Koopman operator or its dual: What matters more?

Alexandre Mauroy (University of Namur, Belgium)

Koopman operator for the practitioner

Linear lifted dynamics

$$\dot{z} \approx A z$$
, $z \in \mathbb{R}^N$

Prediction / MPC [Korda and Mezic, Automatica 2016] $z = \begin{pmatrix} e_1(x) \\ e_2(x) \\ \vdots \end{pmatrix} \text{ Feedback stabilization [Huang et al., CDC2018]}$ State estimation [Surana, CDC2016]
Identification [AM and Goncalves, IEEE TAC2020]

Nonlinear dynamics

$$\dot{x} = F(x), \qquad x \in \mathbb{R}^n$$

Message to the theoretician:

This amounts to considering the evolution of evaluation functionals in a dual Koopman framework

Rigorous application to stability analysis and state estimation

Outline

Preliminaries

Stability analysis

Joint work with C. Mugisho

State estimation

Joint work with J. Mohet and J. Winkin

Outline

Preliminaries

Stability analysis

Joint work with C. Mugisho

State estimation

Joint work with J. Mohet and J. Winkin

We consider an operator-theoretic description of dynamical systems

Koopman operator description

Operator $f \mapsto K^t f = f \circ \varphi^t$ acting on an observable space

linear infinite-dimensional operator

LIFTING

Trajectory-oriented description

Flow map $x \mapsto \varphi^t(x)$ acting on the state space $X \subset \mathbb{R}^n$

nonlinear finite-dimensional dynamics

The Koopman operator in a nutshell

Koopman operator semigroup

$$K^t: \mathcal{F} \to \mathcal{F}, \quad t \ge 0$$

$$K^t f(x) = f \circ \varphi^t(x)$$

Linearity: $K^t(a_1f_1 + a_2f_2) = a_1K^tf_1 + a_2K^tf_2$

Infinitesimal generator of the Koopman operator

$$Af = \lim_{t \downarrow 0} \frac{K^t f - f}{t}$$

$$A: \mathcal{D}(A) \to \mathcal{F}$$

$$\dot{x} = F(x)$$

$$\dot{x} = F(x) \qquad \qquad Af = F \cdot \nabla f$$

Lie derivative

Koopman dynamical system

$$\dot{f} = Af$$
, $f(0) = f_0 \in \mathcal{F} \implies$ solution $f(t) = K^t f_0$

Since the Koopman operator is linear, it is natural to consider its spectral properties

Koopman eigenfunction $\,\phi_{\lambda}\in\mathcal{F}\,$

Koopman eigenvalue $\ \lambda \in \sigma(A)$

[Mezic, Nonlinear Dynamics, 2005]

Connection to geometric properties

[AM et Mezic, Chaos 2012]

Isostables [AM, Mezic and Moehlis, Physica D 2013]

Global linearization [Lan et Mezic, Physica D 2013]

Stable (hyperbolic) equilibrium

$${\mathcal F}$$
 space of analytic functions

$$\dot{x} = F(x)$$
 $F(x^*) = 0$, F analytic

$$\lambda_k \in \sigma\left(\frac{\partial F}{\partial x}(x^*)\right) \subset \sigma(A)$$

 ϕ_{λ_k} : principal eigenfunction

[AM, Mezic and Moehlis, Physica D 2013] [Mohr and Mezic, arXiv:1611.01209]

A last ingredient: Reproducing kernel Hilbert spaces (RKHS)

A reproducing kernel Hilbert space (RKHS) \mathcal{H} on X over \mathbb{C} is a <u>Hilbert space</u> of functions $f: X \to \mathbb{C}$ such that, for every $x \in X$, the <u>evaluation functional</u> $E_x: \mathcal{H} \to \mathbb{C}$ (defined such that $E_x(f) = f(x)$) is <u>bounded</u>.

Reproducing kernel

For all $x \in X$, there exists $k_x \in \mathcal{H}$ such that $E_x(\cdot) = \langle k_x, \cdot \rangle$, i.e. $\langle k_x, f \rangle = f(x) \ \forall f \in \mathcal{H}$

$$\forall x, y \in X$$
, $k(x, y) \stackrel{\text{def}}{=} \langle k_x, k_y \rangle = k_x(y) = k_y(x)$

A special case: the Hardy space on the polydisk $\mathbb{D}^n = \{w \in \mathbb{C}^n : |w_i| < 1 \ \forall i\}$

$$H^2(\mathbb{D}^n) = \{f : \mathbb{D}^n \to \mathbb{C}, \text{ analytic, } ||f|| < \infty \}$$

$$||f||^2 = \sum_{k \in \mathbb{N}} |f_k|^2$$
, $\langle f, g \rangle = \sum_{k \in \mathbb{N}} f_k \overline{g_k}$ with $f = \sum_{k \in \mathbb{N}} f_k e_k$, $g = \sum_{k \in \mathbb{N}} g_k e_k$

where $\{e_k\}_{k\in\mathbb{N}}$ is an orthonormal basis of monomials

The lifting dynamics is recovered through the dual Koopman system

Adjoint operators: $\langle Af, g \rangle = \langle f, A^*g \rangle$ $\langle K^tf, g \rangle = \langle f, (K^t)^*g \rangle$

$$(K^t)^* k_{\mathcal{X}} = k_{\varphi^t(\mathcal{X})}$$

Assume that $F \in \mathcal{H}$ and $Ae_k \in \mathcal{H} \ \forall k$ $\{e_k\}_{k \in \mathbb{N}}$ is an orthonormal basis

Dual Koopman system

$$\dot{f} = A^* f, \quad f \in \mathcal{H}$$
 \Leftrightarrow
 $\dot{z} = \bar{A}^* z, \quad z \in \ell^2$
 $z_k = \langle f, e_k \rangle$

$$\bar{A}^* = \begin{pmatrix} \langle A^* e_0, e_0 \rangle & \langle A^* e_1, e_0 \rangle & \cdots \\ \langle A^* e_0, e_1 \rangle & \langle A^* e_1, e_1 \rangle & \cdots \\ \langle A^* e_0, e_2 \rangle & \langle A^* e_1, e_2 \rangle & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Linear lifted dynamics

$$\dot{z} pprox Az$$
, $z \in \mathbb{R}^N$

$$z = \begin{pmatrix} e_1(x) \\ e_2(x) \\ \vdots \\ e_N(x) \end{pmatrix} = \begin{pmatrix} \langle k_x, e_1 \rangle \\ \langle k_x, e_2 \rangle \\ \vdots \\ \langle k_x, e_N \rangle \end{pmatrix}$$
 lifted states = components of evaluation functional k_x in the basis

$$e_k(\varphi^t(x)) = \langle k_{\varphi^t(x)}, e_k \rangle = \langle (K^t)^* k_x, e_k \rangle$$

The lifting dynamics is recovered through the dual Koopman system

Adjoint operators: $\langle Af, g \rangle = \langle f, A^*g \rangle$ $\langle K^tf, g \rangle = \langle f, (K^t)^*g \rangle$

$$(K^t)^*k_{\mu} = k_{\varphi_{\#}^t\mu}$$

Assume that $F \in \mathcal{H}$ and $Ae_k \in \mathcal{H} \ \forall k$ $\{e_k\}_{k \in \mathbb{N}}$ is an orthonormal basis

$$(K^{t})^{*}k_{\mu} = k_{\varphi_{\#}^{t}\mu}$$
$$\langle k_{\mu}, f \rangle = \int_{X} f(x) \, \mu(dx)$$

Dual Koopman system

$$\dot{f} = A^* f, \quad f \in \mathcal{H}$$
 \Leftrightarrow
 $\dot{z} = \bar{A}^* z, \quad z \in \ell^2$
 $z_k = \langle f, e_k \rangle$

$$\bar{A}^* = \begin{pmatrix} \langle A^*e_0, e_0 \rangle & \langle A^*e_1, e_0 \rangle & \cdots \\ \langle A^*e_0, e_1 \rangle & \langle A^*e_1, e_1 \rangle & \cdots \\ \langle A^*e_0, e_2 \rangle & \langle A^*e_1, e_2 \rangle & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

Linear lifted dynamics

$$\dot{z} \approx A z$$
, $z \in \mathbb{R}^N$

$$z = \begin{pmatrix} m_1(\mu) \\ m_2(\mu) \\ \vdots \\ m_N(\mu) \end{pmatrix} = \begin{pmatrix} \langle k_{\mu}, e_1 \rangle \\ \langle k_{\mu}, e_2 \rangle \\ \vdots \\ \langle k_{\mu}, e_N \rangle \end{pmatrix}$$
 lifted states = moments of the measure μ

$$m_k(\varphi_{\#}^t\mu) = \langle k_{\varphi_{\#}^t\mu}, e_k \rangle = \langle (K^t)^*k_{\mu}, e_k \rangle$$

Outline

Preliminaries

Stability analysis

Joint work with C. Mugisho

State estimation

Joint work with J. Mohet and J. Winkin

There are several ways to obtain a Lyapunov function through the Koopman operator

With the Koopman eigenfunctions

[AM and Mezic, IEEE Trans. on Aut. Control 2016]

From the (finite-dimensional) lifted state dynamics

[AM, Mezic and Sootla, in Koopman operator in Systems and Control (ed. AM, Mezic & Susuki)]

A Lyapunov functional for the dual Koopman system yields a Lyapunov function for the nonlinear system

Dual Koopman system $\dot{f} = A^*f$, $f \in \mathcal{H}$

Hypothesis

- \rightarrow diagonal entries $\Re(\langle A^*e_k, e_k \rangle) < 0 \ \forall k$

Lyapunov functional

Triangular form
$$\langle A^* e_j, e_k \rangle = 0 \ \forall j < k$$
 $\mathcal{V}(f) = \sum_{j \in \mathbb{N}} \epsilon_j \left| \langle f, e_j \rangle \right|^2, \quad \mathcal{V}: \mathcal{H} \to \mathbb{R}^+$

$$\bar{A}^* = \begin{pmatrix} & & & \\ & & & \\ & & & \end{pmatrix}$$

SATISFIED?
$$\epsilon_j = \max_{k < j} \frac{|\langle A^* e_j, e_k \rangle|^2}{4 b_{jk} |\Re(\langle A^* e_j, e_j \rangle)| |\Re(\langle A^* e_k, e_k \rangle)|}$$

$$\mathcal{V}\big((K^t)^*f\big)<\mathcal{V}(f)\ \forall f\in\mathcal{H}\setminus\{0\},\ \forall t>0$$

Nonlinear dynamical system $\dot{x} = F(x), \quad x \in \mathbb{R}^n$

Lyapunov function
$$V(x) = \mathcal{V}(k_x) = \sum_{j \in \mathbb{N}} \epsilon_j \left| e_j(x) \right|^2$$
 CONVERGENT?

$$V \big(\varphi^t(x) \big) = \mathcal{V} \big(k_{\varphi^t(x)} \big) = \mathcal{V} \big((K^t)^* k_x \big) < \mathcal{V}(k_x) = V(x) \ \forall t > 0$$

We obtain systematic "global" stability criteria to estimate basins of attraction

For analytic vector fields with a (hyperbolic) equilibrium \longrightarrow Hardy space $\mathcal{F}=H^2(\mathbb{D}^n)$

- ✓ Triangular form (if linearized system has a triangular form)
- ✓ Negative diagonal entries (if locally stable equilibrium)
- ✓ Convergence of the series $V(x) = \sum_{j \in \mathbb{N}} \epsilon_j x^{2\alpha(j)}$ for $|x_i| < \rho$
 - → <u>Systematic criteria</u> in terms of Taylor coefficients of the vector field

[Mugisho and AM, CDC 2023]

Alternatively, truncated series provide <u>Lyapunov function candidates</u>

Extension to uniform exponential stability of switched systems

Subsystems Jacobian matrices form a solvable Lie algebra (simultaneous triangularization)

Switched system locally uniformly exponentially stable

[Liberzon, Hespanha and Morse, Systems and Control Letters, 1999]

"Global" results and estimation of basins of attraction

[Mugisho and AM, arXiv:2301.05529v1,2023]

A last message to the theoretician:

We can do theory!

Koopman operator or its dual: What matters more?

Alexandre Mauroy (University of Namur, Belgium)

