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Fenchel conjugate, subdifferential, and polyhedral approximate

of a convex lower semicontinuous function

u u

f (u) ≥ max
vi∈∂f (ui )

i∈I

(
〈u , vi 〉+

(
−f ?(vi )

))
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Beyond convex lower semicontinuous functions...

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2

`0(u) ≥ max
vi∈∂¢`0(ui )

i∈I

(
¢(u, vi ) +

(
−`¢0 (vi )

))
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Couplings and generalized Fenchel-Moreau conjugacies

R = R ∪ {−∞,+∞} and (+∞) ·+ (−∞) = (−∞) ·+ (+∞) = −∞

Definition

Two sets U (“Primal”) and V (“Dual”) paired by

a coupling function c : U× V→ R
give rise to the c-Fenchel-Moreau conjugacy

f ∈ RU 7→ f c ∈ RV

f c(v)= sup
u∈U

(
c(u, v) ·+

(
−f (u)

))
, ∀v ∈ V

Example: two vector spaces U and V paired with a bilinear form 〈· , ·〉
give rise to the classic Fenchel conjugacy f ∈ RU 7→ f ? ∈ RV
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Generalized c-biconjugate and c-convexity

• We also introduce the c ′-Fenchel-Moreau conjugacy

g ∈ RV 7→ g c′ ∈ RU
, g c′(u) = sup

v∈V

(
c(u, v)︸ ︷︷ ︸
=c′(v ,u)

·+
(
−g(v)

))
, ∀u ∈ U

• This gives rise to the c-Fenchel-Moreau biconjugate

f ∈ RU 7→ f cc
′
∈ RU

, f cc
′
(u) =

(
f c
)c′

(u) , ∀u ∈ U

Definition

A function f ∈ RU
is c-convex if f = f cc

′
, that is

f (u) = sup
v∈V

(
c(u, v) ·+

(
−f c(v)

))
, ∀u ∈ U

Example: a proper function f ∈ RU
is 〈 , 〉-convex iff f is convex and lsc
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Generalized c-subdifferential

Definition

The c-subdifferential of a function f ∈ RU
at u ∈ U

with respect to the coupling c is the subset ∂c f (u) ⊆ V
defined equivalently either by

v ∈ ∂c f (u) ⇐⇒ f c(v) = c(u, v) ·+
(
−f (u)

)
or by

v ∈ ∂c f (u) ⇐⇒ c(u, v) ·+
(
−f (u)

)
≥ c(u′, v) ·+

(
−f (u′)

)
, ∀u′ ∈ U
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The Capra coupling

Definition (Chancelier and De Lara [2020])

Let |||·||| be a norm on Rd called the source norm

we define the Capra coupling Rd ¢←→ Rd by

∀v ∈ Rd , ¢(u, v) =


〈u ,v〉
|||u||| if u 6= 0

0 if u = 0

The coupling Capra is Constant Along Primal RAys (Capra)
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The `0 pseudonorm

`0(u) =
∣∣{j ∈ {1, . . . , d} ∣∣ uj 6= 0

}∣∣ , ∀u ∈ Rd

Proposition (Chancelier and De Lara [2021])

If both the source norm |||·||| and the dual norm |||·|||?
are orthant-strictly monotonic, we have that

`0 = `
¢¢′
0

∂¢`0(u) 6= ∅ , ∀u ∈ Rd

that is, the pseudonorm `0 is Capra-convex

and Capra-subdifferentiable everywhere on Rd

Examples:

{
||(0, 1)||∞ = ||(1, 1)||∞ = 1 hence `∞ is not OSM

`2 is OSM
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Explicit formulations for the Capra-subdifferential of `0

Proposition (Le Franc et al. [2021])

For the source norms |||·||| = `p, p ∈]1,∞[, we have that

∂¢`0(0) = B`∞

and if u 6= 0, l = `0(u), L = supp(u), for v ∈ Rd , |vν(1)| ≥ . . . ≥ |vν(d)|,
||v ||tn(k,q) = (|vν(1)|q + . . .+ |vq

ν(k)|)
1
q and 1

p + 1
q = 1

v ∈ ∂¢`0(u) ⇐⇒


vL ∈ NB||·||p ( u

||u||p )

|vj | ≤ mini∈L |vi | , ∀j /∈ L

|vν(k+1)|q ≥
(
||v ||tn(k,q) + 1

)q − (||v ||tn(k,q))q , ∀k < l

|vν(l+1)|q ≤
(
||v ||tn(l,q) + 1

)q − (||v ||tn(l,q))q
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Examples of sets ∂¢`0(u) in R2 with the source norm |||·||| = `2

u1

u2

∂¢`0(0, 0) , ∂¢`0(1, 0) , ∂¢`0(−
√

3

2
,−1

2
)
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Vizualisation of ∂¢`0 in R2 with the source norm |||·||| = `2

u1

u2

∂¢`0(0)
⋃{ ⋃

`0(u)=1

∂¢`0(u)
}⋃{ ⋃

`0(u)=2

∂¢`0(u)
}
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Polyhedral-like approximation of `0

ℓ0 = 0

ℓ0 = 1

ℓ0 = 2

`0(u) ≥ max
vi∈∂¢`0(ui )

i∈I

(
¢(u, vi ) +

(
−`¢0 (vi )

))
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A key property

we see that if we introduce

S(0) = S ∪ {0}

and the normalization mapping

n : Rd → S(0) , n(u) =

 u
|||u||| if u 6= 0

0 if u = 0

the Capra coupling is One-sided linear (OSL)

¢(u, v) = 〈n(u) , v〉 , ∀(u, v) ∈ (Rd)2
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Capra-convex sparse optimization problems

We consider problems of type

min
u∈U

`0(u)

and we look for constraint sets U ⊆ U for which

we have a Capra-convex (sparse) optimization problem

Definition

We say that the set U ⊆ U is Capra-convex if the indicator function

δU is a Capra-convex function

Which sets are Capra-convex ?
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Characterization of Capra-convex sets

Proposition (Le Franc [2021])

Let the source norm |||·||| = ||·||p, p ∈]1,∞[

and U ⊆ U be a nonempty set

U is Capra-convex ⇐⇒


U is a cone

U ∪ {0} is closed
U ∩ {0} = co

(
n(U)

)
∩ {0}
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Example with |||·||| = `2: a non Capra-convex cone

u1

u2

K

u1

u2

co(n(K))

K ∩ {0} 6= co
(
n(K )

)
∩ {0}
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The standard Bregman divergence

Definition

Let U and V be two vector spaces paired by a bilinear form 〈· , ·〉
let κ ∈ RU

be a proper, closed, convex and differentiable

(divergence generating) function.

We define the Bregman divergence associated with κ by

Dκ(u, u′) = κ(u)− κ(u′)− 〈u − u′ ,∇κ(u′)〉 ,
∀(u, u′) ∈ U× dom(∇κ)

Dκ is not a distance, but if κ is strongly convex

• Dκ(u, u′) ≥ 0 , ∀(u, u′) ∈ U× dom(∇κ)

• Dκ(u, u′) = 0 ⇐⇒ u = u′

• We have a “triangular inequality”

that makes mirror descent work
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The Bregman divergence with couplings

Definition

Let U and V be two sets and a finite coupling U c←→ V
let κ ∈ RU

be a proper c-convex (divergence generating) function.

We define the c-Bregman divergence associated with κ by

Dc
κ(u, u′, v ′) = κ(u)− κ(u′)− c(u, v ′) + c(u′, v ′) ,

∀(u, u′) ∈ U× dom(∂cκ) , ∀v ′ ∈ ∂cκ(u′)

If moreover

• V is a vector space

• The coupling c is OSL

• The function κ is c-strongly convex

We retrieve some properties of the original Bregman divergence
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The mirror descent algorithm with OSL couplings

We consider the optimization problem

min
u∈U

f (u)

• We initialize three sequences by

u0 ∈ U

v0 ∈ ∂c
(
κ+ δU

)
(u0)

v f
0 ∈ ∂c f (u0)

• We run N ∈ N steps with a step size αn > 0

and the update rules

un+1 ∈ arg min
u∈U

(
κ(u) + c(u, αnv

f
n − vn)

)
vn+1 = vn − αnv

f
n

v f
n+1 ∈ ∂c f (un+1)
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Convergence result

Theorem (Le Franc [2021])

Under a suitable choice of divergence generating function κ

we can bound the optimality gap by

min
0≤n≤N−1

(
f (un)− inf

u∈U
f (u)

)
≤

R2 + G 2

4

∑N−1
n=0 α

2
n∑N−1

n=0 αn

• R and G are constant values

determined by the problem and by κ

• We retrieve the same convergence rule

as in the standard mirror descent algorithm
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Numerical perspectives

Solving minu∈K `0(u) ?

• We need to identify suitable divergence generating functions κ

such that κ+ δK is Capra-strongly convex

• We need to make sure that we can compute efficiently

un+1 ∈ arg min
u∈K

(
κ(u) + ¢(u, αnv

f
n − vn)

)
Not that simple...
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An example where the subdifferential of the sum...

|||·||| = `2

u1

u2

ū = (1, 0)

ū ∈ arg min
K

`0 =⇒ 0 ∈ ∂¢
(
`0 + δK

)
(ū) (a property of OSL couplings)
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...is not the sum of the subdifferentials

Let v ′ ∈ ∂¢`0(ū) and v ′′ ∈ ∂¢δK (ū)

∂¢`0(ū)

u1

u2

v ′
1 ≥ 1

∂¢δK (ū) = N
co
(
n(K)
)(ū)

u1

u2

v ′′
1 ≥ 0

0 /∈ ∂¢`0(ū) + ∂¢δK (ū) hence ∂¢`0(ū) + ∂¢δK (ū) ( ∂¢
(
`0 + δK

)
(ū)
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Conclusion

Background notions:

• Standard tools of convex analysis (Fenchel conjugacies,

subdifferentials...) extend well to general couplings

• The Capra coupling is OSL and well suited to handle `0

Novelties:

• We have explicited the Capra-subdifferential of `0

• We have identified Capra-convex sets

• We have introduced an extention of

the mirror descent algorithm with OSL couplings

Perspectives: still a long way for numerical applications

but they could raise from the mirror descent algorithm
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Miscellaneous...

Figure 7: https://en.wikipedia.org/wiki/Capra_(genus)
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