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Fenchel conjugate, subdifferential, and polyhedral approximate

of a convex lower semicontinuous function
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1. Background notions on generalized convexity



Couplings and generalized Fenchel-Moreau conjugacies

R=RU{-00,+00} and (+00)+ (—00) = (—00) + (+00) = —0c0

Definition

Two sets U (“Primal”) and V (“Dual”) paired by
a coupling function ¢ : U xV — R

give rise to the c-Fenchel-Moreau conjugacy

FER s fFFeR

Fe(v)= igupj (C(U, v) + (7f(u))> , Yvev

Example: two vector spaces U and V paired with a bilinear form (-, -)
give rise to the classic Fenchel conjugacy f € R — f*eR’



Generalized c-biconjugate and c-convexity

e We also introduce the ¢’-Fenchel-Moreau conjugacy

g€ R’ g € R’ , gc/(u) = sup <c(u, v) + (fg(v))> , YvuelU
veV N~~~

=c’(v,u)
e This gives rise to the c-Fenchel-Moreau biconjugate
FER — F< eR", £ (u) = () (u), YueU
Definition
A function f € R is c-convex if f = £<', that is

F(u) = sup (c(u, v) + (ffc(v))) , YueU

veV

Example: a proper function f € R is (,)-convex iff f is convex and Isc



Generalized c-subdifferential

Definition
The c-subdifferential of a function f € @[U atue U

with respect to the coupling c is the subset O.f(u) CV
defined equivalently either by

v €D f(u) <= F(v)=c(u,v)+ (—F(u))
or by

v € Of(u) <= c(u,v) + (—f(u)) > c(v,v) + (—=f(v)), Vu' €U
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Capra-convexity of £
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The Capra coupling

Definition (Chancelier and De Lara [2020])
Let [|-|| be a norm on R called the source norm
we define the Capra coupling R? & R by
W) f £ 0

Vv eRY, ¢(u,v) = Mol
0 if u=20

The coupling Capra is Constant Along Primal RAys (Capra)
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The /3 pseudonorm

bo(u) = |{j €{1,...,d} |y #0}|, YueR?

Proposition (Chancelier and De Lara [2021])

If both the source norm ||-|| and the dual norm |||«
are orthant-strictly monotonic, we have that

to = £5¢
Oelo(u) # 0, Vu € R

that is, the pseudonorm {y is Capra-convex
and Capra-subdifferentiable everywhere on R?

[1(0, D)]|oc = [|(1,1)]|co =1 hence £ is not OSM

Examples:
62 is OSM
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2. The Capra coupling and the /; pseudonorm

Capra-subdifferential of the ¢y pseudonorm
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Explicit formulations for the Capra-subdifferential of /¢,

Proposition (Le Franc et al. [2021])

For the source norms ||-|| = £, p €]1, 00[, we have that
0ebo(0) = By,

and if u # 0, | = £o(u), L = supp(u), for v € RY, Vol > ... >
n a
||V‘|Ek7q) =(v@lf+...+ |V5(k)|)" and % + % =1

ve € Ny, ()
‘Vj|§m|n/EL|Vl|v VJ¢L
tn tn q
atesnl? 2 (VI o+ 1) = (V2 )7 s VK < 1

Vo7 < (HVIIm +1)7— (llv HE?q)

v E 8¢€0(u) —
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Examples of sets 0¢€'0(u) in R? with the source norm ||-|| = (>

u2

uy

/

V3 o1

0¢l0(0,0) ; 9¢lo(1,0) , ebo(—=-,=3)
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Vizualisation of (‘)¢(1’0 in R? with the source norm ||-|| = ¢,

Ui H_la¢fo(u)}u{ U 26w}

ég(u):2
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Polyhedral-like approximation

olw) 2 | max  (o(u,u) + (~€(w))

% 'f(')(:‘/\—ﬁ i
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A key property

we see that if we introduce
s® =su{o}
and the normalization mapping

m if u#0

n:R?Y—= SO n(u)=
0 if u=0

the Capra coupling is One-sided linear (OSL)

¢(u,v) = (n(u),v), Y(u,v) € (RY)?
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Capra-convex sparse optimization problems
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Capra-convex sparse optimization problems

We consider problems of type

Znei(r}ﬁo(u)

and we look for constraint sets U C U for which

we have a Capra-convex (sparse) optimization problem

Definition

We say that the set U C U is Capra-convex if the indicator function
oy is a Capra-convex function

Which sets are Capra-convex ?
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Characterization of Capra-convex sets

Proposition (Le Franc [2021])

Let the source norm ||-|| = ||-||5, p €]1, 00]
and U C U be a nonempty set

U is a cone
U is Capra-convex <= { UU {0} is closed
Un {0} =co(n(U)) N{0}
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Example with ||| : a non Capra-convex cone

753 up

/T\ \\
]
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K co(n(K))
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Example with ||-|| = /2: a non Capra-convex cone

753 up

/T\ Q
!
T
uy \l/>, 251

K co(n(K))

K n{0} # @ (n(K)) N {0}
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Example with |||

u2

. a Capra-convex cone

u2

T
" P
\

co(n(K))

uy
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. a Capra-convex cone

753 up

Ul \ u].

K co(n(K))
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Numerical methods ?
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The standard Bregman divergence

Definition
Let U and V be two vector spaces paired by a bilinear form (-, -)
let kK € @U be a proper, closed, convex and differentiable

(divergence generating) function.
We define the Bregman divergence associated with x by

D, (u,u") = r(u) — k() — (u—d" ,VK()),
V(u, u") € U x dom(Vk)

D,. is not a distance, but if x is strongly convex

e D (u,u)>0, Y(u,u') € Ux dom(Vk)
e D (uu)=0 <= uv=1
e We have a “triangular inequality”

that makes mirror descent work
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The Bregman divergence with couplings

Definition
Let U and V be two sets and a finite coupling U +— V

—U . : .
let k € R be a proper c-convex (divergence generating) function.
We define the c-Bregman divergence associated with x by

D, o, v/) = () = (et = et V) + ety ')
V(u,u’) € U x dom(9.k), Y € dcr(u')

If moreover

e V is a vector space
e The coupling ¢ is OSL
e The function x is c-strongly convex
We retrieve some properties of the original Bregman divergence
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The mirror descent algorithm with OSL couplings

We consider the optimization problem

inf
il (@)

e We initialize three sequences by
up € U
vo € Oc(k + du)(uo)
vi € 0.F(uo)

e We run N € N steps with a step size a, > 0

and the update rules

Up+1 € argmin (m(u) + c(u, apvf — v,,))
uelU

f
Vnt1 = Vo — QpV,

v,f+1 € Ocf(Unt1)
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Convergence result

Theorem (Le Franc [2021])
Under a suitable choice of divergence generating function x
we can bound the optimality gap by

R2 4 G2 NN-1 0
min (f(u,,) — inf f(u)) < & 2nmo
0<n<N—1 uey

e R and G are constant values
determined by the problem and by s

e We retrieve the same convergence rule
as in the standard mirror descent algorithm
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Numerical perspectives

Solving min,cx lo(u) ?

e We need to identify suitable divergence generating functions <
such that x + dx is Capra-strongly convex

e We need to make sure that we can compute efficiently

Unt1 € argmin (k(u) + ¢(u, anpvi — Va))
ueK

Not that simple...
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Global optimality conditions ?
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An example where the subdifferential of the sum...

I = €2

uz

o€argminly = 0¢€ 6¢ (Eo + 5K)(L7) (a property of OSL couplings)
K
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...i1s not the sum of the subdifferentials

Let v/ € 9yLo() and v"' € 8,0k (1)

up 2

De0k (@) =

uy

vi>1 vi'>0

0¢ 6¢€0( ) + 8¢6K( ) hence (9¢(0( )-‘r a¢5;<( ) - (9¢((0 = 5;()( )

33



Outline of the section

4, Conclusion
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Conclusion

Background notions:

e Standard tools of convex analysis (Fenchel conjugacies,
subdifferentials...) extend well to general couplings

e The Capra coupling is OSL and well suited to handle ¢y
Novelties:

e We have explicited the Capra-subdifferential of ¢,
e We have identified Capra-convex sets

e We have introduced an extention of
the mirror descent algorithm with OSL couplings

Perspectives: still a long way for numerical applications
but they could raise from the mirror descent algorithm
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Miscellaneous...

Figure 7: https://en.wikipedia.org/wiki/Capra_(genus) 2%


https://en.wikipedia.org/wiki/Capra_(genus)
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