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Abstract—The philosophy of traffic monitoring for detection
of network attacks is based on an “acquired knowledge” per-
spective: current techniques detect either the well-knowrattacks
which they are programmed to alert on, or those anomalous
events that deviate from a known normal-operation profile.
These approaches rely on an expert system which provides the
required knowledge, either in terms of “signatures” of the well-
known attacks or as anomaly-free traffic datasets, rich enogh
to build representative profiles for normal-operation traffic. In
this article we discuss the limitations of current knowledg-
based strategy to detect network attacks in an increasingly
complex and evolving Internet, characterized by ever-emajing
applications and an ever-increasing number of new network
attacks. In a diametrically opposite perspective, we placeghe
emphasis on the development of unsupervised detection metths,
capable of detecting unknown network attacks in a dynamic
environment without any previous knowledge, neither on the
characteristics of the attack nor on the baseline-traffic bhavior.
Based on the observation that a large fraction of network
attacks are contained in a small fraction of traffic flows, we
demonstrate how to combine simple clustering techniques to
accurately identify and characterize malicious flows. To sbw
the feasibility of such a knowledge-independent approachywe
develop a robust multi-clustering-based detection methodand
evaluate its ability to detect and characterize network athcks
without any previous knowledge, using packet traces from tw
real operational networks.

Index Terms—Unsupervised Detection of Attacks, DDoS, Net-
work Scans, Robust Clustering, Automatic Characterizatia.

I. INTRODUCTION

to them as knowledge-based detection approaches.

On the one hand, signature-based detection systems [2]
are based on a extensive knowledge of the particular char-
acteristics of each attack, referred to as its “signatuseich
systems are highly effective to detect those well-knowackis
which they are programmed to alert on. However, they cannot
defend the network against new attacks, simply because they
cannot recognize what they do not know. In addition, bugdin
new signatures involves manual inspection by human experts
which is not only very expensive and prone to errors, but also
introduces an important latency between the discovery of a
new attack and the construction of its signature. In a neéwor
scenario where new attacks are constantly appearing, such a
manual process imposes a serious bottleneck on the defense
capabilities of the network.

On the other hand, anomaly detection [3]-[7] relies on
the existence of normal-operation traffic instances todbail
baseline-profile, detecting anomalies as traffic actisitileat
deviate from it. Such an approach permits to detect new kinds
of network attacks not seen before, because these willadgtur
deviate from the constructed baseline. Nevertheless, alyom
detection requires training to construct normal-operafico-
files, which is time-consuming and depends on the avaitgbili
of purely anomaly-free traffic datasets. Labeling traffic as
anomaly-free is expensive and hard to achieve in the pectic
since it is difficult to guarantee that no anomalies are hidde
inside the collected traffic. Additionally, it is not easy to

ETWORK traffic monitoring has become an essentia@haintain an accurate and up-to-date normal-operationl@yofi
means for detection of network attacks in today’s Inparticularly in a dynamic and evolving context where new

ternet. The principal challenge in detecting network &tac

is that these are a moving target. It is not possible to know
the different attacks that an attacker may launch, becaus

new attacks as well as new variants of already known atta

increasingly numerous and sophisticated over the years [1

services and applications are constantly emerging.

otivated by the limitations of knowledge-based ap-

M

aches, a new research area has emerged in the last years,
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are continuously emerging. Indeed, attacks have beconte ;%{f\sed on a diametrically opposite philosophy for deteatibn

nomalous traffic events: Unsupervised Anomaly Detection.
nstead of relying on a previously acquired knowledge on the

Two different approaches are by far dominant in cueharacteristics of network attacks or on the baselindidraf
rent research community and commercial detection systerbshavior, unsupervised detection uses data-mining tquksi

signature-based detection and anomaly detection. Delspite

to extract patterns and uncover similar structures “hidden

ing opposite in nature, both approaches share a common downunlabeled traffic of unknown nature (attack or normal-
side: they rely on the knowledge provided by an expert systeoperation traffic). Based on the observation that network
usually a human expert, to do the job. We shall therefore refattacks, and particularly the most difficult ones to detaot,



contained in a small fraction of traffic flows w.r.t. normal- II. NETWORK ATTACKS

operation traffic [8], their unsupervised detection bdbica Although we claim that our approach can be used to
consists in identifying “outliers”, i.e. patterns that afistant getect and characterize unknown malicious flows, we focus
from the majority of the traffic. on the detection and characterization of standard and well-
known attacks, which facilitates the interpretation ofufes
Some methods for unsupervised detection of network @fnwever, we shall assume no previous knowledge about these
tacks have been proposed in the past [9]-{13]; the majQfitacks, and thus treat them as completely unknown. Dehial o
ity of them are based on clustering techniques and outli&sgyyice (DoS), Distributed DoS (DDoS), network scans, and
detection. The objective of clustering is to partition a S€{orms propagation are examples of standard attacks tHgt dai

of unlabeled elements into homogeneous groups of “similafhreaten the integrity and normal operation of the network.
characteristics, based on some similarity measure. Bifter

from other techniques for unsupervised data analysis (eRPS/DDoS:a DoS/DDoS attack [19] is an attempt to make
density estimation, dimensionality reduction, etc.),sthu- @ network resource (a particular service, network bandwidt
ing permits to work with multiple-classes problems withou@tC.) unavailable to its intended (legitimate) users. smfiost
modifying the characteristics of the analyzed traffic, leeitc 9eneral form, a DoS/DDoS attack seizes resources by using
represents an attractive means for unsupervised deteatiorP’ requesting more than the victim can handle, preventing it
attacks. Unfortunately, even if hundreds of clusteringoalgfrom responding to legitimate requests. A common DoS/DDoS
rithms exist [17], it is very difficult to decide which algétim attack is known as SYN flooding, in which the attacker sends
would be the best one for our particular problem. Differerit large number of TCP/SYN packets asking for a connection
clustering algorithms produce different partitions ofajand initiation to the victim’s service, which has to keep tradk o
even the same clustering algorithm provides differentltesuthese partially opened connections and can not respond to
when using different initializations and/or different afghm legitimate requests. Other flooding attacks are based ait sen
parameters. This is in fact one of the major drawbacks iig an overwhelming number of ICMP packets to the victim
current cluster analysis techniques: the lack of robustnes (smurf attack, ping flood, etc.), causing a severe bandwidth
exhaustion. DoS attacks are characterized by a single host

In this article we stress the paramount advantage of un§@nding traffic towards a single victim, whereas DDoS ingolv

pervised, knowledge-independent detection algorithnseda traffic from many sources towards the same victim.

on clust_ering, but we argue that the_ir _performance_ shoulgorms propagation: a worm [20] is a malicious self-
not be tied to the particular characteristics of any CIUSgr replicating program that uses the network to send copies of
algorithm. We shall therefore present an alternative ehirsg itself, infecting other machines by exploiting specific vei-
approach to perform robust unsupervised detection ofkatacypjjities. A worm is normally used to install a back-door in
The main idea is to combine the clustering results providgge infected computer, allowing the creation of a “zombie”
by multiple independent partitions of the same set of flowgyachine under the control of the attacker. Networks of such
filtering-out biased groupings. The combination of muttiplachines are referred to as “botnets”, and are generaltytose
evidence about inter-flows organization adds robustne®to | nch massive DDoS attacks. A worm first scans the network
process of separating malicious from normal-operatidifi¢ra ;, search of possible victims to infect. During the propémat

The approach combines the notions of Sub-Space Clusterfiighse, an infected machine sends traffic to a large number of
(SSC) [15] and Evidence Accumulation (EA) [16] to producgestinations.

these multiple independent partitions and to combine the

information provided by each of them. Besides detectifyetwork scan: a network scan [21] is a probing attempt to
network attacks, we show how to use the information providédentify the availability of a specific service on many ditet

by the multi-clustering approach to characterize an idieuti machines. Detecting network scans is extremely important b
group of malicious flows, automatically producing an easy:ause such an activity is usually a precursor of the propayat
to-interpret signature of the attack. This signature ptesi Of a worm, and therefore the precursor of possible DDoS
useful information about the nature of the attack to th@itacks. Network scans are characterized by a single source
network operator, and can be eventually used to expand f&f&ding traffic to many destinations.

list of known-attacks of a signature-based detection syste
simplifying its detection in the future. I1l. UNSUPERVISEDDETECTION & CHARACTERIZATION

OF NETWORK ATTACKS

As a proof-of-concept of how such a robust unsupervisedThe detection algorithm that we present runs in a time
detection approach may work in the practice, we developstding-window basis, capturing packets in consecutiveeti
complete system to detect and characterize standard netwslpots of fixed lengthAT. The analysis is performed in three
attacks without any previous knowledge about their exigten consecutive stages. In the first stage, we use any traditiona
testing its performance in real traffic captured in two operéime-series abrupt-change detection algorithm to deteet t
tional networks: the backbone network of the Japanese WIpEesence of an anomalous slot. Modeling anomalies as abrupt
project [22], and the French RENATER research network. thanges in network data time-series is a standard approach
addition, we show that this method outperforms previous[$]—-[7]. Packets are aggregated into flows at the end of
proposed methods for unsupervised detection of attacks. each slot, and time-series for change detection are built on



| Feature I Description

them, using simple traffic metrics such as number of bytes,

0

packets, or flows per time slot. A flow of packets is defined ESDZSS e g; A
for source or destination, using eith@iPsrc/netmask) or nSrcs/nDsts ratio of nSrcs 10 nDsts
(IPdst/netmask) as flow identifier. The use of different net- nSrcPorts n° of different source ports

. . . . o T 7 T d
masks (i.e,/16, /24, /32) provides different levels of traffic nDstPorts n of different destination ports

. . L . . nPkts/sec n° of packets per second
aggregation, which facilitates detection in the event othbo Pkis/nDst 79 of packets per destnation
single source-destination and distributed attacks. nICMP/nPkts || fraction of ICMP packets

nSYN /nPkts fraction of SYN packets
Sub-S cl . id lati Table |

A. ub- pace USterlng & Evidence Accumulation EXAMPLES OF THE FEATURES USED TO DETECT AND CHARACTERIZE

The unsupervised detection and characterization algorith DOS, DDOS, AND NETWORK SCANS

begins in the second stage, using as input the set of flows
captured in the anomalous slot. An anomaly is generally

deteptgd in’different aggregatlon levels, ar_ld there are.ymanomplete feature spac¥, the SSC-EA-based algorithm does
heuristics to select a particular aggregation to use in t

: Y clustering in N different sub-s aceX, C X of smaller
ur_lsu_perwsed stage; for the sake of 5|mp_l|c|ty we shall Sk' mensiogns obtainingV differenr'z partitionsP; of the flows
this issue, and use any of the_ aggregation levels |n_wh||cI!1 v Eachl partitionP; is obtained by appfying DBSCAN
the anomaly was detected. Without loss of generality, IF 8] to sub-spaceX;. I:;BSCAN is a powerful density-based

clustering algorithm that discovers clusters of arbitrsitgpes

Y = {yi,...,yn} be the set ofn flows in the flagged
slot. Each flowy; € Y is described by a set of traffic and sizes [17]. Each sub-spa&e is constructed using only

attributes orfeatures Table | presents the different fea_ture§ < m traffic features; this permits to analyze the structure of

traffic attributes, which permits to describe the detectéatks X _from N d|fferent perspectwes,_ using a fmer-gr_amed_reso-
[ution. In particular, we do clustering in very-low dimeosal

in easy-to-interpret terms. As we show in the evaluatiogUb_S aces. using — 2. To deebly explore the complete
such features are good enough to detect and characte b ' g == Py €xp P

F('azeture space, we analyze all threcombinations-obtained-
standard network attacks such as DoS, DDoS, and netw 7R '

scans. However, the list is by no means exhaustive, and more " sub-spaces; hencd, = m(m—1)/2. The information

: . ; . H(rjovided by the multiple partitiong’; is then combined to
features can be easily plugged-in to improve detection a o .
produce a new similarity measure between flow¥inwhich

1 1 — m
characterization results. L&t = (zi(1),...,zi(m)) € R™be o T paramount advantage of clearly highlighting both
the corresponding vector ok traffic features describing flow . . .
. the outliers and small-size clusters that were simultasigou
vi, andX = {xi1,...,x,} the complete matrix of features,

identified in different sub-spaces. This new similarity @@

is finally used to easily extract the anomalous flows from the
The algorithm is based on clustering techniques applieeist of the traffic. Briefly speaking, if we can find single flows

to X. Our goal is to identify inY the different flows that or a small group of flows that are remarkably different from th

may compose the attack. For doing so, we recall that a langst of the traffic in different sub-spaces, then we have doun

fraction of network attacks are contained in a small fractican anomaly; if not, the flagged slot was just a false alarm.

of traffic flows. Thus, an attack may consist of either ouslierThe simultaneous use of SSC and EA adds robustness to the

(i.e., single isolated flows) or small-size clusters, dejiggon clustering process, improving the ability of the algorittion

the aggregation level of flows iW. Let us take as an exampleproperly detect attacks.

a DDoS attack launched fromi sources distributed along

different /24 botnets towards a single victim. The attack is . o

represented as a cluster gfflows if the aggregation is doneB' Automatic Characterization of Attacks

for IPsrc/32, or as an outlier if the aggregation is done for At this stage, the unsupervised algorithm has identified a

IPdst/32. Taking into account that the number of flows irset of very similar flows inY distant from the majority of

Y can reach some thousands even for short time slots, theffic. The following task is to automatically produce a sét

number of source$ would have to be extremely large toK filtering rulesf(Y), k =1,..., K to correctly isolate and

violate the assumption of small-size cluster. Besideshis t characterize these flows. In the one hand, such filteringsrule

would be the case, then the attack would be representedpeasvide useful insights on the nature of the anomaly, easing

a small-size cluster of << g flows when usinglPsrc/24 the analysis task of the network operator. On the other hand,

aggregation. In addition, distributed attacks with thawsaof different rules can be combined to construct a signaturaef t

sources are easily detected with standard techniques [iB] anomaly, which can be used to detect its occurrence in the

thus they are less interesting to us, because the evidencdutdre, using a traditional signature-based detectiotesys

such attacks is overwhelming.

refereed to as théeature space

In order to produce filtering rulegy(Y), the algorithm
To avoid the lack of robustness of general clustering teckelects those sub-spacKs where the separation between the
nigues, we have developed a divide & conquer clusterignomalous flows and the rest of the traffic is the biggest.
approach, combining the notions of Sub-Space Clusteridg aWwe define two different classes of filtering rulabsolute
Evidence Accumulation. Instead of directly partitioninget rules f4(Y) and relative rules fr(Y). Absolute rules are
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] T Nowmal Flows IV. EVALUATION AND DISCUSSION

= We evaluate the ability of the unsupervised algorithm to
<2 detect and to construct a signature for different attacks in
5 real traffic traces from the public traffic repository of the
z ! WIDE project [22]. The WIDE operational network pro-
o, 0 05 oa  or  os oy vides interconnection between different research irtgtits in
Inter~flows similarity Japan, as well as connection to different ISPs and uniiessit
(a) Detecting a distributed SYN network scan usiig in the U.S.. The traffic repository consists of 15 minutes-
, s % long raw packet traces collected since 1999. Traces are not
, ! et el e ob aoteerng e labeled, thus our analysis is limited to show the detectiush a
0 i o TTTIITIIIIIIIIIIIIIIIIINT characterization of different network attacks found by oen
£ PN e £ sl fern e inspection in randomly selected traces, such as ICMP DoSs,
5o i 5o SYN network scans, and SYN DDoS. In all cases, we shall
§ & st 2 * G assume no previous knowledge about these attacks, and thus
o 5 é Z‘Imﬁ,.w o % Aromdous tous treat them as completely unknown.
o w0 e 0 WO s 1000 100 We also test the true positive and false positive rates
(b) SYN network scan (1/2) (c) SYN network scan (2/2)  obtained in the detection of annotated attacks, usingrdifiie

traffic traces from the METROSEC project [23]. These traces
consist of real traffic collected on the French RENATER
network, containing simulated attacks performed with well

only used in the characterization of small-size clusteteese Known DDoS attack tools. DDoS attacks range from very low

rules do not depend on the separation between clustéPé?nSity (i.e., less than 4% of the overall traffic volume) t

and correspond to the presence of dominant features in fA@SSive attacks (i.e., more than 80% of the overall traffic
anomalous flows. An absolute rule for featyréas the form Volume). Additionally, we compare the performance of the

fa(Y) = {yi € Y : 2;(j) == \}. For example, in the case @lgorithm against some previous methods for unsupervised

of an ICMP flooding attack, the vast majority of the assodat&Utliers detection based on clustering [9]-{12], as well as

flows use only ICMP packets, hence the absolute filtering riig2inst the very well-known Principal Components Analysis
{nICMP /nPkts == 1} verifies for them. (PCA) approach [13]. PCA is a standard technique for unsu-

pervised data analysis, based on dimensionality reduction
Relative filtering rules depend on the separation between

anomalous and normal-operation flows. Basically, if th . Detecting a network scan

anomalous flows are well separated from the rest of the ) ] o

clusters in a certain partitio?;, then the features of the We first detect and characterize a distributed SYN network

corresponding sub-spadé; are good candidates to define #c¢an directed to many victim hosts under the safié
relative rule. A relative rule defined for featujehas the form destination network. Packets ¥i are aggregated ifPdst/24
FrOY) = {y; € Y : z:(j) < Aorz;(j) > A}. flows, thus we shall detect the attack as a small-size cluster

The length of each slot IAT = 20 seconds. As we explained
We shall also define aovering relationbetween filtering in section Ill-A, the SSC-EA-based clustering algorithrmeo

rules: we say that rulg, coversrule f> <+ f>(Y) C f1(Y). structs a new similarity measure between flow¥inWe shall

If two or more rules overlap (i.e., they are associated to th&press this new similarity measure asivax n matrix S,

same feature), the algorithm keeps the one that coversshe riéd which elementS(i, j) represents the degree of similarity

To construct a compact signature of the anomaly, we shg tween flows andj. Figure 1.(a) depicts a histogram on the
compe gnatt Y values ofS. The structure of flows provided hy evidences
select the most discriminant filtering rules. Absolute sudee . . .
) T o the presence of a small isolated cluster in multiple sulsspa
important, because they define inherent characteristitheof

anomalv. As reqards relatives rules. their relevance iscti Selecting the most similar flows w.r.$. results in a compact
Y- 9 ' Y clyster of53 flows; a further analysis of these flows reveals

tled_to the degree of separation betweep flows. In the cas€ iterent IPdst/32 sub-flows of SYN packets with the same
outliers, we select thd( features for which the normalized, ddress. corresponding to the scanning machine
distance to the normal-operation traffic (represented ey t%PbrC a ' P g g '
biggest cluster in each sub-space) is among theifdmggest  As regards filtering rules and the associated signature
distances. In the case of small-size clusters, we rank tpeede of the attack, figures 1.(b,c) depict some of the partitions
of separation to the rest of the clusters using the well-kmow?;, where both absolute and tdg- relative rules were
Fisher Score (FS), and select the tBpranked rules. The FS produced. These rules relate the number of sources
measures the separation between clusters, relative tothle tand destinations, and the fraction of SYN packets.
variance within each cluster. To finally construct the stgrg Combining them produces a signature that can be expressed
the absolute rules and the tdp-relative rules are combinedas (nSrcs == 1) A (nDsts > A1) A (nSYN/nPkts > \2),

into a single inclusive predicate, using the covering retain  where \; and A\, are two thresholds obtained by separating
case of overlapping. clusters at half distance. The signature makes perfecesens

Figure 1. Filtering rules for characterization of a SYN nethvscan.
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since the network scan sends SYN packets from a single
to a large number of victims. The paramount advantag: gos
the approach relies on the fact that this new signature £°°

nPkts/sec
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0% 4
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Figures 2.(a,b) depict different rules obtained in theigure 3. Detection and analysis of network attacks in WIDE.
detection of a SYN DDoS attack. Traffic is now aggregated
in IPsrc/32 flows, and the attack is detected as a small-size
cluster. The analysis of inter-flows similarity w.r§. selects flows in the time slot. This emphasizes the ability of the
a compact isolated cluster, corresponding to the set @gorithm to detect low volume attacks, even of lower inigns
attacking hosts. The obtained signature can be expressedha® normal traffic.
(nDsts == 1) A (nSYN/nPkts > A3) A (nPkts/sec > A\y),
which combined with the large number of identified source
(nSres > A5) confirms the nature of a SYN DDoS attack
This signature is able to correctly isolate the most aggress
hosts of the DDoS attack, i.e., those with highest packet r

To conclude, figures 4.(a,b) present the detection and au-
Bmatic characterization of an ICMP flooding DoS attack.
Traffic is aggregated according 1®dst/32. Absolute rules
are not applicable in the case of outliers detection. Redati
aules correspond to the separation of the outlier from the

biggest cluster in each sub-space. Besides showing typical
C. Detecting attacks as outliers characteristics of this attack, such as a high packet rate

In the case of outliers detection, the similarity measuf¥ €xclusively ICMP packets from the same source, both
provided by the SSC-EA-based algorithm does not repres@ﬁ{t't'ons evidence once again the ability of the algorithm
inter-flows similarity; instead, it corresponds to the cuative 0 detect network attacks that are not necessarily the bigge
separation of an outlier to the biggest cluster in the differ elephant flows. The obtained signature can be expressed as
sub-spaces. The biggest cluster in each sub-space stdljsti (MCMP/nPkts > Xg) A (nPkts/sec > Az).
represents normal-operation traffic. Let us first presert th
detection of a SYN network scan and an ICMP flooding. Detecting Attacks with Ground Truth: METROSEC traffic
attack using the SSC-EA-based outliers detection approach
Traffic is aggregated ifPsrc/32 flows. Figure 3.(a) shows theof the False Positives Rates (FTR) in the detection of 9 DDoS

ordered _d|55|m_|lar|ty values _obtamed _fgr the d'ﬁerenm attacks in the METROSEC dataset. From these 9 attacks, 5
along with their corresponding classification. The first tw&
a

Figure 5 depicts the True Positives Rate (TPR) as a function

. 0 i
most distant flows correspond to a highly distributed SY orrespond to massive attacks (more than 70% of the traffic),

L 0 a high intensity attack (about 40%), 2 are low intensity
network scan (more than 500 destination hosts) and an IC Ffacks (about 10%), and 1 is a very-low intensity attack

ITt?about 4%). The detection is performed with traffic aggredat
ri1r(lePdst/32 flows. The ROC plot is obtained by comparing the
é(_)rted dissimilarity values obtained for the different fiote
a variable detection threshold. The SSC-EA-based algorith
can correctly detect 8 out of the 9 attacks without falsenasar

e detection of the very-low intensity attack is more diffic

(ICMP redirect traffic, directed towards port 0). The foliogy
two flows correspond to unusual large rates of DNS traffic a
HTTP requests; from there on, flows correspond to norm
operation traffic. Note that both attacks can be easily detec
and isolated from the anomalous but yet legitimate traff
W.'thOUt false a'a“”‘?s' using for exa“_”p'e the thres_hahd owever, the 9 attacks are correctly detected with a very low
Figures 3.(b,c) depict the corresponding four flows in two PR. aboutl 2%

the partitions produced by the SSC-EA-based method. Beside o
showing typical characteristics of these attacks, bothitjmars We compare the performance of our approach against three
show that the attacks do not represent the largest elephar@vious unsupervised approaches: DBSCAN-basedeans-
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based, and PCA-based outliers detection. The first two sbngiigure 5. DDoS detection in METROSEC. The SSC-EA-based odketh

in applying two standard clustering algorithms, either DEEE 2 Seec syen 2 vkl ienly BRoS atck i e fae
SCAN [18] or k-means [17] to the complete feature space

X, identify the largest cluste€*, and compute the distance

of all the flows lying outsideC* to its centroid. The ROC is

finally obtained by comparing the sorted distances to a bkria

detection threshold. These approaches are similar to thdlesvs. For them = 9 features that we have used, the total
used in previous work [9]-[12]. In the PCA-based approachumber of clusterings to compute I§ = 36, which takes
PCA and the sub-space methods [13], [14] are applied to tAkout14.4 seconds in a standard single-processor machine.
complete matrix of featureX, and the attacks are detected

by comparing the residuals to a variable threshold. Both theTwo key features of the SSC-EA-based algorithm can
k-means and the PCA-based approaches require fine tunipg: exploited to reduce scalability problems in and n.

in k-means, the number of clustefsto identify must be Firstly, clustering is performed in low-dimensional syirees
set a-priori; in PCA, the number of principal componentgr?) independently of the number of features that are used.
used to describe normal-operation traffic must be decidéu wgustering in low-dimensional feature spaces is fasten tha
heuristics. In the case of-means, we repeat the clusteringn high-dimensional spaces [17], which partially alleeit
for different values of cluster#, and present the averagehe overhead of multiple clusterings computation. Seagndl
results. In the case of PCA we present the best performangg clustering of each sub-spade can be performed inde-
obtained while using 2 principal components to descriigendently of the analysis on the other sub-spaces, which is
normal-operation traffic. perfectly adapted for parallel computing architecturesaftel

Obtained results permit to evidence the great advantageCBfnpUting has become the dominant paradigm for accelgratin

using the SSC-EA-based algorithm in the clustering ste;b.w.?pecmc_ tas_lfs and represents a ‘?°°mi”9 domai_n_, driven by
to traditional approaches. In particular, all the appresalsed the avallablllty_ of ;trong computqtlonall-poyver e”““f‘s'?’"’

in the comparison fail to detect the smallest attack with GPStS- Parallelization can be achieved in different wagsg!
reasonable false alarm rate. Both the DBSCAN-based and fhingle multi-processor and multi-core machine, using GPU
k-means-based algorithms get confused by masking featuttsaphic Process_or l_Jn|t) capabilities, using networkepm;o_r _
when analyzing the complete feature spaceAs evidenced in cards, using a distributed group of machmes, or combining
previous work [14], the PCA approach is not sensitive enougﬁese .technlques. Wg shall use the term "slice” as a referenc
to discriminate both low-intensity and high-intensityaats, © & Single computational entity.

using the same representation for normal-operation traffic
Modern network-processor cards are able to perform traf-

fic monitoring even in10 Gbps network connections. In a
average-loadeti) Gbps link (about0%-60%) there are about
The SSC-EA-based algorithm performs clusteringhin= 500.000 packets per second; if we consider traffic flows with
m(m — 1)/2 low-dimensional sub-spaceX; € R?. As we an average rate ¢f00 kbps (aboub0 pkts/sec) and a average
have shown, this provides a high discrimination power tduration of at leas20 seconds, then we have abaut 10.000
detect and characterize different types of network attackws to analyze in each time slot kT = 20 seconds.
However, the multiple clusterings computation increases tFrom our experimentations, we known that we can analyze this
total Computational Time (CT) of the algorithm, imposingqiumber of flows using as much as = 20 traffic descriptors
scalability issues for on-line detection of network atdék in less thar20 seconds, using a parallel architecture with about
very-high-speed networks. Scalability should be addeesse 100 slices. Current network-processor cards vendors offer
regards both the number of features used to describe traffialti-core solutions for high-performance networkingwés
flows (m) and the number of flows to analyze)( In the real much as64 general purpose cores [24], which are perfectly
traffic evaluations that we have presented, the number offloadapted to deploy our unsupervised detection algorithm for
captured in a time slot oAT = 20 seconds rounds = 2500 very-high-speed knowledge-independent traffic monitprin
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