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What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 1/87



What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}

V" But the input data f, g; are “SPARSE”!

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 1/87



What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}

V" But the input data f, g; are “SPARSE”!
Correlative sparsity: few products between
each variable and the others in f, g;

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 1/87



What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}

V" But the input data f, g; are “SPARSE”!

Correlative sparsity: few products between

each variable and the others in f, g;

~ f(X) = X1X2 + X2X3 + ... X99X100 D ©-© - 99 - 100

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 1/87



What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}

V" But the input data f, g; are “SPARSE”!

Correlative sparsity: few products between

each variable and the others in f, g;

~ f(X) = X1X2 + X2X3 + ... X99X100 D ©-© - 99 - 100
Term sparsity: few termsin f, ¢;

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 1/87



What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}

V" But the input data f, g; are “SPARSE”!

Correlative sparsity: few products between

each variable and the others in f, g;

~ f(X) = X1X2 + X2X3 + ... X99X100 D ©-© - 99 - 100
Term sparsity: few termsin f, ¢;

~ f(x) = 13720 + 272300

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 1/87



What is sparse polynomial optimization?

Looks like a regular polynomial optimization problem (POP):

inf  f(x)
st. xeX={xeR":gj(x) >0}

V" But the input data f, g; are “SPARSE”!

Correlative sparsity: few products between

each variable and the others in f, g;

~ f(X) = X1X2 + X2X3 + ... X99X100 D ©-© - 99 - 100
Term sparsity: few termsin f, ¢;

~ f(x) = 13720 + 272300

This lecture complements other POEMA lectures:

Cordian Riener on SYMMETRIC POPs (July '20)

Thorsten Theobald on SIGNOMIAL OPTIMIZATION (Tuesday)
Timo de Wolff on SUMS OF NONNEGATIVE CIRCUITS (Friday)
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Where do we find sparse POPs?
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Everywhere (almost)!

Hidden
Input
Output

Deep learning
~> robustness, computer vision

W 3ty do
Power systems >
~ AC optimal power-flow, stability ’! -

dy g =
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Where do we find sparse POPs?

Everywhere (almost)!

Hidden

Input

Output

Deep learning
~> robustness, computer vision

Power systems
~» AC optimal power-flow, stability

Quantum Systems
~~ condensed matter, entanglement
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Introduction: sparse SDP matrices
Correlative sparsity in POP

Term sparsity in POP

Conclusion & further topics

Tutorial session



The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = inf f(x)

Theory

(Primal) , (Dual)
inf /fdy & sup A

with pproba = INFINITELP <with f—A>0
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = inf f(x)

(Primal Relaxation) 'SE ' (Dual Strengthening)
moments / x* dy f — A = sum of squares

finite number = SDP < fixed degree

LASSERRE’S HIERARCHY of CONVEX PROBLEMS 1 f*
[Lasserre "01]

degree d & nvars — (""2') SDP VARIABLES ’f/ﬁﬁ.‘
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = inf f(x)

(Primal Relaxation) 'SE ' (Dual Strengthening)
moments / x* dy f — A = sum of squares

finite number = SDP < fixed degree

LASSERRE’S HIERARCHY of CONVEX PROBLEMS 1 f*
[Lasserre "01]

degree d & nvars — ("1?!) SDP VARIABLES y{ﬁ, = &

HOwW TO OVERCOME THIS NO-FREE LUNCH RULE?‘
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f,,;, = infycx f(x)
m space M (X) of probability measures supported on X
m quadratic module Q(X) = {(ro + Y058, with o SOS}

Infinite-dimensional linear programs (LP)

(Primal) (Dual)

inf /dey = sup A

st peMi(X) st. 1eR
f—AeaX)
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f.,i, = infyex f(x)

m Pseudo-moment sequences y up to order r
m Truncated quadratic module Q(X),

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)
inf ) fuva = sup A
st. My_,(gjy) =0 st. 1eR
y():l f_/\EQ(X)r
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The Moment-SOS Hierarchy for POP

NP-hard NON CONVEX Problem f.,i, = infyex f(x)

m Pseudo-moment sequences y up to order r
m Truncated quadratic module Q(X),

Finite-dimensional semidefinite programs (SDP)

(Moment) (SOS)
inf ) fuva = sup A
st. My_,(gjy) =0 st. 1eR
y():l f_/\EQ(X)r

What is the primal-dual “SPARSE” variant? ‘
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Sparse matrices

Symmetric matrices indexed by graph vertices
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Sparse matrices

Symmetric matrices indexed by graph vertices

1 —2—3 o

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

cycle =

QN
|
W - N
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Sparse matrices

Symmetric matrices indexed by graph vertices

1 —2 —3 .

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

g2
cycle = !
-3

QN

chord = edge between two nonconsecutive vertices in a cycle
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Sparse matrices

Symmetric matrices indexed by graph vertices

17273 |:

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

g2
cycle = !
-3

QN

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length > 4 have at least one chord
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Sparse matrices

Symmetric matrices indexed by graph vertices

17273 |:

‘¥ no edge between 1 and 3 <= 0 entry in the (1,3) entry

g2
cycle = !
-3

QN

chord = edge between two nonconsecutive vertices in a cycle

chordal graph = all cycles of length > 4 have at least one chord

clique = a fully connected subset of vertices
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Chordal extensions

W - N
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Chordal extensions

Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges
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Chordal extensions

Any non-chordal graph can always be extended to a chordal
graph, by adding appropriate edges

'¥" Chordal extension is not unique!

1 -2 1 -2 1 -2

L N L X

4 -3 4 -3 4 -3

approximately minimal maximal
Theorem [Gavril '72, Vandenberghe & Andersen ’15]

The maximal cliques of a chordal graph can be enumerated in
linear time in the number of nodes and edges.
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Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton 93]

For a chordal graph with maximal cliques Iy, ..., I,:

(RIP) |Vk<p Lan|JI €I forsomei<k

j<k

(possibly after reordering)
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Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton 93]

For a chordal graph with maximal cliques I, . .

Iy

(RIP) |Vk<p Lan|JI €I forsomei<k

j<k

(possibly after reordering)

" RIP always holds for p = 2

V" RIP holds for chains 1—2—3 ------ 99 - 100
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Running intersection property (RIP)

RIP Theorem for chordal graphs [Blair & Peyton 93]

For a chordal graph with maximal cliques I, . .

Iy

(RIP) |Vk<p Lan|JI €I forsomei<k

j<k

(possibly after reordering)

" RIP always holds for p = 2

V" RIP holds for chains D O © - 99 - 100
V" RIP holds for numerous applications!
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Semidefinite Programming (SDP)

. T
min cy
y

S.t. ZFi Yi = Fy
i

m Linear cost ¢
m Symmetric matrices F, F;

Spectrahedron

m Linear matrix inequalities “F = 0”
(F has nonnegative eigenvalues)
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3

What are Py, P,?
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3

1 ifI(i)=j
What are P, P,? P; € R P(i,j) = (1) _ ]
0  otherwise
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3

1 ifI(i)=j
What are P, P,? P; € R P(i,j) = { (i) =]

0 otherwise
1 00
I = (1,2 P
1=012) = 1(0 1 o)
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2—3 1 — 2 2 — 3

1 ifI(i)=j
What are P, P,? P; € R P(i,j) = (1) _ ]
0  otherwise

1 00 010
Il—(1,2) — P <O 1 0) 12—(2,3) - P2<O 0 1)
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Sparse SDP matrices

Theorem [Griewank Toint 84, Agler et al. ’88]

Chordal graph G with n vertices & maximal cliques I, I
Q¢ = 0 with nonzero entries corresponding to edges of G
= Qg = PlTlel + PQTQ2P2 with Q. = 0 indexed by I,

1 —2 —3 1y —§2 2 — 3

1 ifI(i)=j
What are P, P,? P; € R P(i,j) = (1) _ ]
0  otherwise

1 00 010
Il—(1,2) — P <O 1 0) 12—(2,3) = P (O 0 1)

V' P, TQ, P inflates a |I;| x |I;| matrix Q; into a sparse n x n matrix
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Correlative sparsity in POP



What is correlative sparsity?

s Exploit few links between variables [Lasserre, Waki et al. '06]

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

6 —————— 5
Correlative sparsity pattern (csp) graph G \ /
Vertices = {1,...,n} /
(i,j) € Edges < x;x; appears in f '

e EEm—
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What is correlative sparsity?

s Exploit few links between variables [Lasserre, Waki et al. '06]

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

Correlative sparsity pattern (csp) graph G

"
Vertices = {1,...,n} /
4
(i,j) € Edges < x;x; appears in f
By ————————————@

Similar construction with constraints X = {x € R" : g;(x) > 0}
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What is correlative sparsity?

f(X) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

\ l/
Chordal graph after adding edge (3, 5) /
4
By ———————————————————————@
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What is correlative sparsity?

f(X) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)

\ l/
Chordal graph after adding edge (3, 5) /
4
By ———————————————————————@

maximal cliques I = {1,4} L, =1{1,2,3,5} I3=1{1,3,56}
f = f1+ f2 + f3 where f; involves only variables in I

V" Let us index moment matrices and SOS with the cliques I
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A sparse variant of Putinar’s Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar ’93] Positivstellensatz

If X contains a ball constraint N — }; xi2 > 0 then

f>00nX={x:gj(x) >0} = f=o00+)_0;g with o; SOS
j
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A sparse variant of Putinar’s Positivstellensatz

Convergence of the Moment-SOS hierarchy is based on:
Theorem [Putinar ’93] Positivstellensatz

If X contains a ball constraint N — }; xi2 > 0 then

f>00nX={x:gj(x) >0} = f=o00+)_0;g with o; SOS
j

Theorem: Sparse Putinar’s representation [Lasserre '06]

f = Yk fr» fr depends on x(Ij)

f>0o0nX f:;(UOkJrZUjgj)
Each g; depends on some I SOS “sees]”E\I/;rs inI
RIP holds for (I) = o '

o; “sees” vars from g;

ball constraints for each x(Iy)
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A first key message

“?”SUMS OF SQUARES PRESERVE SPARSITY | V
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A proof of sparse Putinar’s Positivstellensatz

Let X = {x: gj(x) > 0} be compact and f = Y fi, with f;
depends on x(Ii), and f > 0on X
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A proof of sparse Putinar’s Positivstellensatz

Let X = {x: gj(x) > 0} be compact and f = Y fi, with f;
depends on x(Ii), and f > 0on X

X = {x(I) : gj(x) = 0:j € Ji} = the subspace of X which only
“sees” variables indexed by I

Lemma [Grimm et al. *07]

If RIP holds for (Ij) then
f = Y hy, with i, depends on x(I;), and /. > 0 on X
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A proof of sparse Putinar’s Positivstellensatz

Let X = {x: gj(x) > 0} be compact and f = Y fi, with f;
depends on x(Ii), and f > 0on X

X = {x(I) : gj(x) = 0:j € Ji} = the subspace of X which only
“sees” variables indexed by I

Lemma [Grimm et al. *07]

If RIP holds for (Ij) then
f = Y hy, with i, depends on x(I;), and /. > 0 on X

V" Prove this lemma by induction on the number of subsets I,
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A proof of sparse Putinar’s Positivstellensatz

Let X = {x: gj(x) > 0} be compact and f = Y fi, with f;
depends on x(Ii), and f > 0on X

X = {x(I) : gj(x) = 0:j € Ji} = the subspace of X which only
“sees” variables indexed by I

Lemma [Grimm et al. *07]

If RIP holds for (Ij) then
f = Y hy, with i, depends on x(I;), and /. > 0 on X

V" Prove this lemma by induction on the number of subsets I,

V" Then apply Putinar to each 7
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
L = {1,4} = monomials in x1, x4

1 | Y¥1,00000 ¥0,001,00

Mi(y, ) =
Y1,00000 | Y200000 ¥100,1,00

Y000100 | Y1,00100 ¥000200
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Sparse moment matrices

For each subset I, submatrix of M,(y) corresponding of rows
& columns indexed by monomials in x(Ij)

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
L = {1,4} = monomials in x1, x4

1 | Y¥1,00000 ¥0,001,00

Mi(y, ) =
Y1,00000 | Y200000 ¥100,1,00
Y000100 | Y1,00100 ¥000200

V" same for each localizing matrix M, (g;y)
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Sparse primal-dual Moment-SOS hierarchy

frmin = infeex f(x) with X = {x: g;(x) > 0}

Dense Moment-SOS hierarchy

(Moment) (SOS)
inf ) fava = sup A
14
st. My(y) =0 st. AeR
Mrfrj(gj)’) =0 f—/\:0’0+20’]'gj
)
Yo=1
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Sparse primal-dual Moment-SOS hierarchy

frin = infyex f(x) with X = {x: g;(x) > 0}
f = Yk fr, with f, depends on x(Ij)
Each ¢; depends on some I

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Y fava = sup A
st M,(y, 1) =0 st A€R
Mr*rj(g]'yllk) =0 f_/\:Z(‘TkO‘F Z‘Tjgj)
k j€lk
Yvo=1 )
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Sparse primal-dual Moment-SOS hierarchy

frin = infyex f(x) with X = {x: g;(x) > 0}
f = Y% fr, with f; depends on x(I;)
Each g; depends on some I

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf ) fava = sup A
[
st M,(y, 1) =0 st A€R
Mr*rj(g]'yllk) =0 f_/\:Z(‘TkO‘F Z‘Tjgj)
k J€Jk
Yo=1 )

RIP holds for (I) + ball constraints for each x(Iy) = Primal
and dual optimal value converge to fin by sparse Putinar
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Computational cost

fin = infyex F(x) with X = {x : g;(x) > 0, < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Zf“ Ya = sup A
st My(y, L) =0 st. AeR
Mr*”j(g]'yllk) =0 f=A :Z(‘Tk0+ Zgjgj)
k j€k
v=1 )
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Computational cost

fmin = infyex f(x) with X = {x: gj(x) > 0,j < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Zf“ Ya = sup A
st My(y, L) =0 st. AeR
Mr*”j(g]'yllk) =0 f=A :Z(‘Tk0+ Z‘Tjgj)
k j€k
v=1 )

(m + p) SOS in at most 7 vars of degree < 2r
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Computational cost

fmin = infyex f(x) with X = {x: gj(x) > 0,j < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf Zf“ Ya = sup A
st My(y, L) =0 st. AeR
M, (8jy, Ix) = 0 f=A=) (ok+ ), 08
k J€Jk
v=1 )

(m + p) SOS in at most 7 vars of degree < 2r
V" (m+ p) O (r27) SDP vars
18/87
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Computational cost

fmin = infyex f(x) with X = {x: g;(x) > 0,j < m}
T =max{|L|,...,|I,|}

Sparse Moment-SOS hierarchy

(Moment) (SOS)
inf ) fava = sup A
st My (y,I;) =0 st. AeR
M; (8 y,1x) = 0 f=A=Y(0+ ) )
k J€Jk
Yo=1 )

(m + p) SOS in at most 7 vars of degree < 2r
V" (m+p) O (#27) SDP vars vs (m +1) O (") in the dense SDP
18/87
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Sparse linear program over measures

In the dense setting:
min — inf / d
fi inf [ fdp
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Sparse linear program over measures

In the dense setting:
min — inf / d
fi inf [ fdp
s.t. U S M+(X)
In the sparse setting:

Xi = {x(I) : gj(x) = 0:j € Jx} = the subspace of X which only
“sees” variables indexed by I
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Sparse linear program over measures

In the dense setting:
min — inf / d
fi inf [ fdp
s.t. U S M+(X)
In the sparse setting:

X = {x(Ix) : gj(x) = 0:j € Jx} = the subspace of X which only
“sees” variables indexed by I

Xij = only “sees” variables indexed by Iy N I;
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Sparse linear program over measures

In the dense setting:
min — inf / d
fi inf [ fdp
s.t. U S M+(X)
In the sparse setting:

X = {x(Ix) : gj(x) = 0:j € Jx} = the subspace of X which only
“sees” variables indexed by I

Xij = only “sees” variables indexed by Iy N I;

V" one measure y for each Iy — marginals 7tz on M (Xy;)

Sparse moment SDPs relax the sparse LP over measures:

fes = inf Z/ Fediy

S-t- Tkt = Ttk e € M (Xx)
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The dual of sparse Putinar’s Positivstellensatz

Theorem [Lasserre ’06]
RIP holds for (Iy) = fmin = fes = i}nf 2/ fedpk
Lk k Xk

s.t. TCikptj = TTkjHk
pe € My (Xi)

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 20/87



The dual of sparse Putinar’s Positivstellensatz

Theorem [Lasserre ’06]
RIP holds for (Iy) = fmin = fos = i{lf 2/ fredpix
Lk k Xk

s.t. TCikptj = TTkjHk
pe € My (Xi)

V" Proof: there exists i € M (X) with marginal j; on X,

M (X)

M (Xq) M (Xz)

N A

M (Xq2)
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A first (dual) key message

‘?"THE MEASURE LP PRESERVES SPARSITY |V
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Extracting minimizers: the dense case

Let rin be the minimal relaxation order.

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 22/87



Extracting minimizers: the dense case

Let rmin be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion ’05]

Assume that the moment SDP has an optimal solution y with cost
f"and

rank M,/ (y) = rankM,._, _ (y) for some r’ <r.
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Theorem: dense extraction [Lasserre & Henrion ’05]

Assume that the moment SDP has an optimal solution y with cost
f"and

rank M,/ (y) = rankM,._, _ (y) for some r’ <r.

Then " = fin and the LP over measures has an optimal solution
i € My (X) supported on ¢ = rank M,/ (y) points of X.
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Extracting minimizers: the dense case

Let rin be the minimal relaxation order.

Theorem: dense extraction [Lasserre & Henrion ’05]

Assume that the moment SDP has an optimal solution y with cost
f"and

rank M,/ (y) = rankM,._, _ (y) for some r’ <r.

Then " = fin and the LP over measures has an optimal solution
i € My (X) supported on ¢ = rank M,/ (y) points of X.

Extraction possible with the Gloptipoly software

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 22/87



Extracting minimizers: the sparse case

ar = maxjej, r; = max half degree of g; depending on I;.
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Extracting minimizers: the sparse case

ar = maxjej, r; = max half degree of g; depending on I;.

Theorem: sparse extraction [Lasserre '06]

Assume that the sparse moment SDP has an optimal solution y with
cost fls and

rank M, (y, Iy) = rank M, _,, (y, Ir)
rankM,(y, [N ;) =1
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Extracting minimizers: the sparse case

ar = maxjej, r; = max half degree of g; depending on I;.

Theorem: sparse extraction [Lasserre '06]

Assume that the sparse moment SDP has an optimal solution y with
cost f{s and

rank M, (y, Iy) = rank M, _,, (y, Ir)
rank M, (y, [ N I;) =1

Then fls = fmin = fos & sparse measure LP has optimal solution y; €
M (X) supported on t; = rank M, (y, I;) points of X.
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Extracting minimizers: the sparse case

ar = maxjej, r; = max half degree of g; depending on I;.

Theorem: sparse extraction [Lasserre '06]

Assume that the sparse moment SDP has an optimal solution y with
cost f{s and

rank M, (y, Iy) = rank M, _,, (y, Ir)
rank M, (y, [ N I;) =1

Then fls = fmin = fos & sparse measure LP has optimal solution y; €
M (X) supported on t; = rank M, (y, I;) points of X.

V" RIP is not required!
V" Extract x(k) from M, (y, I,) = minimizer x with (xi)ier, = x(k)

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 23/87



Application to rational functions

s pid) . .
fonin = ;g)f(zl: el >0o0nX, p;q;depends onlyon I;
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Application to rational functions

Fmin = 1nf Z Zl j: , g;>0o0nX, p;,q;depends only on I;
i 1

Theorem: dense measure LP [Burgarin et al. ’16]
fmin - " E/l\l;llfr Z/ pi d,ut
s.t. /Xx qidyi:/xx”‘qldyl,aE]N"

/)(qld}"‘l =1
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Application to rational functions

Fmin = in)f(z pi((x) , gi>0onX, pjq;dependsonlyon I;
X€e ;

q:(x)

Theorem: dense measure LP [Burgarin et al. ’16]

fmin = i EJI\I;E / pi d,ut

s.t. /x gidy; = /x“qldyl,aE]N"

qrdp =1

Theorem: sparse measure LP [Burgarin et al. *16]

fmin = fcs ,E./gllf Z/ pi d,uz
st nz](qldu ) = mji(g;du;)

X gidp; =1

><\><
. |
<
.
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f(x) = x1x2 + x3x4
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]

Exact f(x) = x1x2 + x3x4
Floating-point f(x,e) = [x1x2(1+e1) + x3x4(1 +e2)] (1 +e3)
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]
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Application to roundoff errors
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Exact f(X) = X1X2 + X3X4
Floating-point f(x,e) = [x1x2(1+e1) + x3x4(1 +€2)] (1 + e3)
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1: Error f(x) — f(x,e) = £(x,e) + h(x,e), ¢ linear in e
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Application to roundoff errors

[Magron Constantinides Donaldson ’17]
Exact f(x) = x1x2 + x3x4

Floating-point f (x, e) = [x1x2(1+e1) + x3x4(1 + €2)](1 + e3)
x€X, |e|<27% =24 (single) or 53 (double)

1: Error f(x) — f(x,e) = £(x,e) + h(x,e), ¢ linear in e
2: Bound h(x, e) with interval arithmetic

3: Bound /(x, e) with SPARSE SUMS OF SQUARES

VI — {x,e,} = |m(n+1)¥ instead of (n +m)* | SDP vars
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Application to roundoff errors

f = XoX5 + X3Xg — X2X3 — X5X¢ + xl(—xl + X0 4+ x3 — x4+ x5+ x6)

X € [4.00,636]°, ec[-ee€]?®, e=2"

Dense SDP: (°F155%) = 12650 variables ~» Out of memory
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X € [4.00,636]°, ec[-ee€]?®, e=2"

Dense SDP: (°F155%) = 12650 variables ~» Out of memory
Sparse SDP Real2Float tool: 15(°(17%) = 4950 ~» 759¢
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Application to roundoff errors

f = XoX5 + X3Xg — X2X3 — X5X¢ + xl(—xl + X0 4+ x3 — x4+ x5+ x6)

Victor Magron

X € [4.00,636]°, ec[-ee€]?®, e=2"

Dense SDP: (°F155%) = 12650 variables ~» Out of memory

Sparse SDP Real2Float tool: 15(°(17%) = 4950 ~» 759¢

Interval arithmetic: 922¢ (10 x less CPU)

Symbolic Taylor FPTaylor tool: 721e (21 x more CPU)

SMT-based rosa tool: 762¢ (19 x more CPU)
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Application to roundoff errors

1,000 %
1 7
800 759 62¢ 721e
©
o600 |
5
3)
[aa]
5 400t
=)
[aa]
200 +
0
& BN
{_ﬁé\'o ’(/0 &,&\'\/
& <

CPU Time
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Application to deep learning

[SIAM News March '21]

“Yet DL has an Achilles’ heel. Current implementations can be highly
unstable, meaning that a certain small perturbation to the input of a
trained neural network can cause substantial change in its output.
This phenomenon is both a nuisance and a major concern for the
safety and robustness of DL-based systems in critical
applications—like healthcare—where reliable computations are
essential”
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Application to deep learning

Hidden
Input
Output

m Applications: WGAN, certification

m Existing works: [Lattore et al.’18] based on linear
programming (LP)

m Network setting: K-classifier, ReLU network, 1 4 m layers
(1 input layer + m hidden layer), A; weights, b; biases

m Score of label k < K = ¢, x,, with last activation vector ¢,
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Application to deep learning
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Application to deep learning

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

LIPSCHITZ CONSTANT:
LI =inf{L: vxy € X, |f(x) — f(y)| < LI[x—yll}
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Application to deep learning

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

LIPSCHITZ CONSTANT:

L}"H =inf{L:Vx,y € X,|f(x) — f(y)| < L||x—yl||}
% :sup{HVf(x)H*:XEX}
=sup{t' Vf(x):x € X, ||t]| < 1}
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Application to deep learning

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

LIPSCHITZ CONSTANT:

L = inf{L: ¥xy € X, |f(x) = f(y)] < LIx—yll}
e = sup{||Vf(x)||. : x € X}
= sup{tTVf(x) x e X, ||| <1}
GRADIENT for a fixed label k:
Vr) = ([T diag (ReLU'(2) )

i=1
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Correlative sparsity in POP

ReLU (left) & its semialgebraicity (right)

1 1

0.5 0.5

s> 0 >0
-0.5 -0.5
1 1

1 0.5 0 0.5 1 -1 0.5 0 0.5 1
X X
u = max{x,0} u(u—x)=0u>x,u>0
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Correlative sparsity in POP

ReLU’ (left) & its semialgebraicity (right)

15 15
1 1
S 05 S 05
0 0
-0.5 -0.5

-1 0.5 0 0.5 1 -1 0.5 0.5 1

X X
_ _ 1
u="1g > u(u—1)=0,(u—3)x>0
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Application to deep learning

Local Lipschitz constant: xo € ball of center xo and radius ¢
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Application to deep learning

Local Lipschitz constant: xo € ball of center xo and radius ¢

One single hidden layer (m = 1):

sup t'ATdiag (u)c

x,u,z,t
(z—Ax—b)? =0

Stet2<1,(x—%X +e)(x—% —¢) <0
u(u—-1)=0,(u—-1/2)z>0
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Application to deep learning

Local Lipschitz constant: xo € ball of center xo and radius ¢

One single hidden layer (m = 1):

sup t'ATdiag (u)c

x,u,z,t
(z—Ax—b)? =0

Stet2<1,(x—%X +e)(x—% —¢) <0
u(u—-1)=0,(u—-1/2)z>0

“CHEAP” and “TIGHT” upper bound?
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Our “heuristic relaxation” method: HR-2

V" Go between 1ST & 2ND stair in SPARSE hierarchy
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Our “heuristic relaxation” method: HR-2

V" Go between 1ST & 2ND stair in SPARSE hierarchy

sup t' ATdiag (u)c

Xzt
(z—Ax—b)?2=0

Stet2<1,(x—%X+e)(x—% —¢) <0
u(u—1)=0,(u—-1/2)z>0
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Our “heuristic relaxation” method: HR-2

S\
V" Go between 1ST & 2ND stair in SPARSE hierarchy QW

sup t' ATdiag (u)c

x,u,z,t

(z—Ax—b)?2=0
Stet2 <1, (x—%x+e&)(x—% —¢) <0
u(u—1)=0,(u—-1/2)z>0

V" Pick SDP variables for products in {x,t}, {u,z} up to deg 4
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Our “heuristic relaxation” method: HR-2

sup t' ATdiag (u)c

Xzt
(z—Ax—b)?2=0

Stet2<1,(x—%X+e)(x—% —¢) <0
u(u—1)=0,(u—-1/2)z>0

V" Pick SDP variables for products in {x,t}, {u,z} up to deg 4
V" Pick SDP variables for products in {x,z}, {t,u} up to deg 2
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HR-2 on random (80, 80) networks

Weight matrix A with band structure of width s

SHOR: Shor’s relaxation given by 1ST stair in the hierarchy
LipOpt-3: LP based method

LBS: lower bound given by 10* random samples

4
100 .
5 Algorithm
g

5 10 /—//\ LipOpt-3

S L LBS
147 !

10 20 30 40 10 20 30 40

S S
Upper bound Time
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Application to noncommutative optimization

Self-adjoint noncommutative variables x;, y;

f=x1yity2+ys) +x2(y1+y2—y3) +x3(y1 —v2) —y1 —2y1 — 12

with X1X2 # X2X1, involution (xlyg)* = Y3X1
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Application to noncommutative optimization

Self-adjoint noncommutative variables x;, y;

f=x1yity2+ys) +x2(y1+y2—y3) +x3(y1 —v2) —y1 —2y1 — 12

with X1X2 # X2X1, involution (xlyg)* = Y3X1

Constraints X = {(x,y) : x;,y; %= 0, X2 = xl-,yjz- = Yj, Xiyj = yj¥xi}

i=
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Application to noncommutative optimization

Self-adjoint noncommutative variables x;, y;

f=xyi+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —v1 — 201 — 2
with x1x7 # x,x1, involution (xlyg)* = Y3X1
Constraints X = {(x,y) : x;,y; %= 0, x? = xi,yjz- = Yj, Xiyj = yj¥xi}

MINIMAL EIGENVALUE OPTIMIZATION

Amin = Inf {{f(x,y)v,v) : (x,y) € X, [[v[]| =1}
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Application to noncommutative optimization

Self-adjoint noncommutative variables x;, y;

f=x1yity2+ys) +x2(y1+y2—y3) +x3(y1 —v2) —y1 —2y1 — 12

with x1x7 # x,x1, involution (xlyg)* = Y3X1

Constraints X = {(x,y) : x;,y; %= 0, X2 = xi,yjz- = Yj, Xiyj = yj¥xi}

i=

MINIMAL EIGENVALUE OPTIMIZATION

Amin = Inf{(f(x,y)v,v) : (o, y) € X, [[v]| =1}
=sup A
st f(x,y)—AL=0, VY(x,y)eX
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Application to noncommutative optimization

Ball constraint N — Y_; x? »= 0 in X

Theorem: NC Putinar’s representation [Helton & McCullough '02]

f=0onX = |f= ZS?SZ' + Zzt;g]tﬂ with s;, tji € R({x)
i 7
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Application to noncommutative optimization

Ball constraint N — Y_; x? »= 0 in X

Theorem: NC Putinar’s representation [Helton & McCullough '02]

f=0onX = |f= ZS?S[ + Ezt;g]t], with s;, tji € R({x)
i 7

NC variant of Lasserre’s Hierarchy for Apin:

¥ replace “f — AL = 00on X" by f — AI = ¥ stsi+ L L tigjtji
with s;, t;; of bounded degrees = SDP &/
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Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (x1,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)
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Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS
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Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS Take f = (x1 +x2 +x3)2

GooD NEWS: there is an NC analog of the sparse Putinar’s

Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar "78, Voiculescu '85]
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Application to noncommutative optimization

Self-adjoint noncommutative (NC) variables x = (xq,...,x,)
Theorem [Helton & McCullough ’'02]
f =0« f SOS (all positive polynomials are sums of squares)

BAD NEWS: there is no sparse analog! [Klep Magron Povh '21]
sparse f SOS = f is a sparse SOS Take f = (x1 +x2 +x3)2

GooD NEWS: there is an NC analog of the sparse Putinar’s
Positivstellensatz! Based on GNS construction & amalgamation
[Blackadar "78, Voiculescu '85]

Theorem: Sparse NC Positivstellensatz [Klep Magron Povh '21]

f = Yk frs fx depends on x(Ii)

f>0onX f= kZ:(SZiSki + 2 ti*gjtii)
S

Each g depends on some I § ! _ _ ]I]k

RIP holds for (Ij) — Ski Sees varsin

ball constraints for each x(Iy) tji "sees” vars from g;
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=xiyi+y2+ys) +x2(y1+y2—ys) +x3(y1 —y2) —x1 =251 — ¥2
Maximal violation levels — upper bounds on A, of f on
{(vy) 02} = xi, 97 =y, %y = vy}
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(y1+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —x1 =291 — 12
Maximal violation levels — upper bounds on A, of f on

{(vy) 02} = xi, 97 =y, %y = vy}

A I — {x1,x2, X3,y }
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(y1+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —x1 =291 — 12
Maximal violation levels — upper bounds on A, of f on

{(vy) 02} = xi, 97 =y, %y = vy}

A I — {x1,x2, X3,y }

level sparse dense [Pal & Vértesi 18]
2 0.2550008 0.2509397
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(y1+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —x1 =291 — 12
Maximal violation levels — upper bounds on A, of f on

{(vy) 02} = xi, 97 =y, %y = vy}

A I — {x1,x2, X3,y }

level sparse dense [Pal & Vértesi 18]
2 0.2550008 0.2509397
3 0.2511592 0.2508756
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(y1+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —x1 =291 — 12
Maximal violation levels — upper bounds on A, of f on

2 —

{(oy) 1 xf =xi,y7 =y, %y = yxi}

VI — {x1,x2, %3,k }
level sparse
2 0.2550008
3 0.2511592
3

dense [Pal & Vértesi 18]
0.2509397

0.2508756

0.2508754 (1 day)
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(y1+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —x1 =291 — 12
Maximal violation levels — upper bounds on A, of f on
{(oy) 1 xf =xi,y7 =y, %y = yxi}

VI — {x1,x2, %3,k }
level sparse
2 0.2550008
3 0.2511592
3
4 0.2508917

dense [Pal & Vértesi 18]
0.2509397

0.2508756

0.2508754 (1 day)
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1(y1+y2+ys) +x2(y1+y2—y3) +x3(y1 —y2) —x1 =291 — 12
Maximal violation levels — upper bounds on A, of f on

{(xy):2f =

A I — {x1,x2, X3,y }

level
2

oA Ww

Victor Magron

sparse
0.2550008
0.2511592

0.2508917
0.2508763

i, Y? = Y, xiyj = yjxi}

dense [Pal & Vértesi 18]
0.2509397

0.2508756

0.2508754 (1 day)
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Application to noncommutative optimization

I3320 Bell inequality (entanglement in quantum information)

f=x1yity2+ys) tx2(y1+y2—y3) +x3(y1 —y2) —x1 —2y1 — 2

Maximal violation levels — upper bounds on A, of f on

{(xy):2f =

A I — {x1,x2, X3,y }

level
2

o 0hWW

PERFORMANCE o=

Victor Magron

sparse
0.2550008
0.2511592

0.2508917
0.2508763
0.2508753977180

N

i, Y? = Y, xiyj = yjxi}

dense [Pal & Vértesi 18]
0.2509397

0.2508756

0.2508754 (1 day)

(1 hour)

VS ACCURACY
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Application to SOS of bounded degrees

Theorem: sparse BSOS representation [Weisser et al. '18]
If0< g <lonX, f>0onX&RIP holds for (I;) then

f= Z<Uk+20kaﬁl_[8] (1-g) )

IS

with 0 SOS of degree < 2r
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Application to sparse positive definite forms

Theorem: [Reznick '95] Positivstellensatz

pd form f —

f

with ¢ SOS, r € N

o (o
13"

Victor Magron
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Application to sparse positive definite forms

Theorem: [Reznick '95] Positivstellensatz

pdform f = |f with ¢ SOS, r € N

o (o
13"

Sparse f Y fx, with f; only depends on I;
RUNNING INTERSECTION PROPERTY (RIP)

vk Ln|JIj €I, forsomes; <k
j<k
| S —
I
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Application to sparse positive definite forms

Theorem: [Reznick '95] Positivstellensatz

pdform f = |f with ¢ SOS, r € N

o (o
13"

Sparse f Y fx, with f; only depends on I;
RUNNING INTERSECTION PROPERTY (RIP)

vk Ln|JIj €I, forsomes; <k
j<k
| S —
I

Theorem: sparse Reznick [Mai Lasserre Magron *20]

RIP = |f=) ngf with ;. SOS only depends on I
k k

Uniform H, involve products ||x(I)|3 for I € {I}, I, [; : s; = k}
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More and more applications!

Robust Geometric Perception [Yang & Carlone '20]
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More and more applications!

Robust Geometric Perception [Yang & Carlone '20]

Polynomial matrix inequalities [Zheng & Fantuzzi '20]
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More and more applications!

Robust Geometric Perception [Yang & Carlone '20]
Polynomial matrix inequalities [Zheng & Fantuzzi '20]

Region of attraction [Tacchi et al., Schlosser et al. '21]
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More and more applications!

Robust Geometric Perception [Yang & Carlone '20]
Polynomial matrix inequalities [Zheng & Fantuzzi '20]
Region of attraction [Tacchi et al., Schlosser et al. '21]

Volume computation [Tacchi et al. ’21]
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More and more applications!

Robust Geometric Perception [Yang & Carlone '20]
Polynomial matrix inequalities [Zheng & Fantuzzi '20]
Region of attraction [Tacchi et al., Schlosser et al. '21]
Volume computation [Tacchi et al. ’21]

Robustness of implicit deep networks [Chen et al. '21]
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Term sparsity in POP



Term sparsity via Newton polytope

— Ayha6 g 42 2, .2
f = 4x7x3 4+ x7 — x1x5 + x5

spt(f) = {(4,6),(2,0),(1,2),(0,2)}

Newton polytope % = conv (spt(f))

Squares in SOS decomposition C % NIN"
[Reznick ’78]

X1

X2

f:<x1 Xp  X1X2 xlx% x%x%) Q | x1xo
=0 X1X%

X3
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Term sparsity: the unconstrained case

f= x% —2x1x2 + 3x§ — Zx%xz + zx%x% —2xX3 .

+ 633 + 18x3x3 — 54x5x3 + 1423323 %1

[Reznick 78] = f = (1 x1 x2 x3 x1x2 2xx3) Q fé
~~ 857 = 21 *unknown” entries in Q N
XpXx3
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Term sparsity: the unconstrained case

f — xl 2x1X2 + 3x2 2x1X2 + lexz 2x2X3 1
+ 633 + 18x3x3 — 54x2x3 + 142x3x3 X1
X2

[Reznick 78] = f = (1 x1 x x3 x1x2 2xx3) Q
~~| X3
~~ 857 = 21 “unknown” entries in Q 20 xx

| ()
¥" Term sparsity pattern graph G ‘
E——)

X2X3
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Term sparsity: the unconstrained case

f=x2 —2x1x + 3x3 — 2x3xy 4+ 2x3x3 — 22013 1
+ 633 + 18x3x3 — 54x2x3 + 142x3x3 X1
X2

[Reznick 78] = f = (1 x1 x x3 x1x2 2xx3) Q
~~| X3
~~ 857 = 21 “unknown” entries in Q 20 xx

V" Term sparsity pattern graph G
+ chordal extension G’ ° @ @

X2X3
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Term sparsity: the unconstrained case

f=x2 —2x1x + 3x3 — 2x3xy 4+ 2x3x3 — 22013 1

+ 633 + 18x3x3 — 54x2x3 + 142x3x3 X1

[Reznick 78] = f = (1 x1 x x3 x1x2 XpX3) \%, 2
~~ 857 = 21 “unknown” entries in Q 70| xyxo
X2X3

V" Term sparsity pattern graph G

+ chordal extension G’ @ @ @
Replace Q by Q. with nonzero entries at edges of G’
~+ 6 + 9 =15 “unknown” entries in Q¢
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 45/87



Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{a,} € E= a+pcsuppf|Jsuppyg |J 2«

la|<r
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{a,} € E= a+pcsuppf|Jsuppyg |J 2«

la|<r

An example with » = 2
f = xt+x1x3 + xpx3 + x3x3
91 :1—x%—x2—x§ 0 =1—1x3x4
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Term sparsity: support extension

o' +p =a+pand (x,f) € E= («/,p') € E

QO OO
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 47/87



Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{w,p} € E< a+pesupp f|suppg |J 2«

laf<r

~> support extension

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 47/87



Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{w,p} € E< a+pesupp f|suppg |J 2«

laf<r

~ support extension ~» chordal extension G’
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Term sparsity: the constrained case

At step r of the hierarchy, tsp graph G has

Nodes V = monomials of degree < r
Edges E with

{w,p} € E< a+pesupp f|suppg |J 2«

laf<r

~ support extension ~» chordal extension G’
By iteratively performing support extension & chordal extension

GOV =G c...cG® cgtth c...

V" Two-level hierarchy of lower bounds for f,..i, indexed by
sparse order s and relaxation order r
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)

Ci — Mc,(y)
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)
Ci — Mc,(y)
In the moment relaxation,

M;(y) =0 — Mc(y) = 0
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)
Ci — Mc,(y)
In the moment relaxation,
M, (y) =0 — Mc,(y) =0

Similarly for the localizing matrices M,—_,,(g;y)
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Term sparsity: primal moment relaxations

Let G’ be a chordal extension of G with maximal cliques (C;)
Ci — Mc,(y)
In the moment relaxation,
M, (y) =0 — Mc,(y) =0

Similarly for the localizing matrices M,—_,,(g;y)

V" Each constraint G; ~ G](S) ~~ cliques C](j)
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Term sparsity: primal moment relaxations

Let C](j.) be the maximal cliques of G](S). Foreachs > 1

t’:és = inf Y fﬂyﬂé
s.t. Mcéfl.) (y) =0
MC/(? (8y) 70

yo=1

V" dual yields the TSSOS hierarchy

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization
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A two-level hierarchy of lower bounds

Tmin,1 Tmin,2 Tmin
ts < ts < e S f
Al N Al
Tmin+1,1 Tmin+1,2 Tmin+1
fts < fts < e S f
Al N Al
Al N Al
r,1 r,2 r
g S i S < f
Al N A
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Different choices of chordal extensions

X1X2
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Different choices of chordal extensions
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order s, the sequence (f;.*);>r,.. is monotonically
nondecreasing.
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order s, the sequence (f;.*);>r,.. is monotonically
nondecreasing.

V" Fixing a relaxation order r, the sequence (f")s>1 T f" in
finitely many steps if the maximal chordal extension is used.
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

Fixing a sparse order s, the sequence (f;.*);>r,.. is monotonically
nondecreasing.

V" Fixing a relaxation order r, the sequence (f")s>1 T f" in
finitely many steps if the maximal chordal extension is used.

V" The block structures converge to the one determined by the
sign symmetries if the maximal chordal extension is used.
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

1,8

Fixing a sparse order s, the sequence ( f;

nondecreasing.

)r>rm 1S MONOtonically

V" Fixing a relaxation order r, the sequence (f")s>1 T f" in
finitely many steps if the maximal chordal extension is used.

V" The block structures converge to the one determined by the
sign symmetries if the maximal chordal extension is used.

f=1+x3x5 4+ x{x3 + xjx3 — x1x3 — 3x3x3
Newton polytope ~» Z = (1 x1x2 x1x3 x3xp x3x3)
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Term sparsity: convergence guarantees

Theorem [Lasserre Magron Wang '21]

1,8

Fixing a sparse order s, the sequence ( f;

nondecreasing.

)r>rm 1S MONOtonically

V" Fixing a relaxation order r, the sequence (f")s>1 T f" in
finitely many steps if the maximal chordal extension is used.

V" The block structures converge to the one determined by the
sign symmetries if the maximal chordal extension is used.

f=1+x3x5 4+ x{x3 + xjx3 — x1x3 — 3x3x3
Newton polytope ~» Z = (1 x1x2 x1x3 x3xp x3x3)

Xy — —Xp
Sign-symmetries blocks (1 x1x3 x2x3) (x1x2 x2x2)
TSSOS blocks (1 x123 x2x%) (x1x2) (x3x2)
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A second key message

Victor Magron

TSSOS preserves the block structure|

related to sign-symmetries

POEMA Learning Week 2: Sparse polynomial optimization
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Comparison with (S§)DSOS

Let f be a nonnegative polynomial of degree 24
fis SOS & f = v Qv with Q = 0 ~» semidefinite program

where v contains 1, x1, ..., X, x2,..., x4
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Comparison with (S§)DSOS

Let f be a nonnegative polynomial of degree 24

fis SOS & f = v Qv with Q = 0 ~» semidefinite program

where v contains 1, x1, ..., X, x2,..., x4

To reduce the number of “unknown” entries in Q, one can force:
[Ahmadi & Majumdar ’14]
Q diagonally dominant: Q;; > }_;+; Q;; ~~ linear program

Q ~ to a diag. dominant matrix ~~» second-order program

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 54 /87



Comparison with (S§)DSOS

Let f be a nonnegative polynomial of degree 24

fis SOS < f = v Qv with Q 3= 0 ~~ semidefinite program

where v contains 1, x1, ..., X, x2,..., x4

To reduce the number of “unknown” entries in Q, one can force:
[Ahmadi & Majumdar ’14]
Q diagonally dominant: Q;; > Yi#i Qij ~ linear program

Q ~ to a diag. dominant matrix ~~» second-order program

Theorem [Lasserre Magron Wang '21]

The first TSSOS relaxation is always more accurate than the SDSOS
relaxation
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Combining correlative & term sparsity

Partition the variables w.r.t. the maximal cliques of the csp
graph
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Combining correlative & term sparsity

Partition the variables w.r.t. the maximal cliques of the csp
graph

For each subsystem involving variables from one maximal
clique, apply TSSOS
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Combining correlative & term sparsity

Partition the variables w.r.t. the maximal cliques of the csp
graph

For each subsystem involving variables from one maximal
clique, apply TSSOS

V" a two-level CS-TSSOS hierarchy of lower bounds for fiin
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Combining correlative & term sparsity

f=1+ 2?21 x?‘ 4+ x1X2X3 + X3X4X5 + X3X4Xe + X3X5X¢ + X4X5X6

csp graph
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Combining correlative & term sparsity

6
f=1+%74 x? + X1X0X3 + X3X4X5 + X3X4X6 + X3X5X + X4X5X6

tsp graph for the first clique
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Combining correlative & term sparsity

f =1+ 216:1 X? + X1X2X3 4+ X3X4X5 + X3X4Xg + X3X5X6 + X4X5X6

tsp graph for the second clique

(1) &
X5X6 X4

X4X6 X5

"‘@ @@@f
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Combining correlative & term sparsity

f =1+ Zle x? + X1X2X3 4+ X3X4X5 + X3X4X6 + X3X5X6 + X4X5X6

tsp graph without correlative sparsity
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Application to optimal power-flow

p%cn +j q(lgcn

Optimal Powerflow 1 ~ 103
[Josz et al. '18]

130 + 20§ 130 + 20j
3 2

65 + 10j

inf ZseG(CZs(%(STE))Z + s R(SF) + cos)
VI,Sé,Sll
st. LVt =0,
s§lgs§<sg”vSeG <V <vivieN

Yeeg, S5 =S =X5|ViP =1 eruek Siip EN
Vi « ViVi* _

Sij = (Y}; — *)|‘Ti].‘|z G Si=

Sy <spi, 03 < Z(ViVy*) <63, V(ij) €E
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Application to optimal power-flow

mb = the maximal size of blocks

m = number of constraints

" - CS(r=2) CS+TS (r=2,s=1)
mb | time(s) | gap | mb | time(s) | gap
114 315 66 5.59 0.39% | 31 2.01 0.73%
348 | 1809 | 253 — - 34 278 0.05%
766 3322 153 585 0.68% | 44 33.9 0.77%
1112 | 4613 496 — — 31 410 0.25%
4356 | 18257 | 378 . - 27 934 0.51%
6698 | 29283 | 1326 — - 76 1886 0.47%

Victor Magron
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Application to noncommutative optimization

Ground-state energy < minimal eigenvalue of an Hamiltonian

H = Z (xixj+yiyj+ ZiZj)
(i.j)

spin states (x;,y;,z;), constraints

Lattices: 1D 2D Kagome by w) VVL{/}/*
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Application to noncommutative optimization

Ground-state energy < minimal eigenvalue of an Hamiltonian

H = Z (xixj+yiyj+ ZiZj)
(i.j)

spin states (x;,y;,z;), constraints

Lattices: 1D 2D Kagome bl V}) Q

First neighbors interactions : H = Y!' | xixj 11 + YiVit1 + ZiZit1
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Application to noncommutative optimization

Ground-state energy < minimal eigenvalue of an Hamiltonian

H = Z (xixj+yiyj+ ZiZj)
(i.j)

spin states (x;,y;,z;), constraints

Lattices: 1D 2D Kagome bl V}) Q

First neighbors interactions : H = Y!' | xixj 11 + YiVit1 + ZiZit1

periodic boundary conditions =
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Application to noncommutative optimization

Ground-state energy < minimal eigenvalue of an Hamiltonian

H = Z (xixj+yiyj+ ZiZj)
(i.j)

spin states (x;,y;,z;), constraints

Lattices: 1D 2D Kagome R ﬁ,} ﬁ,ﬂ; 4/4

First neighbors interactions : H = Y!' | xixj 11 + YiVit1 + ZiZit1

periodic boundary conditions =

Existing + efficient techniques: quantum Monte Carlo & variational
algorithms = upper bounds on minimal energy
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Application to noncommutative optimization

Lower bounds of the energy 1D lattice + + ; ; ;
L ool 4
—0.445 p,_:;’:-f-?m'fv-v'”“" """ - -
B s i e 1
—0.450 1
—0.455 1
—.- d=2
—0.460 - -e-  d=3
—-—.- d=4
-e-  DMRG
—0.465 —.- Extra d= 2
—e- Extrad=3
Extra d=4
—0.470 1 . . . . ‘
20 40 60 80 100

Dense d = 4, n = 10% = 10" variables (solvers handle ~ 10%)
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Application to noncommutative optimization

Lower bounds of the energy 1D lattice + + ; ;

—0.445 1

—0.450 -

—0.455

—0.460

—0.465 -

—0.470

d
—e- d
d

2
3
4
—.- DMRG

—.- Extra d=2

-.- Extrad=3
Extrad=4

T
20 40 60 80 100

Dense d = 4, n = 10% = 10" variables (solvers handle ~ 10%)
Sparse solved within 1 hour on PFCALCUL at LAAS

Victor Magron
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Application to noncommutative optimization

CLASSICAL WORLD
P (A1®B1+A1 @B+ A2 ®B1 — Ay ®Ba)p < 2

for separable states y € CF ® C* and matrices A;, B; satisfying
Ar=A, A =1,B =B, B =1
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Application to noncommutative optimization
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P (A1®B1+A1 @B+ A2 ®B1 — Ay ®Ba)p < 2

for separable states y € CF ® C* and matrices A;, B; satisfying
Ar=A, A =1,B =B, B =1

TSIRELSON’S BOUND: 2 — 24/2 for maximally entangled states
P (X @ Y)p = tr(XY)
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Application to noncommutative optimization

CLASSICAL WORLD
P (A1®B1+A1 @B+ A2 ®B1 — Ay ®Ba)p < 2

for separable states y € CF ® C* and matrices A;, B; satisfying
Ar=A, A =1,B =B, B =1

TSIRELSON’S BOUND: 2 — 24/2 for maximally entangled states
P (X @ Y)p = tr(XY)

2\6 = trmax{a1b1 + a1by + arby — a»by : {/1]2 = b]2 = 1}
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Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS

covy(X,Y) =" (X Y)p —¢p" (X Dy - p* (1Y)
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Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS
covy(X,Y) =¢"(X@Y)p =y (X D - p* (I Y)p

covy(Aq, By) + covy(Aq, Bz) + covy(Ay, B3)
+ COle(Az, Bl) + COVl/,(Az, Bz) — COVl/,(Az, Bg) <
+covy(Asz, By) — covy(As, By)

N[O

for separable states but . ..
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Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS
covy(X,Y) =¢"(X@Y)p =y (X D - p* (I Y)p

covy(Aq, By) + covy(Aq, Bz) + covy(Ay, B3)
+ COle(Az, Bl) + COVl/,(Az, Bz) — COVl/,(Az, Bg) <
+covy(Asz, By) — covy(As, By)

N[O

for separable states but . . .5 for one maximally entangled state
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Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS
covy(X,Y) =¢"(X@Y)p =y (X D - p* (I Y)p

covy(Aq, By) + covy(Aq, Bz) + covy(Ay, B3)
+ COle(Az, Bl) + COVl/,(Az, Bz) — COVl/,(Az, Bg) <
+covy(Asz, By) — covy(As, By)

N[O

for separable states but . . .5 for one maximally entangled state

V" 2nd dense SDP relaxation of the corresponding trace
problem outputs 5

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 65 /87



Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS
covy(X,Y) =¢"(X@Y)p =y (X D - p* (I Y)p

covy(Aq, By) + covy(Aq, Bz) + covy(Ay, B3)
+ COle(Az, Bl) + COle(Az, Bz) — COle(Az, Bg) <
+covy(Asz, By) — covy(As, By)

N[O

for separable states but . . .5 for one maximally entangled state

V" 2nd dense SDP relaxation of the corresponding trace
problem outputs 5 = max value for all maximal entangled states
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Application to noncommutative optimization

COVARIANCES OF QUANTUM CORRELATIONS
covy(X,Y) =¢"(X@Y)p =y (X D - p* (I Y)p

covy(Aq, By) + covy(Aq, Bz) + covy(Ay, B3)
+ COle(Az, Bl) + COVl/,(Az, Bz) — COVl/,(Az, Bg) <
+covy(Asz, By) — covy(As, By)

N[O

for separable states but . . .5 for one maximally entangled state

V" 2nd dense SDP relaxation of the corresponding trace
problem outputs 5 = max value for all maximal entangled states

V" 2nd sparse SDP gives also 5 ... 10 times faster
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Application to networked systems stability

Lyapunov function

05 15

N N
f= Zﬂi(x?ﬂf) - Z bz‘kxllef a; € [1,2] by € [W’W]
i=1

ik=1
~ (MIB)((N3?) 4+ 1) /2 “unknown” entries in Q = 231 for N = 5
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Application to networked systems stability

Lyapunov function

N 2 4 a ) 05 15
f = Zai<xi + xi) - Z bikxi xk [11' S [1;2] bik - [W, W]
i=1 k=1

NI2)((N3?) 4+ 1) /2 “unknown” entries in Q = 231 for N = 5

~

¥ tsp graph G
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Application to networked systems stability

Lyapunov function

. A 05 15
f=Yald +xf) = ) baxixg ai € [L2] by €[5, 7]
i=1 if=1 N°N

~ (MIB)((N3?) 4+ 1) /2 “unknown” entries in Q = 231 for N = 5

¥ tsp graph G

~ (N +1)2 “unknown” entries in Q¢ = 36 for N =5

Proof that f > 0 for N = 80 in ~ 10 seconds!
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Application to networked systems stability

N
Duffing oscillator Hamiltonian V =) " a;(
i=1

=

.
2 4

N
3 Y bye(xi — x)*

ik=1

) +

Z

2 2
On which domain v > 02 /=7 ; Ai x7(8§—x7) =0

>0
= V>0whenx? <g
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Application to networked systems stability

. , I N xi2 x;‘ 1 4
Duffing oscillator Hamiltonian V = ;ai(? — Z) + 3 iz_::l bir (x; — x¢)
Hg—xf) =0

N
On which domain v > 02 /=Y~ ; A x;
>0

@ = V>0whenx? <g

FD 066

W
(e~

V" tsp graph G
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Application to networked systems stability

N x.2 _‘)C‘.L 1 N
Duffing oscillator Hamiltonian V = Zai(jl — Zl) +3 Y bi(xi — x)*
=~ =
1 N 2 i 2
H . = — . “ J— 4 >
On which domain V > 0? f=v Z\ Ai x7(8§—x7) =0

i=1 )

@ = V>0whenx? <g
@eg OJIORNC,
(e~
N(N+1)

s MEEL L 6(0) + N “unknown” entries in Qg = 80 for N =5

V" tsp graph G

Proof that f > 0 for N = 50 in ~ 1 second!
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Application to joint spectral radius (JSR)

Given A ={A4,..., Ay} CR"™" the JSR is

p(A):= lim max i [|Ag A, - - -Agk||%

k—ooge{l,...,m
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Application to joint spectral radius (JSR)

Given A ={A4,..., Ay} CR"™" the JSR is

o(A):=lim max ||AgAg, - Ag ||t

k—ooge{1,...,m}k

Tons of applications:
m stability of switched linear systems
m continuity of wavelet functions
m trackability of graphs
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Application to joint spectral radius (JSR)

Given A ={A4,..., Ay} CR"™" the JSR is

o(A):=lim max ||AgAg, - Ag ||t

k—ooge{1,...,m}k

Tons of applications:
m stability of switched linear systems
m continuity of wavelet functions
m trackability of graphs

... NP-hard to compute/approximate
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Application to joint spectral radius (JSR)

Theorem [Parrilo & Jadbabaie '08]
Given A = {A;,..., Ay} € R™", if a positive definite form f of
degree 2r satisfies

FAX) <P fF(x) Vi x

Then p(A) <o
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Application to joint spectral radius (JSR)

Theorem [Parrilo & Jadbabaie '08]
Given A = {A;,..., Ay} € R™", if a positive definite form f of
degree 2r satisfies

FAX) <P fF(x) Vi x

Then p(A) <o

Vo(A) <p (A= inf
p(A) <p"(A) ant

" {f(X) ~lIxi3 808
7f(x) = f(Ax) SOS
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Application to joint spectral radius (JSR)

Theorem [Parrilo & Jadbabaie '08]
Given A = {A;,..., Ay} € R™", if a positive definite form f of
degree 2r satisfies

FAX) <P fF(x) Vi x

Then p(A) < vy

Vo(A) <p (A= inf
p(A) <p"(A) ant

" {f(X) ~lIxi3 808
7f(x) = f(Ax) SOS

Bisection on v + SDP
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Application to joint spectral radius (JSR)

V" At fixed r, replace f by a “term sparse” f
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Application to joint spectral radius (JSR)

V" At fixed r, replace f by a “term sparse” f

fo = Xj-q cjx" with support <)
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Application to joint spectral radius (JSR)

V" At fixed r, replace f by a “term sparse” f

fo = Xj-q cjx" with support <)
Recursively, f, 1 = ¥, 1) caXx* and

) = 77y U supp(fs—1(Aix)) @71(5) = /%) Usupp(fs(Aix))
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Application to joint spectral radius (JSR)

V" At fixed r, replace f by a “term sparse” f

fo=YiL 1ij " with support .7 (¥)
Recursively, fS 1= Yoe. 61 Cax* and

) = VU supp(fii(Ax)) " = /9 Usupp(fu(Ax))

Theorem: Sparse JSR [Maggio Magron Wang '21]

P o(A) < ' (A) <P (A) = inf

fER[Z )]y

" {f(X)—IIXII%rSOS( )
() — f(Ax) SOS(7")

v
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Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (Ay or Ay): A = {AgAn' | i < m}
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Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (Ay or Ay): A = {AgAn' | i < m}

System asymptotically stable < p(A) < 1
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Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (Ay or Ay): A = {AgAn' | i < m}

System asymptotically stable < p(A) < 1

(un)stability test with 10 matrices & n = 25 or 2 matrices &
n = 100 intractable with the dense JSR

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 71/87



Application to joint spectral radius (JSR)

Closed-loop system evolves according to either a completed or
a missed computation (Ay or Ay): A = {AgAn' | i < m}

System asymptotically stable < p(A) < 1
(un)stability test with 10 matrices & n = 25 or 2 matrices &

n = 100 intractable with the dense JSR
V" takes less than 10 seconds with the Sparse JSR!
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Conclusion & further topics



Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, JSR
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Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, JSR

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR
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Conclusion

SPARSITY EXPLOITING CONVERGING HIERARCHIES to minimize
polynomials, eigenvalue/trace, JSR

FAST IMPLEMENTATION IN JULIA: TSSOS, NCTSSOS, SparseJSR

V" Combine correlative & term sparsity for problems with n = 10°
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Further topics

Convergence rate of SPARSE hierarchies?
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Further topics

Convergence rate of SPARSE hierarchies?

V" (smart) solution extraction for term sparsity
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Further topics

Convergence rate of SPARSE hierarchies?

V" (smart) solution extraction for term sparsity

Numerical conditioning of sparse SDP?
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Further topics

Convergence rate of SPARSE hierarchies?

V" (smart) solution extraction for term sparsity
Numerical conditioning of sparse SDP?

V" Tons of applications . ..
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Further topics: deep learning

V" “Direct” certification of a classifier with 1 hidden layer

max (C" —CM)z

X,Z

oy Jz=ReLU(Ax+b)
U=l <e
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Further topics: deep learning

V" “Direct” certification of a classifier with 1 hidden layer

max (C" — Ck':)z

X,Z
z = ReLU(Ax + b)
Ix —xol| <€

'{" Monotone equilibrium networks [Winston Kolter '20]

z = ReLU(Ax+b) — z = ReLU(Wz + Ax + b)
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Further topics: deep learning

V" “Direct” certification of a classifier with 1 hidden layer

max (C" —CM)z

X,Z
z = ReLU(Ax + b)
Ix —xol| <€

'{" Monotone equilibrium networks [Winston Kolter '20]

z = ReLU(Ax+b) — z = ReLU(Wz + Ax + b)

V" “Indirect” with Lipschitz constant/ellipsoid approximation
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Further topics: power systems

Solving Alternative Current OPF to global optimality
— benchmarks [PGLIB '18] with up to 25 000 buses!

130 + 20
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Further topics: power systems

Solving Alternative Current OPF to global optimality
— benchmarks [PGLIB '18] with up to 25 000 buses!

130 + 20

CoMPLEX vs REAL hierarchy of relaxations?
[D’Angelo Putinar ’09, Josz et al. 18, Magron Wang ’21]

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 75/ 87



Further topics: power systems

Solving Alternative Current OPF to global optimality
— benchmarks [PGLIB '18] with up to 25 000 buses!

130 + 20

CoMPLEX vs REAL hierarchy of relaxations?

[D’Angelo Putinar ’09, Josz et al. 18, Magron Wang ’21]
6515_RTE — n = 7000 complex variables (14000 real variables)
solved at 0.6% gap within 3 hours on PFCALCUL at LAAS
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Further topics: power systems

Solving Alternative Current OPF to global optimality
— benchmarks [PGLIB '18] with up to 25 000 buses!

CoMPLEX vs REAL hierarchy of relaxations?

[D’Angelo Putinar '09, Josz et al. ’18, Magron Wang ’21]
6515_RTE — n = 7000 complex variables (14000 real variables)

solved at 0.6% gap within 3 hours on PFCALCUL at LAAS [ g8

STABILITY OF LARGE-SCALE POWER SYSTEMS — reachability o
analysis of continuous-time systems ¥ Sparse [Kundur '07] ,@
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Further topics: power systems

Solving Alternative Current OPF to global optimality
— benchmarks [PGLIB '18] with up to 25 000 buses!

130 + 20

CoMPLEX vs REAL hierarchy of relaxations?

[D’Angelo Putinar '09, Josz et al. ’18, Magron Wang ’21]
6515_RTE — n = 7000 complex variables (14000 real variables)

solved at 0.6% gap within 3 hours on PFCALCUL at LAAS g8

STABILITY OF LARGE-SCALE POWER SYSTEMS — reachability s
analysis of continuous-time systems ¥ Sparse [Kundur '07] ,@

TIME DELAY SYSTEMS — deteriorate controllers of networked power

systems | V" occupation measures
=
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Further topics: quantum information & more

Ground state energy, trace polynomials for [Werner 89] witnesses
V" symmetric & sparse
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Further topics: quantum information & more

Ground state energy, trace polynomials for [Werner 89] witnesses
V" symmetric & sparse

RESEARCH DIRECTIONS RELYING ON FREE PROBABILITIES

Minimizer approximation: noncommutative Christoffel-Darboux
kernels and the Siciak function [Beckermann et al. '20]
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Thank you for your attention!

https://homepages.laas.fr/vmagron

GITHUB:TSSOS


https://homepages.laas.fr/vmagron
https://github.com/wangjie212/TSSOS
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Newton polytope

Motzkin f = x{x3 4+ x2x5 — 3x3x3 + 1
Compute the Newton polytope of f
Show that f is not SOS
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Newton polytope

Motzkin f = x{x3 4+ x2x5 — 3x3x3 + 1
Compute the Newton polytope of f
Show that f is not SOS

4
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Newton polytope

Motzkin f = x{x3 4+ x2x5 — 3x3x3 + 1
Compute the Newton polytope of f
Show that f is not SOS

4

3

2

1

1 2 3 4

If f SOS then f = ¥ (ax2x, + bxyx3 + cx1xp + d)?
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Newton polytope

Motzkin f = x{x3 4+ x2x5 — 3x3x3 + 1
B Compute the Newton polytope of f
Show that f is not SOS

4

3

2

1

If f SOS then f = Z(uxlxz + bx1x3 + cx1xp +d)?
V" never yields —3x%x3

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization
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Chordal or not chordal?

6 ————————— 5
\1/
1 ——2
4 /
N 4
1 — 2
/
3 —MM—— 2

4 —— 3 3
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Chordal extension
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Chordal extension
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Support extension

Y de
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Support extension
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How big is CS?

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
6 —————— 5

\ 1/
Chordal graph after adding edge (3, 5) /
4
By ——————————————————————————— @
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How big is CS?

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
6 —————— 5

\ 1/
Chordal graph after adding edge (3, 5) /
4
By ——————————————————————————— @

How many SDP variables in the dense and sparse relaxation at order
r=1,2,3?
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How big is CS?

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
6 —————— 5

\ 1/
Chordal graph after adding edge (3, 5) /
4
By ——————————————————————————— @

How many SDP variables in the dense and sparse relaxation at order
r=1,2,3?

maximal cliques I = {1,4} L, =1{1,2,3,5} I3=1{1,3,56}

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 81/87



How big is CS?

f(x) = x2x5 + x3X6 — X2X3 — X5X6 + X1 (—X1 + X2 + X3 — X4 + X5 + X¢)
6 —————— 5

\ 1/
Chordal graph after adding edge (3, 5) /
4
By ——————————————————————————— @

How many SDP variables in the dense and sparse relaxation at order
r=1,2,3?

maximal cliques I = {1,4} L, =1{1,2,3,5} I3=1{1,3,56}

(64227') Vs (ZJE%) +2. (4+427) r =2~ 210vs 155
r =3~ 924 vs 448
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Moment matrix

Write the first (correlative) sparse moment relaxation of
il;(lf X1X2 + X1X3 + X1X4

s.t. x1 —|—x2 <1
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Moment matrix

Write the first (correlative) sparse moment relaxation of

inf
X

s.t.

X1X2 + x1Xx3 + X1Xg

L ={1,2},,={1,3}and I = {1,4}
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Moment matrix

Write the first (correlative) sparse moment relaxation of
il;(lf X1X2 + X1X3 + X1X4

st x+x3<1

L ={1,2},,={1,3}and I = {1,4}

ilg}f Y1100 + Y1010 + Y1001

1 yi000 Vo100
st |* w00 Y1100| =0
* * Y0200

1 — 2000 — Vo200 = 0
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Measure LP preserves sparsity

f = f1+ fa2, fr depends on I}, X compact & each g; depends either
on I or Ip.
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Measure LP preserves sparsity

f = fi+ fa, fc depends on I;, X compact & each g; depends either
on I; or I,. Prove that
min — inf / du = = inf d d
f ;ze/gll+(x) xf # = fos o fxl frdpm + fxz fadpa
s.t. Ty = Moy
€ Mi(Xq), 2 € M4y(Xp)
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Measure LP preserves sparsity

f = fi+ f2, fx depends on I, X compact & each g; depends either
on I or I,. Prove that

min — inf / du = = inf d d

f ;ze/gll+(x) xf # = fos o fxlfl P‘l‘f'fxsz 2
s.t. Ty = Moy

€ Mi(Xq), 2 € M4y(Xp)

v (yk) feasible forfCS = Ju € M4 (X) with marginal ;. on X;

/\

M+ Xz

N A

M, (Xq2)
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Measure LP preserves sparsity

f = fi+ f2, fx depends on I, X compact & each g; depends either
on I or I,. Prove that

min — inf / du = = inf d d

f ;ze/gll+(x) xf # = fos o fxlfl P‘l‘f'fxsz 2
s.t. Ty = Moy

€ Mi(Xq), 2 € M4y(Xp)

v (yk) feasible forfCS = Ju € M4 (X) with marginal ;. on X;

/ \ u = dx with x global min. of f on X

M+ Xz

N A

M, (Xq2)

Victor Magron POEMA Learning Week 2: Sparse polynomial optimization 83/87



Measure LP preserves sparsity

f = fi+ f2, fx depends on I, X compact & each g; depends either
on I or I,. Prove that

min — inf / du = — inf d d
f ;ze/gll+(x) xf # = fos o fxlfl P‘l‘f'fxsz 2

s.t. Ty = Moy
p1 € Mi(X1), 2 € M4(Xp)

v (yk) feasible forfCS = Ju € M4 (X) with marginal ;. on X;

/ \ u = dx with x global min. of f on X

M. (%) p1 = mryp = Dirac at (x;)er,

N A

M, (Xq2)
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Measure LP preserves sparsity

f = fi+ f2, fx depends on I, X compact & each g; depends either
on I or I,. Prove that

min — inf / du = — inf d d
f ;ze/gll+(x) xf # = fos o fxlfl P‘l‘f'fxsz 2

s.t. Ty = Moy
p1 € Mi(X1), 2 € M4(Xp)

v (yk) feasible forfCS = Ju € M4 (X) with marginal ;. on X;

/ \ u = dx with x global min. of f on X

M. (%) p1 = mryp = Dirac at (x;)er,

\ / fCS 2fmin

M, (Xq2)
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Measure LP preserves sparsity

f = fi+ f2, fx depends on I, X compact & each g; depends either
on I or I,. Prove that

min — inf / du = — inf d d
f ;ze/gll+(x) xf # = fos o fxlfl P‘l‘f'fxsz 2

s.t. Ty = Moy
p1 € Mi(X1), 2 € M4(Xp)

A (yk) feasible forfCS = Ju € M (X) with marginal 3, on X;

/ \ u = dx with x global min. of f on X

p1 = mryp = Dirac at (x;)er,

M (X2)
\ / fCS 2fmin
Jx, frdm + Jx, e
M, (Xq2) = Ixfidu+ [x fadu = [x fdp > fmin
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How big is TSSOS? (1/2)
N N
f=Y(x+x)— Y xixf
i=1

ik=1

How many entries in the dense & sparse SOS/moment matrices?
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Dense = (M%) (VA +1)/2in Q Mty in M(y)
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How big is TSSOS? (2/2)

N 2 4 N
f= Z(j—j)Jr Yo (xi = x)t
iz i1

How many entries in the dense & sparse SOS/moment matrices?
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SOS + sparse + RIP =% sparse SOS (1/2)

fi=xi+(ax—1?2 fHh=x3x3+(3-1)° f=fi+h
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SOS + sparse + RIP =% sparse SOS (1/2)

fi=x+(n -1 Hh=xd3+03-1)? f=fi+f
Compute the dense relaxation f2

Compare with the correlative sparse relaxation fZ
Compare with the term sparse relaxation f° fors = 1,2, ...
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SOS + sparse + RIP =% sparse SOS (1/2)

fi=xi+ (o —1)? fo=x3x34+(x3-1)* f=f+f

Compute the dense relaxation f2
Compare with the correlative sparse relaxation fZ
Compare with the term sparse relaxation f° fors = 1,2, ...

'V Install and run TSSOS:

] add https://github.com/wangjie212/TSS0S
using TSSOS, DynamicPolynomials
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SOS + sparse + RIP =% sparse SOS (1/2)

fi=x+(xn-1)? H=x¥3+03-1?% f=f+h

Compute the dense relaxation f2
Compare with the correlative sparse relaxation fZ
Compare with the term sparse relaxation f° fors = 1,2, ...

¥’ Install and run TSSOS:

] add https://github.com/wangjie212/TSS0S

using TSSOS, DynamicPolynomials

@polyvar x1 x2 x3; x=[x1;x2;x3];

f1 = x174+(x1%x2-1)"2; £2 = x272%x372+(x372-1)"2;
f = £f1+£f2
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SOS + sparse + RIP =% sparse SOS (1/2)

fi=x+(xn-1)? H=x¥3+03-1?% f=f+h

Compute the dense relaxation f2
Compare with the correlative sparse relaxation fZ
Compare with the term sparse relaxation f° fors = 1,2, ...

V" Install and run TSSOS:

] add https://github.com/wangjie212/TSS0S

using TSSOS, DynamicPolynomials

@polyvar x1 x2 x3; x=[x1;x2;x3];

f1 = x174+(x1*x2-1)7"2; 2 = x272%x372+(x372-1)"2;

f = f1+£f2

opt,sol,data=cs_tssos_first([f], x, 2, CS=false,TS=false);
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SOS + sparse + RIP =% sparse SOS (1/2)

fi=x+(xn-1)? H=x¥3+03-1?% f=f+h

Compute the dense relaxation f2
Compare with the correlative sparse relaxation fZ
Compare with the term sparse relaxation f° fors = 1,2, ...

V" Install and run TSSOS:

] add https://github.com/wangjie212/TSS0S

using TSSOS, DynamicPolynomials

@polyvar x1 x2 x3; x=[x1;x2;x3];

f1 = x174+(x1*x2-1)7"2; 2 = x272%x372+(x372-1)"2;

f = f1+£f2

opt,sol,data=cs_tssos_first([f], x, 2, CS=false,TS=false);
opt,sol,data=cs_tssos_first([f], x, 2, TS=false);
opt,sol,data=tssos_first([f], x, 2, TS="block");
opt,sol,data=tssos_higher(data, TS="block");
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SOS + sparse + RIP =% sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:

f=fA+f Bue={x:1-x3—x3—-23>0,1—x3—x%—x3 =0}
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SOS + sparse + RIP =% sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:
f=hH+h ]Bnc:{x:l—x%—x%—x%>;0,1—x%—x§—xﬁ>0}
Compute Anin(f) on Bpe with 2nd dense relaxation

cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");
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SOS + sparse + RIP =% sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:
f=hH+h ]Bnc:{x:l—x%—x%—x%>;0,1—x%—x§—xﬁ>0}
Compute Anin(f) on Bpe with 2nd dense relaxation

cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");

Compare with the correlative and term sparse relaxations
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https://homepages.laas.fr/vmagron/ncball

SOS + sparse + RIP =% sparse SOS (2/2)

Download from https://homepages.laas.fr/vmagron/ncball:
f=hH+h ]Bnc:{x:l—x%—x%—x%>;0,1—x%—x§—xﬁ>;0}
Compute Anin(f) on Bpe with 2nd dense relaxation

cs_nctssos_first([f;ncball],x,2,CS=false, TS=false,
obj="eigen");

Compare with the correlative and term sparse relaxations

cs_nctssos_first([f;ncball],x,2,TS=false, obj="eigen");
cs_nctssos_first([f;ncball],x,3,TS=false, obj="eigen");
opt,data=nctssos_first([f;ncball]l,x,2,TS="MD",
obj="eigen");

opt,data = nctssos_higher! (data,TS="MD");
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