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Abstract—The philosophy of traffic monitoring for detection
of network attacks is based on an “acquired knowledge” per-
spective: current techniques detect either the well-knownattacks
which they are programmed to alert on, or those anomalous
events that deviate from a known normal-operation profile.
These approaches rely on an expert system which provides the
required knowledge, either in terms of “signatures” of the well-
known attacks or as anomaly-free traffic datasets, rich enough
to build representative profiles for normal-operation traffic. In
this article we discuss the limitations of current knowledge-
based strategy to detect network attacks in an increasingly
complex and evolving Internet, characterized by ever-emerging
applications and an ever-increasing number of new network
attacks. In a diametrically opposite perspective, we placethe
emphasis on the development of unsupervised detection methods,
capable of detecting unknown network attacks in a dynamic
environment without any previous knowledge, neither on the
characteristics of the attack nor on the baseline-traffic behavior.
Based on the observation that a large fraction of network
attacks are contained in a small fraction of traffic flows, we
demonstrate how to combine simple clustering techniques to
accurately identify and characterize malicious flows. To show
the feasibility of such a knowledge-independent approach,we
develop a robust multi-clustering-based detection methodand
evaluate its ability to detect and characterize network attacks
without any previous knowledge, using packet traces from two
real operational networks.

Index Terms—Unsupervised Detection of Attacks, DDoS, Net-
work Scans, Robust Clustering, Automatic Characterization.

I. I NTRODUCTION

NETWORK traffic monitoring has become an essential
means for detection of network attacks in today’s In-

ternet. The principal challenge in detecting network attacks
is that these are a moving target. It is not possible to know
the different attacks that an attacker may launch, because
new attacks as well as new variants of already known attacks
are continuously emerging. Indeed, attacks have become both
increasingly numerous and sophisticated over the years [1].

Two different approaches are by far dominant in cur-
rent research community and commercial detection systems:
signature-based detection and anomaly detection. Despitebe-
ing opposite in nature, both approaches share a common down-
side: they rely on the knowledge provided by an expert system,
usually a human expert, to do the job. We shall therefore refer

to them as knowledge-based detection approaches.

On the one hand, signature-based detection systems [2]
are based on a extensive knowledge of the particular char-
acteristics of each attack, referred to as its “signature”.Such
systems are highly effective to detect those well-known attacks
which they are programmed to alert on. However, they cannot
defend the network against new attacks, simply because they
cannot recognize what they do not know. In addition, building
new signatures involves manual inspection by human experts,
which is not only very expensive and prone to errors, but also
introduces an important latency between the discovery of a
new attack and the construction of its signature. In a network
scenario where new attacks are constantly appearing, such a
manual process imposes a serious bottleneck on the defense
capabilities of the network.

On the other hand, anomaly detection [3]–[7] relies on
the existence of normal-operation traffic instances to build a
baseline-profile, detecting anomalies as traffic activities that
deviate from it. Such an approach permits to detect new kinds
of network attacks not seen before, because these will naturally
deviate from the constructed baseline. Nevertheless, anomaly
detection requires training to construct normal-operation pro-
files, which is time-consuming and depends on the availability
of purely anomaly-free traffic datasets. Labeling traffic as
anomaly-free is expensive and hard to achieve in the practice,
since it is difficult to guarantee that no anomalies are hidden
inside the collected traffic. Additionally, it is not easy to
maintain an accurate and up-to-date normal-operation profile,
particularly in a dynamic and evolving context where new
services and applications are constantly emerging.

Motivated by the limitations of knowledge-based ap-
proaches, a new research area has emerged in the last years,
based on a diametrically opposite philosophy for detectionof
anomalous traffic events: Unsupervised Anomaly Detection.
Instead of relying on a previously acquired knowledge on the
characteristics of network attacks or on the baseline-traffic
behavior, unsupervised detection uses data-mining techniques
to extract patterns and uncover similar structures “hidden”
in unlabeled traffic of unknown nature (attack or normal-
operation traffic). Based on the observation that network
attacks, and particularly the most difficult ones to detect,are
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contained in a small fraction of traffic flows w.r.t. normal-
operation traffic [8], their unsupervised detection basically
consists in identifying “outliers”, i.e. patterns that aredistant
from the majority of the traffic.

Some methods for unsupervised detection of network at-
tacks have been proposed in the past [9]–[13]; the major-
ity of them are based on clustering techniques and outliers
detection. The objective of clustering is to partition a set
of unlabeled elements into homogeneous groups of “similar”
characteristics, based on some similarity measure. Different
from other techniques for unsupervised data analysis (e.g.
density estimation, dimensionality reduction, etc.), cluster-
ing permits to work with multiple-classes problems without
modifying the characteristics of the analyzed traffic, hence it
represents an attractive means for unsupervised detectionof
attacks. Unfortunately, even if hundreds of clustering algo-
rithms exist [17], it is very difficult to decide which algorithm
would be the best one for our particular problem. Different
clustering algorithms produce different partitions of data, and
even the same clustering algorithm provides different results
when using different initializations and/or different algorithm
parameters. This is in fact one of the major drawbacks in
current cluster analysis techniques: the lack of robustness.

In this article we stress the paramount advantage of unsu-
pervised, knowledge-independent detection algorithms based
on clustering, but we argue that their performance should
not be tied to the particular characteristics of any clustering
algorithm. We shall therefore present an alternative clustering
approach to perform robust unsupervised detection of attacks.
The main idea is to combine the clustering results provided
by multiple independent partitions of the same set of flows,
filtering-out biased groupings. The combination of multiple
evidence about inter-flows organization adds robustness tothe
process of separating malicious from normal-operation traffic.
The approach combines the notions of Sub-Space Clustering
(SSC) [15] and Evidence Accumulation (EA) [16] to produce
these multiple independent partitions and to combine the
information provided by each of them. Besides detecting
network attacks, we show how to use the information provided
by the multi-clustering approach to characterize an identified
group of malicious flows, automatically producing an easy-
to-interpret signature of the attack. This signature provides
useful information about the nature of the attack to the
network operator, and can be eventually used to expand the
list of known-attacks of a signature-based detection system,
simplifying its detection in the future.

As a proof-of-concept of how such a robust unsupervised
detection approach may work in the practice, we develop a
complete system to detect and characterize standard network
attacks without any previous knowledge about their existence,
testing its performance in real traffic captured in two opera-
tional networks: the backbone network of the Japanese WIDE
project [22], and the French RENATER research network. In
addition, we show that this method outperforms previously
proposed methods for unsupervised detection of attacks.

II. N ETWORK ATTACKS

Although we claim that our approach can be used to
detect and characterize unknown malicious flows, we focus
on the detection and characterization of standard and well-
known attacks, which facilitates the interpretation of results.
However, we shall assume no previous knowledge about these
attacks, and thus treat them as completely unknown. Denial of
Service (DoS), Distributed DoS (DDoS), network scans, and
worms propagation are examples of standard attacks that daily
threaten the integrity and normal operation of the network.

DoS/DDoS:a DoS/DDoS attack [19] is an attempt to make
a network resource (a particular service, network bandwidth,
etc.) unavailable to its intended (legitimate) users. In its most
general form, a DoS/DDoS attack seizes resources by using
or requesting more than the victim can handle, preventing it
from responding to legitimate requests. A common DoS/DDoS
attack is known as SYN flooding, in which the attacker sends
a large number of TCP/SYN packets asking for a connection
initiation to the victim’s service, which has to keep track of
these partially opened connections and can not respond to
legitimate requests. Other flooding attacks are based on send-
ing an overwhelming number of ICMP packets to the victim
(smurf attack, ping flood, etc.), causing a severe bandwidth
exhaustion. DoS attacks are characterized by a single host
sending traffic towards a single victim, whereas DDoS involve
traffic from many sources towards the same victim.

Worms propagation: a worm [20] is a malicious self-
replicating program that uses the network to send copies of
itself, infecting other machines by exploiting specific vulner-
abilities. A worm is normally used to install a back-door in
the infected computer, allowing the creation of a “zombie”
machine under the control of the attacker. Networks of such
machines are referred to as “botnets”, and are generally used to
launch massive DDoS attacks. A worm first scans the network
in search of possible victims to infect. During the propagation
phase, an infected machine sends traffic to a large number of
destinations.

Network scan: a network scan [21] is a probing attempt to
identify the availability of a specific service on many different
machines. Detecting network scans is extremely important be-
cause such an activity is usually a precursor of the propagation
of a worm, and therefore the precursor of possible DDoS
attacks. Network scans are characterized by a single source
sending traffic to many destinations.

III. U NSUPERVISEDDETECTION & CHARACTERIZATION

OF NETWORK ATTACKS

The detection algorithm that we present runs in a time
sliding-window basis, capturing packets in consecutive time
slots of fixed length∆T. The analysis is performed in three
consecutive stages. In the first stage, we use any traditional
time-series abrupt-change detection algorithm to detect the
presence of an anomalous slot. Modeling anomalies as abrupt-
changes in network data time-series is a standard approach
[4]–[7]. Packets are aggregated into flows at the end of
each slot, and time-series for change detection are built on
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them, using simple traffic metrics such as number of bytes,
packets, or flows per time slot. A flow of packets is defined
for source or destination, using either(IPsrc/netmask) or
(IPdst/netmask) as flow identifier. The use of different net-
masks (i.e./16, /24, /32) provides different levels of traffic
aggregation, which facilitates detection in the event of both
single source-destination and distributed attacks.

A. Sub-Space Clustering & Evidence Accumulation

The unsupervised detection and characterization algorithm
begins in the second stage, using as input the set of flows
captured in the anomalous slot. An anomaly is generally
detected in different aggregation levels, and there are many
heuristics to select a particular aggregation to use in the
unsupervised stage; for the sake of simplicity we shall skip
this issue, and use any of the aggregation levels in which
the anomaly was detected. Without loss of generality, let
Y = {y1, . . . ,yn} be the set ofn flows in the flagged
slot. Each flowyi ∈ Y is described by a set ofm traffic
attributes orfeatures. Table I presents the different features
used in this article. The list includes standard and very basic
traffic attributes, which permits to describe the detected attacks
in easy-to-interpret terms. As we show in the evaluation,
such features are good enough to detect and characterize
standard network attacks such as DoS, DDoS, and network
scans. However, the list is by no means exhaustive, and more
features can be easily plugged-in to improve detection and
characterization results. Letxi = (xi(1), . . . , xi(m)) ∈ R

m be
the corresponding vector ofm traffic features describing flow
yi, andX = {x1, . . . ,xn} the complete matrix of features,
refereed to as thefeature space.

The algorithm is based on clustering techniques applied
to X. Our goal is to identify inY the different flows that
may compose the attack. For doing so, we recall that a large
fraction of network attacks are contained in a small fraction
of traffic flows. Thus, an attack may consist of either outliers
(i.e., single isolated flows) or small-size clusters, depending on
the aggregation level of flows inY. Let us take as an example
a DDoS attack launched fromβ sources distributed alongδ
different /24 botnets towards a single victim. The attack is
represented as a cluster ofβ flows if the aggregation is done
for IPsrc/32, or as an outlier if the aggregation is done for
IPdst/32. Taking into account that the number of flows in
Y can reach some thousands even for short time slots, the
number of sourcesβ would have to be extremely large to
violate the assumption of small-size cluster. Besides, if this
would be the case, then the attack would be represented as
a small-size cluster ofδ << β flows when usingIPsrc/24
aggregation. In addition, distributed attacks with thousands of
sources are easily detected with standard techniques [19] and
thus they are less interesting to us, because the evidence of
such attacks is overwhelming.

To avoid the lack of robustness of general clustering tech-
niques, we have developed a divide & conquer clustering
approach, combining the notions of Sub-Space Clustering and
Evidence Accumulation. Instead of directly partitioning the

Feature Description

nSrcs nº of sources
nDsts nº of destinations
nSrcs/nDsts ratio of nSrcs to nDsts

nSrcPorts nº of different source ports
nDstPorts nº of different destination ports
nPkts/sec nº of packets per second
nPkts/nDst nº of packets per destination
nICMP/nPkts fraction of ICMP packets
nSYN/nPkts fraction of SYN packets

Table I
EXAMPLES OF THE FEATURES USED TO DETECT AND CHARACTERIZE

DOS, DDOS,AND NETWORK SCANS.

complete feature spaceX, the SSC-EA-based algorithm does
clustering in N different sub-spacesXi ⊂ X of smaller
dimensions, obtainingN different partitionsPi of the flows
in Y. Each partitionPi is obtained by applying DBSCAN
[18] to sub-spaceXi. DBSCAN is a powerful density-based
clustering algorithm that discovers clusters of arbitraryshapes
and sizes [17]. Each sub-spaceXi is constructed using only
r < m traffic features; this permits to analyze the structure of
X from N different perspectives, using a finer-grained reso-
lution. In particular, we do clustering in very-low dimensional
sub-spaces, usingr = 2. To deeply explore the complete
feature space, we analyze all ther-combinations-obtained-
from-m sub-spaces; hence,N = m(m−1)/2. The information
provided by the multiple partitionsPi is then combined to
produce a new similarity measure between flows inY, which
has the paramount advantage of clearly highlighting both
the outliers and small-size clusters that were simultaneously
identified in different sub-spaces. This new similarity measure
is finally used to easily extract the anomalous flows from the
rest of the traffic. Briefly speaking, if we can find single flows
or a small group of flows that are remarkably different from the
rest of the traffic in different sub-spaces, then we have found
an anomaly; if not, the flagged slot was just a false alarm.
The simultaneous use of SSC and EA adds robustness to the
clustering process, improving the ability of the algorithmto
properly detect attacks.

B. Automatic Characterization of Attacks

At this stage, the unsupervised algorithm has identified a
set of very similar flows inY distant from the majority of
traffic. The following task is to automatically produce a setof
K filtering rulesfk(Y), k = 1, . . . ,K to correctly isolate and
characterize these flows. In the one hand, such filtering rules
provide useful insights on the nature of the anomaly, easing
the analysis task of the network operator. On the other hand,
different rules can be combined to construct a signature of the
anomaly, which can be used to detect its occurrence in the
future, using a traditional signature-based detection system.

In order to produce filtering rulesfk(Y), the algorithm
selects those sub-spacesXi where the separation between the
anomalous flows and the rest of the traffic is the biggest.
We define two different classes of filtering rule:absolute
rules fA(Y) and relative rules fR(Y). Absolute rules are
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Figure 1. Filtering rules for characterization of a SYN network scan.

only used in the characterization of small-size clusters. These
rules do not depend on the separation between clusters,
and correspond to the presence of dominant features in the
anomalous flows. An absolute rule for featurej has the form
fA(Y) = {yi ∈ Y : xi(j) == λ}. For example, in the case
of an ICMP flooding attack, the vast majority of the associated
flows use only ICMP packets, hence the absolute filtering rule
{nICMP/nPkts == 1} verifies for them.

Relative filtering rules depend on the separation between
anomalous and normal-operation flows. Basically, if the
anomalous flows are well separated from the rest of the
clusters in a certain partitionPi, then the features of the
corresponding sub-spaceXi are good candidates to define a
relative rule. A relative rule defined for featurej has the form
fR(Y) = {yi ∈ Y : xi(j) < λ or xi(j) > λ}.

We shall also define acovering relationbetween filtering
rules: we say that rulef1 coversrule f2 ↔ f2(Y) ⊂ f1(Y).
If two or more rules overlap (i.e., they are associated to the
same feature), the algorithm keeps the one that covers the rest.

To construct a compact signature of the anomaly, we shall
select the most discriminant filtering rules. Absolute rules are
important, because they define inherent characteristics ofthe
anomaly. As regards relatives rules, their relevance is directly
tied to the degree of separation between flows. In the case of
outliers, we select theK features for which the normalized
distance to the normal-operation traffic (represented by the
biggest cluster in each sub-space) is among the top-K biggest
distances. In the case of small-size clusters, we rank the degree
of separation to the rest of the clusters using the well-known
Fisher Score (FS), and select the top-K ranked rules. The FS
measures the separation between clusters, relative to the total
variance within each cluster. To finally construct the signature,
the absolute rules and the top-K relative rules are combined
into a single inclusive predicate, using the covering relation in
case of overlapping.

IV. EVALUATION AND DISCUSSION

We evaluate the ability of the unsupervised algorithm to
detect and to construct a signature for different attacks in
real traffic traces from the public traffic repository of the
WIDE project [22]. The WIDE operational network pro-
vides interconnection between different research institutions in
Japan, as well as connection to different ISPs and universities
in the U.S.. The traffic repository consists of 15 minutes-
long raw packet traces collected since 1999. Traces are not
labeled, thus our analysis is limited to show the detection and
characterization of different network attacks found by manual
inspection in randomly selected traces, such as ICMP DoSs,
SYN network scans, and SYN DDoS. In all cases, we shall
assume no previous knowledge about these attacks, and thus
treat them as completely unknown.

We also test the true positive and false positive rates
obtained in the detection of annotated attacks, using different
traffic traces from the METROSEC project [23]. These traces
consist of real traffic collected on the French RENATER
network, containing simulated attacks performed with well-
known DDoS attack tools. DDoS attacks range from very low
intensity (i.e., less than 4% of the overall traffic volume) to
massive attacks (i.e., more than 80% of the overall traffic
volume). Additionally, we compare the performance of the
algorithm against some previous methods for unsupervised
outliers detection based on clustering [9]–[12], as well as
against the very well-known Principal Components Analysis
(PCA) approach [13]. PCA is a standard technique for unsu-
pervised data analysis, based on dimensionality reduction.

A. Detecting a network scan

We first detect and characterize a distributed SYN network
scan directed to many victim hosts under the same/16
destination network. Packets inY are aggregated inIPdst/24
flows, thus we shall detect the attack as a small-size cluster.
The length of each slot is∆T = 20 seconds. As we explained
in section III-A, the SSC-EA-based clustering algorithm con-
structs a new similarity measure between flows inY. We shall
express this new similarity measure as an × n matrix S,
in which elementS(i, j) represents the degree of similarity
between flowsi andj. Figure 1.(a) depicts a histogram on the
values ofS. The structure of flows provided byS evidences
the presence of a small isolated cluster in multiple sub-spaces.
Selecting the most similar flows w.r.t.S results in a compact
cluster of53 flows; a further analysis of these flows reveals
different IPdst/32 sub-flows of SYN packets with the same
IPsrc address, corresponding to the scanning machine.

As regards filtering rules and the associated signature
of the attack, figures 1.(b,c) depict some of the partitions
Pi where both absolute and top-K relative rules were
produced. These rules relate the number of sources
and destinations, and the fraction of SYN packets.
Combining them produces a signature that can be expressed
as (nSrcs == 1) ∧ (nDsts > λ1) ∧ (nSYN/nPkts > λ2),
whereλ1 and λ2 are two thresholds obtained by separating
clusters at half distance. The signature makes perfect sense,
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Figure 2. Filtering rules for characterization of a SYN DDoSattack.

since the network scan sends SYN packets from a single host
to a large number of victims. The paramount advantage of
the approach relies on the fact that this new signature has
been produced without any previous knowledge about the
attack or the baseline traffic.

B. Detecting a DDoS attack

Figures 2.(a,b) depict different rules obtained in the
detection of a SYN DDoS attack. Traffic is now aggregated
in IPsrc/32 flows, and the attack is detected as a small-size
cluster. The analysis of inter-flows similarity w.r.t.S selects
a compact isolated cluster, corresponding to the set of
attacking hosts. The obtained signature can be expressed as
(nDsts == 1) ∧ (nSYN/nPkts > λ3) ∧ (nPkts/sec > λ4),
which combined with the large number of identified sources
(nSrcs > λ5) confirms the nature of a SYN DDoS attack.
This signature is able to correctly isolate the most aggressive
hosts of the DDoS attack, i.e., those with highest packet rate.

C. Detecting attacks as outliers

In the case of outliers detection, the similarity measure
provided by the SSC-EA-based algorithm does not represent
inter-flows similarity; instead, it corresponds to the cumulative
separation of an outlier to the biggest cluster in the different
sub-spaces. The biggest cluster in each sub-space statistically
represents normal-operation traffic. Let us first present the
detection of a SYN network scan and an ICMP flooding
attack using the SSC-EA-based outliers detection approach.
Traffic is aggregated inIPsrc/32 flows. Figure 3.(a) shows the
ordered dissimilarity values obtained for the different flows,
along with their corresponding classification. The first two
most distant flows correspond to a highly distributed SYN
network scan (more than 500 destination hosts) and an ICMP
spoofed flooding attack directed to a small number of victims
(ICMP redirect traffic, directed towards port 0). The following
two flows correspond to unusual large rates of DNS traffic and
HTTP requests; from there on, flows correspond to normal-
operation traffic. Note that both attacks can be easily detected
and isolated from the anomalous but yet legitimate traffic
without false alarms, using for example the thresholdα1.
Figures 3.(b,c) depict the corresponding four flows in two of
the partitions produced by the SSC-EA-based method. Besides
showing typical characteristics of these attacks, both partitions
show that the attacks do not represent the largest elephant
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Figure 3. Detection and analysis of network attacks in WIDE.

flows in the time slot. This emphasizes the ability of the
algorithm to detect low volume attacks, even of lower intensity
than normal traffic.

To conclude, figures 4.(a,b) present the detection and au-
tomatic characterization of an ICMP flooding DoS attack.
Traffic is aggregated according toIPdst/32. Absolute rules
are not applicable in the case of outliers detection. Relative
rules correspond to the separation of the outlier from the
biggest cluster in each sub-space. Besides showing typical
characteristics of this attack, such as a high packet rate
of exclusively ICMP packets from the same source, both
partitions evidence once again the ability of the algorithm
to detect network attacks that are not necessarily the biggest
elephant flows. The obtained signature can be expressed as
(nICMP/nPkts > λ6) ∧ (nPkts/sec > λ7).

D. Detecting Attacks with Ground Truth: METROSEC traffic

Figure 5 depicts the True Positives Rate (TPR) as a function
of the False Positives Rates (FTR) in the detection of 9 DDoS
attacks in the METROSEC dataset. From these 9 attacks, 5
correspond to massive attacks (more than 70% of the traffic),
1 to a high intensity attack (about 40%), 2 are low intensity
attacks (about 10%), and 1 is a very-low intensity attack
(about 4%). The detection is performed with traffic aggregated
inIPdst/32 flows. The ROC plot is obtained by comparing the
sorted dissimilarity values obtained for the different flows to
a variable detection threshold. The SSC-EA-based algorithm
can correctly detect 8 out of the 9 attacks without false alarms.
The detection of the very-low intensity attack is more difficult;
however, the 9 attacks are correctly detected with a very low
FPR, about1.2%.

We compare the performance of our approach against three
previous unsupervised approaches: DBSCAN-based,k-means-
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Figure 4. Filtering rules for characterization of an ICMP DoS attack.

based, and PCA-based outliers detection. The first two consist
in applying two standard clustering algorithms, either DB-
SCAN [18] or k-means [17] to the complete feature space
X, identify the largest clusterC∗, and compute the distance
of all the flows lying outsideC∗ to its centroid. The ROC is
finally obtained by comparing the sorted distances to a variable
detection threshold. These approaches are similar to those
used in previous work [9]–[12]. In the PCA-based approach,
PCA and the sub-space methods [13], [14] are applied to the
complete matrix of featuresX, and the attacks are detected
by comparing the residuals to a variable threshold. Both the
k-means and the PCA-based approaches require fine tuning:
in k-means, the number of clustersk to identify must be
set a-priori; in PCA, the number of principal components
used to describe normal-operation traffic must be decided with
heuristics. In the case ofk-means, we repeat the clustering
for different values of clustersk, and present the average
results. In the case of PCA we present the best performance,
obtained while using 2 principal components to describe
normal-operation traffic.

Obtained results permit to evidence the great advantage of
using the SSC-EA-based algorithm in the clustering step w.r.t.
to traditional approaches. In particular, all the approaches used
in the comparison fail to detect the smallest attack with a
reasonable false alarm rate. Both the DBSCAN-based and the
k-means-based algorithms get confused by masking features
when analyzing the complete feature spaceX. As evidenced in
previous work [14], the PCA approach is not sensitive enough
to discriminate both low-intensity and high-intensity attacks,
using the same representation for normal-operation traffic.

V. I MPLEMENTATION ISSUES

The SSC-EA-based algorithm performs clustering inN =
m(m − 1)/2 low-dimensional sub-spacesXi ∈ R

2. As we
have shown, this provides a high discrimination power to
detect and characterize different types of network attacks.
However, the multiple clusterings computation increases the
total Computational Time (CT) of the algorithm, imposing
scalability issues for on-line detection of network attacks in
very-high-speed networks. Scalability should be addressed as
regards both the number of features used to describe traffic
flows (m) and the number of flows to analyze (n). In the real
traffic evaluations that we have presented, the number of flows
captured in a time slot of∆T = 20 seconds roundsn = 2500
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Figure 5. DDoS detection in METROSEC. The SSC-EA-based method is
able to detect even a very-low intensity DDoS attack with a very small false
alarm rate, which is not possible with traditional unsupervised approaches.

flows. For them = 9 features that we have used, the total
number of clusterings to compute isN = 36, which takes
about14.4 seconds in a standard single-processor machine.

Two key features of the SSC-EA-based algorithm can
be exploited to reduce scalability problems inm and n.
Firstly, clustering is performed in low-dimensional sub-spaces
(R2), independently of the number of features that are used.
Clustering in low-dimensional feature spaces is faster than
in high-dimensional spaces [17], which partially alleviates
the overhead of multiple clusterings computation. Secondly,
the clustering of each sub-spaceXi can be performed inde-
pendently of the analysis on the other sub-spaces, which is
perfectly adapted for parallel computing architectures. Parallel
computing has become the dominant paradigm for accelerating
specific tasks and represents a booming domain, driven by
the availability of strong computational-power entities at low
costs. Parallelization can be achieved in different ways: using
a single multi-processor and multi-core machine, using GPU
(Graphic Processor Unit) capabilities, using network-processor
cards, using a distributed group of machines, or combining
these techniques. We shall use the term ”slice” as a reference
to a single computational entity.

Modern network-processor cards are able to perform traf-
fic monitoring even in10 Gbps network connections. In a
average-loaded10 Gbps link (about50%-60%) there are about
500.000 packets per second; if we consider traffic flows with
an average rate of500 kbps (about50 pkts/sec) and a average
duration of at least20 seconds, then we have aboutn = 10.000
flows to analyze in each time slot of∆T = 20 seconds.
From our experimentations, we known that we can analyze this
number of flows using as much asm = 20 traffic descriptors
in less than20 seconds, using a parallel architecture with about
100 slices. Current network-processor cards vendors offer
multi-core solutions for high-performance networking with as
much as64 general purpose cores [24], which are perfectly
adapted to deploy our unsupervised detection algorithm for
very-high-speed knowledge-independent traffic monitoring.
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VI. CONCLUDING REMARKS

In this article we question the ability and stress the limita-
tions of current knowledge-based approaches for detectionof
network attacks, particularly in the context of an increasingly
complex and ever-evolving Internet. In a diametrically oppo-
site perspective, we place the emphasis on the development
of unsupervised, knowledge-independent detection algorithms,
which we believe is the next natural step in network traffic
monitoring for network security.

As a proof-of-concept of how such a detection approach
could be actually implemented in the practice, we have
presented a robust multi-clustering-based detection method
and evaluated its ability to detect and characterize standard
network attacks without any previous knowledge, using packet
traces from two real operational networks. In addition, we have
shown detection results that outperform previous proposals for
unsupervised detection of attacks, providing more evidence of
the feasibility of an accurate knowledge-independent detection
system.

To conclude, we have briefly discussed implementation
issues of the presented approach, showing that its use for
on-line unsupervised detection and automatic generation of
signatures is a-priori possible, even while using more traffic
descriptors to characterize network attacks, and even when
running in very-high-speed networks.
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