COMBINATORIAL OPTIMIZATION WITH MULTIPLE RESOURCES AND ENERGY CONSTRAINTS Optimisation sous contraintes de ressources énergétiques multiples (OREM) LAAS-CNRS Sandra Ulrich Ngueveu, Christian Artigues et Pierre Lopez LAAS-CNRS, Toulouse, France

Introduction

The integration of energy constraints in deterministic scheduling models, such as job-shop scheduling or resource-constrained project scheduling, yields a combinatorial optimization challenge. It follows that the literature on this subject is sparse. In the OREM project, we focus on a scheduling problem where activities must fit into time windows and require an energetic resource. Each activity has an energy demand. The energetic resource has a limited instantaneous availability (maximum available power). As soon as it is started and not completed, the activity must be assigned, at every time point, a power lying within an

Mathematical formulation for the single-resource case

Variables

-Demand curves $b_i(t) : \mathcal{T} \to \mathcal{B}, i \in A$ -Indicator of task started x_{it} -Indicator of task ended y_{it}

4 variants

Methodology and Contributions expected

Smart grids in smart buildings

The smart building ADREAM of the LAAS

Problem with a single resource

Definition

For each task $i \in A$, find a feasible curve $b_i(t), t \in \mathcal{T}$.

Parameters

- A resource availability $B \in \mathbb{N}$ to respect $-A \text{ set of tasks } A = \{1, 2, \dots, n\}.$ -Minimum instantaneous consumption (demand) $b_i^{\min} \in \mathbb{N}$ -Maximum instantaneous consumption (demand) $b_i^{\max} \in \mathbb{N}$

Phase 1 : Solving the single-resource case

– Mathematical formulation of the different variants – Identification of valid inequalities and dedicated separation procedures

Phase 2 : Solving the multi-resource case

-Extension of the mathematical model and the valid inequalities to the multi-resource case – Definition of patterns of resource consumption and procedure for feasible patterns generation with regard to predefined constraints

– Development of a column-generation-based algorithm to exploit the feasible patterns identified

Phase 3 : Experimental Validation

– Introduction of more realistic consumption/production curves

- Tests on data sets of realistic power profiles for hybrid electric vehicles and mission profiles provided by the researchers in Electrical Engineering from LAPLACE

-Experimentations on the smart building ADREAM of the LAAS (http://www.laas.fr/ADREAM/)

Expected Contributions

– Integration of energy sources selection in scheduling, taking into account constraints related to the efficiency of technological equipments and their dynamics, both related to the characteristics of each energy source. -New hybridization of techniques and solution methods : combination of patterns generation (including dual solutions-based filtering) and propagation of resources constraints for the scheduling problem considered.

Conceptual model and illustration

$r_i \le st_i \le ft_i \le d_i$	$(i \in A)$	Example of problem and solution :	
$b_i^{\min} \le b_i(t) \le b_i^{\max}$ $(i \in A)$	$; t \in [st_i, ft_i])$		B = 5
$b_i(t) = 0 \ (i \in A; t \in \mathcal{T} \setminus [st_i, ft_i])$		i r: d: W: b ^{min} b ^{max}	3
$\int_{e^{t_i}}^{ft_i} b_i(t) dt = W_i$	$(i \in A)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\sum_{i \in A} b_i(t) \le B$	$(t \in \mathcal{T})$	325622	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

