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Abstract—This last decade has seen an increasing interest for be seen as a distributed data-mining problem. Therefoee, th
wireless communications. With the current use of smart-phnes  remainder of this paper is structured as follows. The next
and tablets coupled to the rise of the Internet of Things, the section describes the related work on data-mining appbed t

number of mobile nodes in networks will significantly changethe twork t We th introd . fioh 11
way we manage them. Indeed, these wireless networks are high network management. Ve theén introduce in sec our

dynamic, especially concemning topology and traffic matries. assessment model and its estimation algorithm. In Sen |
The fast moves of mobile nodes can for instance impact the we provide an event based analysis framework and illustrate

connexity of the network, or the importance of one of the node jt through an example scenario. We will conclude on future
in the routing graph. Given this increasing complexity, netvork work in a last section

management regarding the provided service will need to be as

autonomous as possible. However this can not be done unle$et

network is able to assess and understand it's own behaviomlthis Il. RELATED WORK
paper, we propose an assessment index (called SA) based odles

satisfaction and its self-estimation algorithm for wireless mobile Understanding and Managing wireless network is one of
networks. We then provide events collection and distributd yhe onerator concern. Orange Labs have shown interest on the
mining methods allowing nodes to analyze the evolution of . . o
this index. We illustrate our framework and characterize the _optlr_nal deployment of wireless substl_tu_tlon networks _ph
estimation error for various network properties under NS3 its side, AT&T Labs worked on data-mining to analyze its own
simulations. wireless infrastructure [3]. Data-mining applied to netiing
has already been investigated, in particular by the segrcurit
community which is quite fond of this angle. The main idea
Nowadays, one can say that wireless mobile networks hageto reduce false positive alerts in the context of intrasio
definitely invaded our daily lives. When looking at foresastdetection or traffic monitoring and anomaly detection.[Th [4
from Cisco [1], mobile traffic is expected to increase 7.%he authors mentioned that data-mining was a valuable tool
fold in the 4 next years. If managing wired networks tdut which was not about making human analysis unnecessary,
sustain unpredictable traffic is still a complex and unstlvespecifically in the choice of attributes. Results can be tbian
technical domain, the problems raised by wireless networl& where Casas & al. demonstrated the efficiency of clusteri
have a level of magnitude of complexity. Indeed, wirelegechniques to detect traffic anomaly and construct newifiljer
infrastructures will experience dynamic topologies defeg rules without knowledge. Also, understanding cause areteff
on nodes positions and links qualities, furthermore, nem+ cobetween network events is not devoted to security. We found
straints and traffic might arise with emerging technologiem [6]-[8] analysis concerned by the understanding of nekwo
Thus, the management task needs to be mainly delegabethavior. In[[6] authors highlighted the sources of TCP trese
to networks themselves. For these purposes, we provider@omalies. The field of wireless communication is inveséiga
reference model for any observer to assess a system an{l/] where the key characteristics of the traffic are cagdur
then conduct an assessment-centric analysis. While thilkemoon several base stations to optimize their coordinatiorthéus
could be applied to systems in general, we consider dynamsttowed a significant enhancement on the downlink delay
wireless network of collaborative nodes. More specifically performance by clustering users in profiles. Finally authafr
work is focused on the assessment of the network layer in tef8) explained the relation between server response timeydo
of packet loss, end-to-end reachability and delay. Thus, dime trip and users satisfactions on a set of mobile userdewWh
aim is to give nodes the assessment and analysis capabiliff], [[7] have brought methods to extract information, [@] [
of their own network. Considering that nodes only have phrtihave tailored their studies towards a very specific goaleséh
information on the network state, they need to collaboratk atwo approaches need to be linked by a common objective
agree on an assessment value which is time varying, thiswhich is the network assessment. Therefore we insert our
a distributed consensus problem. Regarding analysis,snoderk in between, with the motivation to only extract clues
will have to search and share the information they dispose a system relatively to its assessment. Consequently, the
to understand the reason that have driven the value evolutigext section introduces a way to assess a system and defines
and determine whether they are responsible for it. Thisccoudn assessment scheme for wireless mobile networks.

I. INTRODUCTION



[1l. A SSESSMENTMODEL AND DISTRIBUTED ESTIMATION the delay interval0, d,,..|, we can find al,,..,. where average

A. Assessment Policy and Satisfaction Ratio delay score can approximate the average score of delays:

As we mention earlier our model can be applied to systems SFE,(T) = score(d;) = score(d;)
in general. We consider a system as a set of agents that haye

a satisfaction ratio (SR) representing their wellness @wee.  qqtisfaction ratio. The end-to-end delay is a sum of tragsmi

A SR takes its value in the real intervll, 1] , where 0 is g time (queuing and medium access times). We estimate

the worst ratio and 1 is the best one. The SR is given byya, ayerage delay that a packet can experience when leaving
satisfaction function (SF) depending on the agent. a node i with the following heuristic:

A system assessment (SA) takes its value in the real interval R R
[0,1] , where O is the worst assessment and 1 is the best one. d;(T) =1;(T) + Z p;(T).d;(T —1)
The SA is given by an assessment policy (AP) depending on JEG(T)
the observer who assess the system. An AP is based on agent
satisfactions only and the space of assessment policiea for
system of N agents is given by: 1;(T) is the average transmission time for i over T. For each
(F00,10N = 0,1 | FULN) =1 and F{0}N) #£ 1} packe_t, it equals O if the local node is the destine_lti(_)n,liteéq
dmaz if the packet is dropped, in other cases it is the time
So that a system of fully satisfied agents is ideal contragétween the first reception of the packet and its last sufidess
to a system of fully unsatisfied agents. Typical AP are thgansmission to the next hog;(T) is the set of gateway
weighted averages were the weight are fixed by the observeed by node i during T. Finallyp;(T) is the percentage
(simple projection for a selfish agent, equal weight for & fabf data traffic sent/forwarded by node i during T that should

a result, the average delay can be used to compute the

with  d;(0) = 1;(0)

policy, class based weighting policy...) be forwarded by node j. Given a packet leaving node i, its
) expected delay is the sum of the expected transmission time
B. Assessment of Wireless Mobile Networks from i and the expected delay from the next hop. The expected

We assess a wireless mobile network as a system of agefgtay from the next hop depends on the mac level traffic matrix
where agents are nodes. Our satisfaction function is basednoaterialized byp.
the delay experienced by each node. Each packet p that haSystem assessment estimat®an average consensus prob-

an end-to-end delay d is scored with the function : lem. In our case, the average evolves over time, therefore we
modified the scheme presented |in [9] for a fixed average and
dmaz - d . . . .
score(d) = max (0, T) suggest the following iteration:
The packet score linearly decreases when the delay in- SA(T) = ;. SFi(T) + Z a;.54;(t)

creases between 0 and a given threshfld.. It equals 1 JEN:(®)

for a null delay and 0 if the delay is greater than a threshold S4;(0) = SF;(0)
(or if the packet is lost). The satisfaction of node i for the . o
time interval T is given by the average score of the packéfs this scheme, the SF term introduces the Varlabl'lty of the

that have been generated by i during T: satisfaction over time which was not the caselih [9], the SA
term permits the estimation propagation over the network.
SF;(T) = score(d), SF;(T)=1 if |D|=0 The value ofa;, could be chosen from the metropolis weight
deb described in[[10].

With D = {delay(p) | p.ipSrc =ip(i) N p.time € T} D. Estimation Results

Our assessment policy is the average of the satisfactiosrat We conducted Ns3 simulations to study the impact of
and consider all nodes being of equal importance. Thus, thetwork properties on the quality of our estimation with the
assessment of a N nodes network for the time interval T Metropolis weight. The considered networks have ten mobile

given by: nodes (when moving, node speed is between 5 and 7 m/s). The
AP(T) = SF,(T) routing protocol is AODV. Nodes are either source or server,
i€[1,N] each source has a constant (1 Mb/s) flow towards one of the

servers, packet size is fixed to 1470 bytés,, equals 10 ms.
Each simulation is a combination of the different values for
The introduced AP and SF have been built to capture del#lye parameters in tablé |, while figure 1 illustrates the aHse
loss and end-to-end reachability of the network. Moreodweyt 9 sources with two levels of mobility (X 50 and D>50).
offer linearity properties so that they can be computed inFor all scenarios, we computed the average absolute e&timat
distributed way. error at each iteration. For clarity purpose, we did not fiet
Satisfaction ratio estimatiodoes not require every packetmid-spreads which were under 0.20 for both curves. Thalniti
to be scored. Indeed, since the scoring function is linear emor is null since nodes are all fully satisfied, it increase

C. A Distributed Algorithm for Self-Assessment



Network properties (a) Example of Observations Table

Random seed 0,1,2 Observations ;

Number of source 1,4,7,9 Event
Initial spacing (D) 20,45,65,75 Time Agent ven :
Mobility Model Random Walk Random Waypoint Type | Source | Speed| Length| ...
Mobility area size D/2xD/2 DxD (pause duration: 25F) float int string int float int ;
TABLE | 1.2 0 'Packet’ 1 - 1500 I
SIMULATION PARAMETERS AND NETWORK PROPERTIES 1.25 1 'Move’ 1 5.6 - I

(b) Example of Event Types

o4 5> 50 with Metropdlis weight Type Information
\‘ D < 50 with Metropolis weight - -
oas | || J Packet Packet capture in promiscuous mode
Kl
il Rtam Routing table attribute modification (size..})
03 F 4
g j‘ Move Speed vector modification
§ 025 |- “ 1 Ipv4Drop Packet Drop for a routing reason
E 02 \ ‘C PhyRxDrop Frame dropped during reception
< | | MacTxDataFailed| Data packet transmission failed at maerlay

s A \ TABLE Il
OBSERVATIONS AND EVENT IN DYNAMIC WIRELESSNETWORKS

0 10 20 30 40 50 60 70 80 90 100
seconds

between hour of day or day of week. Distance between agents,
Fig. 1. Average error of the estimated SA depending on nétpeofiles.  could be geographical, logical (number of hop) or a state

comparison. Events similarity can be based on the string

distance between their type names, their number of common
brutally when sources are started. However, the error dseee fields or the values of their fields.
over time. The algorithm better performs under a very dycami |n this paper, each node groups its observations by time
topology. We identified two reasons: (1) when the netwoikterval and event field value. Like nodes did in figlte 2 with
is too dynamic AODV performance decreases and all nod@® number of observed events by unit of time, they build time
tends to be UnsatiSﬁEd, (2) dynamism increases the numbeé&ﬁes of features by app|y|ng an aggregate function orethes
known nEighborS satisfaction ratio. In this section we ngroups (SUCh as count, or average over a f|e|d) Then, they
how nodes could estimate their SA, in the next section Weudy the delayed correlations between their time seriels an
give them a method to analyze the evolution of this SA.  the SA over a period to determine the features that might have
impacted the SA. When they collaborate, nodes only need to

exchange the correlation coefficients of highest magngude
We assume that each agent of a system can produce and

observe events. Our analysis approach is to build system Event

IV. EVENT BASED ANALYSIS OF A SYSTEM ASSESSMENTS

properties from events and understand their impact on the SA | | rgentz
cee ‘. . ’0‘ o oo

A. Observation and Event Definitions ceee, : : rents

An observation can be seen as tri-dimensional point, it is ~ " '
the perception of an event by an agent at a specific time. An m F b
event is aperceptiblemodification of the system state, it is :':'. ! .o !
a N-dimensional point which can be represented by a frame o : coo : 0e® o '
where the first field is the event typeTyp@ which determines / Time
the validity and the meaning of the following ones. Table I c°un]ﬁ Count2] sA dcor | o_o | g1
illustrates the observation space and gives examples oteve > 1 e 02 coef
to be considered in the case of dynamic wireless networks. 5 . o5 f1|(-0.99
B. Features Construction 4 7 0.5 f2 0.5

We call feature a property of a cluster of observations.
Thus, we will create clusters of observations, computetefas
properties that vary over time and then study the assoniatio
between these properties and the SA. As a result, we n
metrics to cluster observations by similarity.

Regarding time distance, timestamps difference is the-natu For understanding purpose, we lead an analysis of the
ral way to proceed but it could be meaningful to use diffeeenscenario given in figurgl 3 and give some of the most relevant

Fig. 2. Features and System Assessment Delayed Correlation

eed . .
C?. Analysis of a Dynamic Wireless Networks Assessment



Name Information 100 w w \ L — 500

AvgnbValid Average # valid entry in the routing table i oyt onhode 2 2

CountMyRetry # transmitted frame with a retry flag i = = = Lo

CountAllFlow # IP flow sent, received or forwarded woll b m : P

CountPhyRxDrop # PhyRxDrop events i o P

CountDropRouteErr| # IPv4 Drop events for a route error neaso 70 5 1% )
TABLE llI ol I

FEATURESDESCRIPTION

50 ,i | i
EMXM%&wa% 1100
40

constructed features for this study in tablé Ill. Each feais @ o % 00
related to a node, the # stands fanimber of. (a) CountDropRouteErr on node 1 and CountMyRetry on
node 2

1500

100 ¢

90

4 1000

drops

= = Non routed Flow
we Routed Flow

(® server Node

{7 Communication Range

" 4 500

e - [ Random Waypoint

seconds

(b) CountPhyRxDrop on node 5

Fig. 4. Temporal Evolution of SA Regarding 3 Features

V. CONCLUSION AND FUTURE WORK

The invasion of wireless mobile communication in our
network and their increasing complexities forces the manag
ment task to be mainly delegated to networks. In doing so,
networks need to evaluate themselves and understand the way

they behave. In this paper we introduce a way to assess a

In this scenario, Nodes 2 and 5 are UDP sinks. Node 3 cgfio|ess mobile network and provide the distributed algori
move in the rectangle area and impact the network topology, 1\, qes to compute this assessment. Our algorithm isetériv

On the top, route to 5 is_down. At the bottom, node 2 mig_'??om existing average consensus schemes. We evaluated this
be overloaded. After having computed the delayed Corc({1""'['algorithm under various networking conditions to descitbe

matrix we found high values for the three features illustiat 5o \jtivity to load and nodes mobility. Future work could be
in figure[4. CountDropRouteEron node 1 CountPhyRXDIOP o4 on this sensitivity and on the reduction of the estiamati
on node 5 an€ountMyRetryon node 2 scores are respectively . Then, we proposed a method to analyze the evolution of
-0.92, 0_'79’ -0.88.1n fl_gu@a), we clearly s_how that th‘mmathis assessment. We collected event observations to aghstr
fluctuation of the SA is correlated to a routing error. Indeeﬂme series of features that we correlate with the network

node 1 can not find a route to node 5 since node 3 has lgllgeqgment. Using simple features based on event counts,

the path. The retries experienced by node 2 are detailed jn \yere aple to diagnosis the assessment fluctuation, these

figure[4(a). It impacts the SA when the route is up With @44 res can be distributively computed and exchangedain re
ba_‘d communlcatlgn_llnk be'_(ween 2 and 3. At _f|rst, one Caihme by nodes to analyze their situation. Our approach is
think that transmission retries of node 2 are introduced l@éneral enough and could be applied to others multi-agent

the physwal drops on node 5, but in fact those events dfstems (wired networks, farm of servers or social networks
negatively correlated. Indeed, these nodes can not reath & their assessment and analysis

other due to their relative distances. Since the numberagsr

is much greater than the number of retries, it might come from
the fact that node 5 could still be in the carrier range of node
2. Figure[4(H) confirms that node 5 does not drop packets forThis work is partially funded by the French National
low SA, since node 2 does not send them because of routRgsearch Agency (ANR) under the project ANR VERSO
errors on node 1. RESCUE (ANR-10-VERS-003)

Fig. 3. Topology of the Studied Network
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