{D}(t) \mid \langle b(t), y \rangle = d^{*}(t) \}$$

A **set-valued map** *F* from a set *T* to another set *X* maps a point in $t \in T$ to a non-empty subset $F(t) \subseteq X$:

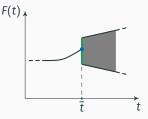
 $F: T \rightrightarrows X$ $t \mapsto F(t) \subseteq X$

The **inner limit** of *F* for *t* that goes to \overline{t} is

 $\liminf_{t\to \bar{t}} F(t) := \left\{ \bar{x} \mid \forall \{t_k\}_{k=1}^{\infty} \subseteq T \text{ such that } t_k \to \bar{t}, \ \exists \{x_k\}_{k=1}^{\infty} \subseteq X, \ x_k \to \bar{x} \text{ and } x_k \in F(t_k) \right\}$

while its **outer limit** for t that goes to \overline{t} is

 $\limsup_{t \to \overline{t}} F(t) := \left\{ \overline{x} \mid \exists \{t_k\}_{k=1}^{\infty} \subseteq T_{\text{ such that }} t_k \to \overline{t}, \ \exists \{x_k\}_{k=1}^{\infty} \subseteq X, \ x_k \to \overline{x}_{\text{ and }} x_k \in F(t_k) \right\}$



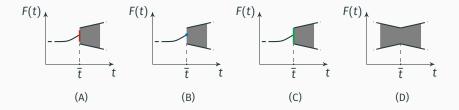
A set-valued map $F: T \rightrightarrows X$ is **inner semi-continuous** at $\overline{t} \in T$ if

 $\liminf_{t\to \overline{t}} F(t) = F(\overline{t})$

while is **outer semi-continuous** at $\overline{t} \in T$ if

 $\limsup_{t\to \overline{t}} F(t) = F(\overline{t})$

A set-valued map $F : T \rightrightarrows X$ is **Painlevé-Kuratowski continuous** at \overline{t} if it is both inner and outer semi-continuous at \overline{t} .



Theorem 1 [e.g. Rockafellar and Wets, 2009]

If the problem data are continuous functions of time, the primal and dual feasible set maps $\mathcal{P}(t), \mathcal{D}(t)$ are outer semi-continuous.

Theorem 2 [Hauenstein et al., 2019; Bellon et al., 2021]

If the problem data are continuous functions of time, strict feasibility holds, the linear constraints are linearly independent, and the operator \mathcal{A} is uniformly bounded in *t*, the primal and dual feasible set maps $\mathcal{P}(t)$, $\mathcal{D}(t)$ are inner semi-continuous.

Theorem 3 [Hogan, 1974]

If the problem data are continuous functions of time, the primal and dual optimal set maps $\mathcal{P}^*(t), \mathcal{D}^*(t)$ are outer semi-continuous. In particular, if $\mathcal{P}^*(t), \mathcal{D}^*(t)$ are single valued then they are continuous.

Theorem 4 [e.g. Rockafeller and Wets, 2009]

The primal and dual optimal set maps $\mathcal{P}^*(t)$, $\mathcal{D}^*(t)$ can fail to be inner semi-continuous. The subset of points $t \in T$ at which $\mathcal{P}^*(t)$ or $\mathcal{D}^*(t)$ fails to be continuous it is a meager set, i.e. the union of countably many sets that are nowhere dense in T, in particular, it has empty interior.

Can we say more?

we assume that the following assumptions hold:

LICQ and uniform boundedness of A: for every $t \in T$, the *m* matrices $\{A_i(t)\}_{i=1,...,m}$ defining A(t) are linearly independent in \mathbb{S}^n , so that A(t) is surjective. The norm of A(t) is uniformly bounded.

Strict feasibility: for every $t \in T$, problem (P_t) and its dual (D_t) are strictly feasible.

Data differentiability: data b(t) and C(t) are continuous functions of the time parameter *t*.

GOAL: classify points (X^*, t^*) such that $X^* \in \mathcal{P}^*(t^*)$

OUR APPROACH: consider a trajectory of solution to TV-SDP in primal (or dual) form given by a smooth branch of a single-valued curve:

 $t \mapsto X^*(t) \in \mathbb{S}^n$

QUESTION 1: how can be sure that a solutions trajectory behave so well?

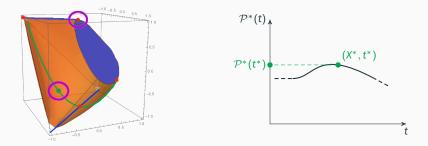
 \longrightarrow strict complementarity and primal-dual non-degeneracy

QUESTION 2: how can this good behavior be affected?

- (I) regular points
- (II) loss of differentiability points
- (III) discontinuous isolated multiple points
- (IV) discontinuous non-isolated loss of multiple points
- (V) continuous bifurcations points
- (VI) irregular accumulation points

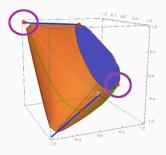
A **regular point** (X^*, t^*) is such that $\mathcal{P}^*(t^*) = \{X^*\}$ and there exists $\varepsilon > 0$ such that

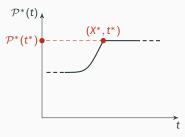
- $\mathcal{P}^*(t)$ is single-valued and continuous for every $t \in (t^* \varepsilon, t^* + \varepsilon)$
- $\mathcal{P}^*(t)$ is differentiable at t^*



A **non-differentiable point** (X^*, t^*) is such that $\mathcal{P}^*(t^*) = \{X^*\}$ and there exists $\varepsilon > 0$ such that

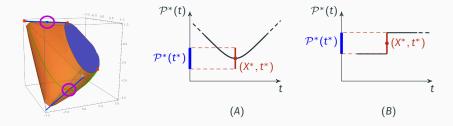
- $\mathcal{P}^*(t)$ is single-valued and continuous for every $t \in (t^* \varepsilon, t^* + \varepsilon)$
- $\mathcal{P}^*(t)$ is **not** differentiable at t^*





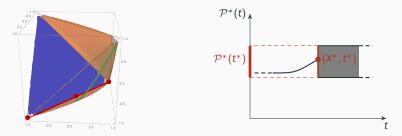
A **discontinuous isolated multiple point** (X^*, t^*) is such that $X^* \in \mathcal{P}^*(t^*)$ and there exists $\varepsilon > 0$ such that

- $\mathcal{P}^*(t)$ is single-valued and continuous for every $t \in (t^* \varepsilon, t^*) \cup (t^*, t^* + \varepsilon)$
- $\mathcal{P}^*(t)$ is multi-valued at t^*



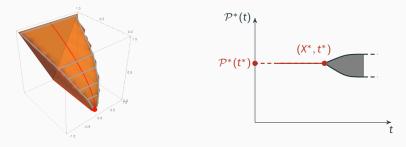
A **discontinuous non-isolated multiple point** (X^*, t^*) is such that $X^* \in \mathcal{P}^*(t^*)$ and there exists $\varepsilon > 0$ such that

- $\mathcal{P}^*(t)$ is continuous at any $t \in (t^* \varepsilon, t^*) \cup (t^*, t^* + \varepsilon)$
- $\mathcal{P}^*(t)$ is single-valued for every $t \in (t^* \varepsilon, t^*)$
- $\mathcal{P}^*(t)$ is multi-valued for every $t \in [t^*, t^* + \varepsilon)$



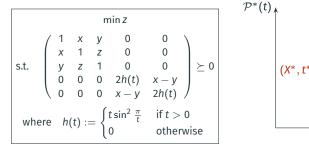
A continuous bifurcation point (X^*, t^*) is such that $\mathcal{P}^*(t^*) = \{X^*\}$ and there exists $\varepsilon > 0$ such that

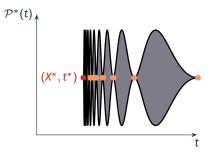
- $\mathcal{P}^*(t)$ is continuous at any $t \in (t^* \varepsilon, t^* + \varepsilon)$
- $\mathcal{P}^*(t)$ is single-valued for every $t \in (t^* \varepsilon, t^*]$
- $\mathcal{P}^*(t)$ is multi-valued for every $t \in (t^*, t^* + \varepsilon)$



An **irregular accumulation point** (X^*, t^*) is such that $X^* \in \mathcal{P}^*(t^*)$ and there exists $\varepsilon > 0$ such that $\mathcal{P}^*(t)$ is single-valued and continuous for every $t \in (t^* - \varepsilon, t^*)$ and for any $\delta > 0$ there exists $\{t_k\}_{k=1}^{\infty} \subseteq (t^*, t^* + \delta)$ such that

- either a continuous bifurcation or a loss of inner semi-continuity occurs at any t_k
- $\lim_{k\to\infty} t_k = t^*$





Theorem [Bellon et al. 2021]

For a primal-dual pair of TV-SDPs (P_t, D_t), $t \in T = [t_0, t_f]$, satisfying LICQ, uniform boundedness of A, strict feasibility, and data are continuous, then:

- (i) there can only be points of type (I), (II), (III), (IV), (V), (VI)
- (ii) if the data dependence is polynomial and at some $\hat{t} \in {\cal T}$ all the points (X, y, Z) satisfying

$$\begin{pmatrix} \mathcal{A}(\hat{t})[X] - b(\hat{t}) \\ \mathcal{A}^*(\hat{t})[y] + Z - C(\hat{t}) \\ \langle X, Z \rangle \end{pmatrix} = 0$$

are strictly complementary and primal-dual non-degenerate, only these points can appear:

- regular points (I)
- non-differentiable points (II) in a finite number
- discontinuous isolated multiple points (III) in a finite number

We consider a trajectory of solution to TV-SDP form given by a smooth branch of a single-valued curve:

$$\hat{t} - \varepsilon, \hat{t}) \ni t \mapsto X^*(t) \in \mathbb{S}^r$$

We combine two logical cases partition:

A $\mathcal{P}^*(\hat{t})$ is a single-valued **B** $\mathcal{P}^*(\hat{t})$ is multi-valued

$$\begin{split} \mathbf{1} &\exists \varepsilon > 0 \text{ such that } \mathcal{P}^*(t) \text{ is single-valued for every } t \in (\hat{t}, \hat{t} + \varepsilon) \\ \mathbf{2} &\exists \varepsilon > 0 \text{ such that } \mathcal{P}^*(t) \text{ is multi-valued for every } t \in (\hat{t}, \hat{t} + \varepsilon) \\ \mathbf{3} &\forall \delta > 0 \; \exists t', t'' \in (\hat{t}, \hat{t} + \delta) \text{ such that } \begin{cases} \mathcal{P}^*(t') \text{ is single-valued} \\ \mathcal{P}^*(t') \text{ is multi-valued} \end{cases} \end{split}$$

A1: { regular point non-differentiable point

A2: { continuous bifurcation point irregular accumulation point

A3: irregular accumulation point

B1: discontinuous isolated multiple point

B2: { discontinuous non-isolated multiple point { irregular accumulation point

B3: irregular accumulation point

Lemma A

For a pair (P_t, D_t) of TV-SDPs with data continuously differentiable in $t \in T$ suppose that (X^*, y^*, Z^*) is a strictly complementary primal-dual non-degenerate optimal solution for $(P_{\hat{t}}, D_{\hat{t}})$ for at $\hat{t} \in T$.

Then there exists $\varepsilon > 0$ and a unique continuously differentiable curve $(X^*(\cdot), y^*(\cdot), Z^*(\cdot))$ defined on $(\hat{t} - \varepsilon, \hat{t} + \varepsilon)$ such that $(X^*(t), y^*(t), Z^*(t))$ is the unique strictly complementary optimal solution for (P_t, D_t) for all $t \in (\hat{t} - \varepsilon, \hat{t} + \varepsilon)$.

Sketch of proof

• KKT conds.
$$\equiv \begin{cases} F(X, y, Z, t) = 0\\ X, Z \succeq 0 \end{cases}$$

- non-degeneracy+strict complementarity $\implies J_F(X^*, y^*, Z^*, \hat{t})$ is invertible
- F(X(t), y(t), Z(t), t) = 0 around \hat{t}
- if $X(t) \not\geq 0$ (P_t) would be infeasible, contradicting primal-dual strict feasibility.

Lemma B [Hauenstein et al., 2019]

For a pair (P_t, D_t) of TV-SDPs parameterized by $t \in T$ assume that the data dependence is polynomial and at some $\hat{t} \in T$ all the points (X, y, Z) satisfying

$$\begin{pmatrix} \mathcal{A}(t)[X] - b(t) \\ \mathcal{A}^*(t)[y] + Z - C(t) \\ \langle X, Z \rangle \end{pmatrix} = 0$$

are strictly complementary and primal-dual non-degenerate

Then the set of values of the parameter *t* at which the optimal primal-dual solution to the primal-dual pair of SDPs associated to *t* is not unique or not strictly complementary is finite.

Sketch of proof

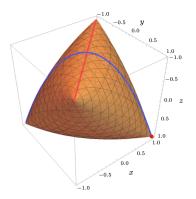
- the set of points where I can't apply the implicit function theorem is a constructible set
- a constructible set is either finite or has a finite complement
- the complement of this set is the set where I can apply the implicit function theorem, which cannot be finite

AN EXAMPLE

For $t \in (-2, 3)$ consider the TV-SDP

min tx + ty + zs.t. $\begin{pmatrix} 1 & x & y \\ x & 1 & z \\ y & z & 1 \end{pmatrix} \succeq 0.$

 (P_{t}^{1})



AN EXAMPLE

We have:

$$\mathcal{P}^{*}(t) = \begin{cases} \begin{pmatrix} 1 & -t/2 & -t/2 \\ -t/2 & 1 & \frac{t^{2}}{2} - 1 \\ -t/2 & \frac{t^{2}}{2} - 1 & 1 \end{pmatrix} & \text{for } t \in (-2, 2) \setminus \{0\} \\ \\ \begin{cases} \begin{pmatrix} 1 & \eta & \theta \\ \eta & 1 & -1 \\ \theta & -1 & 1 \end{pmatrix} & & \\ \\ \begin{pmatrix} \eta & \theta \\ \eta, \theta \in [-1, 1] \\ \eta, \theta \in [-1, 1] \end{pmatrix} & \text{at } t = 0 \\ \\ \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & 1 \\ -1 & 1 & 1 \end{pmatrix} & & \text{for } t \in [2, 3) \end{cases}$$

- regular points for $t \in (-2,3) \setminus \{0,2\}$
- discontinuous isolated multiple point at t = 0
- loss of differentiability point at t = 2

At t = -1 there is a strictly complementary and non-degenerate primal-dual solution. At t = 0 and t = 2 strict complementarity fails. At t = 0 the dual solution is degenerate.

What have we done?

This research resulted in a paper arxiv.org/abs/2104.05445, where our original contributions were:

- definition of 6 types of points in the trajectory of solutions to TV-SDPs
- a classification theorem: only these types can appear
- under generic assumptions, only three types of points can appear

Why is this useful?

- · we now know what in TV-SDP can go wrong and why
- · extra knowledge for algorithms design
- · prepares the way for future research on TV-POP

Summary

- Crash course on SDP properties and set-valued analysis
- · Exposition of the 6 types of points
- The classification theorem
- · Sketch of the proof
- An example

