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EM project : context and objectives Generic problem : Scheduling with non-reversible energy
SOUI'CES
Context
The integration of energy constraints in deterministic scheduling models, such as job-shop scheduling or Data
resource-constrained project scheduling, yields a combinatorial optimization challenge. It follows that the
literature on this subject is sparse. Pre-existing studies involve multiple energy sources and general non-linear — et of time time periods T’
efficiency functions, but generally no scheduling. All our previous work on scheduling under energy constraints —Set of activities A
considered linear (and even identical) energy efficiency functions, which oversimplifies the problem. —1r;,d;, p; : release date, due date, duration of activity ¢
—b; : constant instantaneous energy demand of activity ¢
Objectives —Set of non-reversible energy sources S _—
— Address the (combinatorial) optimization challenge of integrating energy sources constraints (physical, —p° : plecewise-linear efficiency function for source s (x-axis = cost, P
technological and performance characteristics) in deterministic (scheduling) models. y-axis = demand and p*(x) = 0,Vz <0, Vs € S). e

—Solve explicitly and in an integrated fashion the resulting energy resource allocation problems and energy- —a; : constant term equal to 1if ¢ € [r;, d;| and 0 otherwise T —

consuming activity scheduling problems with non linear energy efficiency functions.

Decision variables

—x;¢ - binary, = 1 iff activity ¢ is ongoing at time period ¢

Formulation
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—Theorem 1 The problem is NP hard by reduction from discrete bin packing
—Theorem 2 For any problem with multiple sources, there is an equivalent single source problem
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Example
Solution 1, cost = 30 Solution 2, cost = 28 Solution 3, cost = 26
i 2 i — T ; A | ’ ’ .
Challenge e | i3 IR | SR I 0 T N I T O

Non-linearities come from energy efficiency functions

Dantzig-Wolfe decomposition and Branch&Price Method

Extended formulation based on feasible subsets of activities

~Set of activity sets executable in parallel £ (at any given time period L;)

Piecewise linear bounding procedures for the optimal ~Set of activities belonging to set { : demand by, cost ¢, time window [R;, D]

management of water pumping and desalination processes ~ @ : binary constant term equal to 1 iff 7 belongs to st {
— Variable y;; : binary, = 1 iff activity set [ is being executed at time ¢

Proof of concept on a water pumping and desalination system [CLAIO 2014, IFORS 2014] The linear relaxation of the master problem
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—Step 1 : Piecewise linear boundi s classic approx. of the nonlinear ene transfer /efficiency functions .
D W near bounding v PProx nonlinear energy transfer/ ncy function Two column generation schemes
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b ity i P problem data a;, b;, p~*

—Step 2 : Reformulation of the problem into two mixed integer problems (MILP and MILP)
—the problem is originally a MINLP
—using the pair of bounding functions previously defined

Results
Number of sectors per tolerance value |
Lo (Purfp e e LOWE/fI Sgd upper ﬁ;)ﬁl;ld Obtaégidopt Extended Mgdel Compact Model

e Ty |7y ny, T c | UB | s | IB [ s UB* | % Branch & Price Black Box Solver

5% [ 2] 2 11 21 3] 2 5% 20580 4 [19740] 15 | - [4.25] no #Opt /#Instances 261 /288 5/288

1% | 5 5 |21 29 8|5 1% 20100 15 19920140 - | 0.9 | no Ratio |avg (min, max)|99.81% (77.47 %, 100%) | 84.21 % (57.85 %, 99.99 %)
05%1 8 | 7 )35 62 1317 0.5% 20040 178 | 19980 117} - ) 0.3 | no Time |avg (min, max), 540 s (< 1s, 3603 s) 1034 s (7 s, 1927 s)
03%10 | 9 43| 7 [17]9 0.37%]20040] 64 | 19980321 19980] 00 | yes Nbnodes |avg (min, max) 171 (1, 9755) 2174044 (57157, 13470373)




