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OREM project : context and objectives

Context
The integration of energy constraints in deterministic scheduling models, such as job-shop scheduling or
resource-constrained project scheduling, yields a combinatorial optimization challenge. It follows that the
literature on this subject is sparse. Pre-existing studies involve multiple energy sources and general non-linear
efficiency functions, but generally no scheduling. All our previous work on scheduling under energy constraints
considered linear (and even identical) energy efficiency functions, which oversimplifies the problem.

Objectives

– Address the (combinatorial) optimization challenge of integrating energy sources constraints (physical,
technological and performance characteristics) in deterministic (scheduling) models.

– Solve explicitly and in an integrated fashion the resulting energy resource allocation problems and energy-
consuming activity scheduling problems with non linear energy efficiency functions.

Applications and challenge

Applications
Scheduling for hybrid electric vehicles, intelligent buildings, processes and manufacturing
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Challenge
Non-linearities come from energy efficiency functions

Piecewise linear bounding procedures for the optimal
management of water pumping and desalination processes

Proof of concept on a water pumping and desalination system [CLAIO 2014, IFORS 2014]
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Solution Method
– Step 1 : Piecewise linear bounding vs classic approx. of the nonlinear energy transfer/efficiency functions

– Step 2 : Reformulation of the problem into two mixed integer problems (MILP and MILP)
– the problem is originally a MINLP
– using the pair of bounding functions previously defined

Results
Number of sectors per tolerance value

Pump 1 (Pump 2+RO) Pump 3

ϵ np1 np1 np2 np2 np3 np3

5% 2 2 11 21 3 2
1% 5 5 21 29 8 5
0.5% 8 7 35 62 13 7
0.3% 10 9 43 74 17 9

Lower and upper bound obtained
MILP MILP Gap opt

ϵ UB s LB s UB* %
5% 20580 4 19740 15 - 4.25 no
1% 20100 15 19920 140 - 0.9 no
0.5% 20040 178 19980 117 - 0.3 no
0.3% 20040 64 19980 321 19980 0.0 yes

Generic problem : Scheduling with non-reversible energy
sources

Data

– Set of time time periods T
– Set of activities A
– ri, di, pi : release date, due date, duration of activity i
– bi : constant instantaneous energy demand of activity i

– Set of non-reversible energy sources S
– ρs : piecewise-linear efficiency function for source s (x-axis = cost,
y-axis = demand and ρs(x) = 0,∀x < 0, ∀s ∈ S).

– ait : constant term equal to 1 if t ∈ [ri, di[ and 0 otherwise

Decision variables

– xit : binary, = 1 iff activity i is ongoing at time period t

Formulation

(CF)min
∑
t∈T

ρ−1(
∑
i∈A

bixit)

s.t.
∑
t∈T

aitxit ≥ pi, ∀i ∈ A

xit ∈ {0, 1}, ∀i ∈ A, t ∈ T

Complexity and equivalence between single and multiple sources

–Theorem 1 The problem is NP hard by reduction from discrete bin packing
–Theorem 2 For any problem with multiple sources, there is an equivalent single source problem

Example

Solution 1, cost = 30 Solution 2, cost = 28 Solution 3, cost = 26

Dantzig-Wolfe decomposition and Branch&Price Method

Extended formulation based on feasible subsets of activities

– Set of activity sets executable in parallel L (at any given time period Lt)
– Set of activities belonging to set l : demand bl, cost cl, time window [Rl, Dl]
– ail : binary constant term equal to 1 iff i belongs to set l
– Variable ylt : binary, = 1 iff activity set l is being executed at time t

The linear relaxation of the master problem

(LRMP )min
∑
t∈T

∑
l∈Lt

clylt

xit −
∑
l∈Lt

ailylt = 0, ∀i ∈ A, t ∈ T

∑
l∈L

Dl−1∑
t=Rl

ailylt ≥ pi, ∀i ∈ A

−
∑
l∈Lt

ylt ≥ −1, ∀t ∈ T

xit ≤ 1 ∀i ∈ A, t ∈ T

ylt ≥ 0 ∀t ∈ T, l ∈ Lt

xit ≥ 0 ∀i ∈ A, t ∈ T

The resulting dual (DLMRP) is :

max
∑
i∈A

piui −
∑
t∈T

vt +
∑
i∈A

∑
t∈T

zit

∑
i∈A

ail(ui − wit)− vt ≤ cl, ∀t ∈ T, l ∈ Lt

wit + zit ≤ 0, ∀i ∈ A, t ∈ T

wit ∈ R, ∀i ∈ A, t ∈ T

ui ≥ 0, ∀i ∈ A

vt ≥ 0, ∀t ∈ T

Therefore, the reduced cost of a column ylt is :
cl −

∑
i∈A ail(ui)− vt

Two column generation schemes

SP1 :
all dual values ui, vt, wit

problem data ait, bi, ρ
−1

}
→ →

{
best time t′

best task set l′
SP2 :

a predefined time t′

related dual values ui, wit′

problem data ait, bi, ρ
−1

 → →

 best task set l′

Results

Extended Model Compact Model
Branch & Price Black Box Solver

#Opt/#Instances 261/288 5/288
Ratio avg (min, max) 99.81% (77.47 %, 100%) 84.21 % (57.85 %, 99.99 %)
Time avg (min, max) 540 s (< 1 s, 3603 s) 1034 s (7 s, 1927 s)

Nbnodes avg (min, max) 171 (1, 9755) 2174044 (57157, 13470373)


