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Koopman operator for the practitioner

Linear lifted dynamics

z~Az, z €ERN u

Prediction / MPC [Korda and Mezic, Automatica 2016]
e1(x)\ Feedback stabilization [Huang et al., CDC2018]
e,(x) | State estimation [Surana, CDC2016]
: Identification [AM and Goncalves, IEEE TAC2020]
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LIFTING

ey (x)

Nonlinear dynamics
x = F(x), x € R"?

Message to the theoretician:
This amounts to considering the evolution of
evaluation functionals in a dual Koopman framework

\y . . .
S ’_IL:) Rigorous application to

~

- stability analysis and state estimation
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Preliminaries

Stability analysis
Joint work with C. Mugisho

State estimation
Joint work with J. Mohet and J. Winkin
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We consider an operator-theoretic description

of dynamical systems

/

(&

\
Koopman operator Zadl t
o . K
description ]_—% f
Operator f = K'f = f o ¢!
acting on an observable space @f
J
LIFTING
———————————————————————————— \\
Trajectory-oriented o' (x)

description

'Flow map x = ¢ (x)
:acting on the state space X C ]R:/

linear infinite-dimensional
operator

nonlinear finite-dimensional
dynamics



The Koopman operator in a nutshell

Koopman operator semigroup
Kt FoF, t>0
K'f(x) = foy'(x)

Linearity: K'(aifi +asfe) = a1 K'fi +asK' fo

Infinitesimal generator of the Koopman operator

Ktf — .
Af =1lim ft / i = F(x) :'|> Af=F-Vf
A:D(A)%]—“ Lie derivative

Koopman dynamical system

f=Af, f(0)=f, €F =>solution f(t) = Ktf,



Since the Koopman operator is linear,
it is natural to consider its spectral properties

4 )

Koopman eigenfunction ¢y € F AgbA — )\gb)\
Koopman eigenvalue \ € g(A) l I Ktqu — eAtqu
\. /

[Mezic, Nonlinear Dynamics, 2005]

Connection to geometric properties

Isochrons Isostables Global linearization
[AM et Mezic, Chaos 2012] [AM, Mezic and Moehlis, [Lan et Mezic,
Physica D 2013] Physica D 2013]
Stable (hyperbolic) equilibrium £ space of analytic functions
x=F(x oF . . .
(x) Ay EC (6_ (x*)) c g(4) ¢y, : principal eigenfunction
F(x*) = 0, F analytic X

[AM, Mezic and Moehlis, Physica D 2013] [Mohr and Mezic, arXiv:1611.01209]



A last ingredient:
Reproducing kernel Hilbert spaces (RKHS)

A reproducing kernel Hilbert space (RKHS) H on X over C is a Hilbert space
of functions f: X — C such that, for every x € X, the evaluation functional E,: H — C
(defined such that E,.(f) = f(x)) is bounded.

Reproducing kernel

For all x € X, there exists k,, € H suchthat E,.(-) = (k,,"),i.e.{(ky, f) = f(x) VfF EH
Ve, y €X,  k(x,y) (ke ky) = ke (y) = ky(x)
A special case: the Hardy space on the polydisk D" = {w € C™: |w;| < 1 Vi}
H?(D™) = {f: D" - C, analytic, ||f]| < o0}

||f||2 = YkeN |fk|2» (f,9) = Xken fxr With f = Yyen frerr 9 = Lken Ikek

where {e} };en is an orthonormal basis of monomials



The lifting dynamics is recovered
through the dual Koopman system

Adjoint operators: {Af,g) = {f,A*g) (K'f,g) ={f,(KY*g) [(Kt)*kx = Kyt ]

[Assume that F € H and Ae;, € H Vlj

{er }ren is an orthonormal basis

Dual Koopman system [Linear lifted dynamic; ]
: s~ A e R
f=AFf feX s ¢
— < . e;(x) {kx 1)\ 3 Jifted states =
z=A"2, z€ z=| €2 @ = <kx{ €2) components of evaluation
zr =A{f, ex) : ’ functional k,. in the basis
- J e (x) (kx, en) )
(A:eo» €o) (A:ep ep) ek(cpt(x)) = (Kpt(x) k) = (KY*k,, ex)
v — | (A7eg,eq) (A'eq,eq) -
(A%eg, e3) (A%eq, e3)

dt approximation of A*

e1(@*(x)) (A'ky, e1)
P e2(pt(x)) |_ ((A*kx, ez)> => matrix A = matrix

en(0t(0))  \(Aky en)



The lifting dynamics is recovered
through the dual Koopman system

Adjoint operators: (Af,g) = (f,A"g) (K‘f,g) =(f,(K")"g) [ (K" ky = ke, ]

[Assume that F € H and Ae;, € H Vlj

{er }ren is an orthonormal basis

(ko f) = jX £ ) ()

Dual Koopman system [Linear lifted dynamic; ]
: s~ A ER
f=Af, feH z=rz, Z
_ < mq (1) (kure1) \ = lifted states =
. .
Z=dz, AEY m, (1) (k,,e,) | moments of the measure u
7 = 21) |_ w €2
L (fex) ) - : B :
(A*e(); eo) (A*el, eo> ¢ .
I = <(A*eo,el) (A*eq,e1) - my (i) = <k<0f¢u’ er) = ((K*)k,, ex)
(A%eg,ep) (A'eq, e;) .
5 : my (Qiu) (Akey, 1)

=» matrix A = matrix

d t Ak, e !
mZ(?D#“) = ( u 2) approximation of A™

zZ=—
dt

mpy (‘P%H) (A*ku» en)



Outline

Stability analysis
Joint work with C. Mugisho



There are several ways to obtain a Lyapunov function
through the Koopman operator

With the Koopman eigenfunctions

P, }

Y e

9o 2 v o s oo

[AM and Mezic, IEEE Trans. on Aut. Control 2016]

From the (finite-dimensional) lifted state dynamics

Riccati e i ~

Linear lifted equation Quadratic Lyapunov )z = e(x)| Nonlinear Lyapunov
dynamics function function

z=~ Az, z € RN V(x) =2"Qz \V(x) = e(x)TQe(xL

[AM, Mezic and Sootla, in Koopman operator in Systems and Control (ed. AM, Mezic & Susuki)]



A Lyapunov functional for the dual Koopman system
vields a Lyapunov function for the nonlinear system

/ Dual Koopman system f = A*f, f€H \

Lyapunov functional

Hypo ;

2
=>» triangular form (A*ej, ek) =0Vj<k V() = ZjeN €j |(f, ej)l , V:H - R*
=> diagonal entries R((A" ey, ex)) < 0V _

- I - SATISFIED? €; = max %
N T k< 4 by |[R((A%e )] R (A e, )

_ 0
A*=

\ . 0\-\_ V(KD*f) <V(f) Vf e 3\ {0}, vt > 0/

4 ™

Nonlinear dynamical system x = F(x), x € R"

, CONVERGENT?
Lyapunov function 1V (x) = V(k,)

V(p*(x)) = V(kyte) = V(KD ky) <V(ky) =V(x) VE>0

- %




III

We obtain systematic “global” stability criteria
to estimate basins of attraction

For analytic vector fields with a (hyperbolic) equilibrium =» Hardy space ¥ = H*(D")

v Triangular form (if linearized system has a triangular form)
v Negative diagonal entries (if locally stable equilibrium)

v’ Convergence of the series V(x) = X ey esza(j) for |x;| < p
=>» Systematic criteria in terms of Taylor coefficients of the vector field

% [Mugisho and AM, CDC 2023]
“Global” results and

Alternatively, truncated series . :
_ , _ estimation of basins
provide Lyapunov function candidates :
of attraction

Extension to uniform exponential stability of switched systems

. , . N
Subsystems Jacobian matrices Switched system [Liberzon, Hespanha and Morse
.form d SOIVabl_e Lie alg.ebr.a locally u.niformly Systems and Control Letters, 1999]
(simultaneous triangularization) _exponentially stable

% (“Global” results and )
[Mugisho and AM,

estimation of basins ;
. arXiv:2301.05529v1,2023
g of attraction

J




[Evaluation functionals in a dual Koopman framework ]

N

[State estimation ]

reproducing kernel Hilbert spaces

[ Stability analysis ]

[ Lifting dynamics ]

A last message to the theoretician:

We can do theory!
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