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Abstract— This paper intends to describe the current status
of our group in trying to make a humanoid robot autonomously
build an internal representation of an object, and later on to
find it in an unknown environment. This problem is named
“treasure hunting”. In both cases, the main difficulty is to
be able to find the next best position of the vision sensor in
order to realize the behavior while taking care of the robots
limitation. We briefly describe the models and the processes
we are currently investigating in building this overall behavior.
Along the description we stress the current key problems faced
while trying to solve this problem.

I. INTRODUCTION

A. Context of the work

The works presented in this paper are parts of an on-
going project called ’treasure hunting’, where the robot
should retrieve autonomously an object in an unknown
environment [1] based on a model that it autonomously
build and stored [2] during a previous phase. This work
takes its foundation upon a previous work [3] where some
parts not described here (i.e. the software structure and the
motion generation) were detailed more specifically. In this
paper, we describe more specifically the two problems of
object visual model construction and visual search. In the
first case, a new optimization problem and its resolution are
introduced. This allows to find a pose for a HRP-2 humanoid
robot which maximize the unknown surface perceived with
the robot’s stereoscopic while coping with all the humanoid
robot constraints. In the second case, we investiguate the
problem related to visual recognition and research strategies
when dealing with the images taken in the first phase.

II. OBJECT VISUAL MODEL BUILDING

A. Overview of related work

Many existing works focus on the environment exploration
[4] or object recognition problems [5]. The modeling part
usually relies on a supervised method where different views
of an object are taken manually by a human and served as
an input to the algorithm. A number of works are dedicated
to planning of sensor positions in order to create a 3D
model of an unknown object, see for example [6], [7] or [8].
Hypothesis and limits of such works are detailed in these two
surveys: [9] and [10]. The most usual assumptions are that
the depth range image is dense and accurate by using laser
scanners or structured lighting, and that the camera position
and orientation is correctly set and measured relatively to

the object position and orientation. The object to analyze
is also considered to be inside a sphere or on a turntable,
i.e the sensor positioning space complexity to evaluate is
reduced since its distance from the object center is fixed and
its orientation is set toward the object center. The main aim
is to get an accurate 3D reconstruction of an object, using
voxels or polygons, while reducing the number of viewpoints
required.

B. Contribution

Though our modeling process also requires a Next-Best-
View (NBV) solution, it appears that working hypothesis
are quite specific for a humanoid robot. Our approach looks
similar to the works of [11], or [6], as we also rely on an
occupancy grid and a space carving method, but it still differs
in few important ways:

1) the limits of the sensor pose are constrained due to
it being embedded in a humanoid robot. Constraints
such as self-collisions, collisions with the environment,
joint limits, feet on the floor, and stability must be
taken into account. We also need another constraint
that keeps some landmarks visible from the cameras
so as to correct positionning errors.

2) the sensor possible positions are not constrained to
some precomputed discrete positions on a sphere sur-
face, and its viewing direction is not forced toward a
sphere center

3) an accurate 3D model of the object is not required.
Our goal is to get a set of SIFT around the object to
allow its effective detection and recognition.

In [2], the object modeling was performed by generating
postures with the robot head pose set as a constraint given by
a human supervisor. In [12], a first attempt to complete this
work by using visual cues to guide the modeling process
automatically was proposed by using a formulation which
can be directly integrated into the posture generator proposed
in [2]

III. TWO STEPS NBV APPROACH

Traditional works in the NBV field reduce the problem
dimensionality and sample the configuration space in order
to retrieve a solution in an acceptable amount of time without
relying on the gradient.

In order to avoid previous problems encountered while
taking into account the constraints related to the use of a



humanoid, a novel solution to our Next-Best-View problem
is introduced by decomposing it in two: first, find a cam-
era position and orientation that maximizes the amount of
unknown visible while solving specific constraints related
to the robot head, then generate a posture for the robot
using the PG. We propose to solve the first step by using
NEWUOA [13], a method that can find a function minimum
by refining a quadratic approximation of the function through
a deterministic iterative sampling, and which can be used
for non-derivable functions. The sampling positions at each
step in the iteration process are selected according to the
previous sampling results and the state of the actual quadratic
approximation. Moreover they are limited to vectors inside
a trust region, which is defined relatively to two radius
parameters: ρbeg and ρend, and a given starting vector, which
will be the camera pose in our case. NEWUOA has the
advantages of being fast and robust to noise while allowing
us to keep the 6 degrees of freedom of the camera.

A. Evaluation of the camera pose

In this approach, the estimation of unknown data visi-
ble from a specific viewpoint can be computed by taking
advantage of hardware acceleration, as a gradient is not
required. Moreover oscillations of small amplitude have only
a negligeable influence on the convergence of NEWUOA.
An OpenGL rendering of the occupancy grid was thus
implemented by displaying voxels as cubes whose color
corresponds to one of the two possible states: “known”
and “unknown”. The amount of unknown visible, noted
Nup, is then equal to the number of pixels of the color
related to “unknown” state present in the framebuffer. For
such purpose, voxels’ normals and lighting functionalities
of OpenGL are not used, which allows to speed up the
computation. Further optimization can be achieved by storing
voxels data in the graphic card memory.

B. Constraints on the camera pose

Though NEWUOA is supposed to be used for uncon-
strained optimization, some constraints on the camera pose
need to be solved in order to be able to generate a posture
with the PG from the resulting desired camera pose. The
constraints on the camera position C and orientation Θc
included in the evaluation function of the first step given to
NEWUOA are:

Czmin < Cz < Czmax (1)
dmin < d(C,ogcenter) (2)
Θcxmin < Θcx < Θcxmax (3)
Θcymin < Θcy < Θcymax (4)
Nl > Nlmin (5)

(1) limits the range of the camera height to what is accessible
by the humanoid size and joints configuration. (2) imposes
a minimum distance dmin between the robot camera and
the center of the occupancy grid. This corresponds to a
requirement in order to generate the disparity map with the
two cameras embedded in the robot head. (3) and (4) restricts
the rotations on X and Y axises to ranges manually set

according to the robot particularities. Finally (5) constraint
keeps a minimum number of landmarks, i.e. features that
were detected in previous views, visible from the resulting
viewpoint. By matching them with features detected within
the new viewpoint, it is possible to correct the odometry
errors due to the movement of the humanoid and thus the
position and orientation of the features detected all around
the object, relatively to each other, can also be corrected.

The landmark visibility constraint is currently imple-
mented by assigning a unique color to each landmark and
setting all corresponding voxels to the appropriate color. If
there is a sufficient amount of pixels with a specific landmark
color, then the landmark can be considered as visible.

C. Evaluation function formulation
In order to include the constraints into the function that

NEWUOA evaluates, we formulate the interval constraints
(1), (3) and (4), as:

K v = (α v − µ)p (6)

where parameters α and µ are manually set to modulate,
respectively, the interval center and width depending on the
parameter v to constrain. v can correspond to the parameter
Cz , Θcx, or Θcy . p can be set to a large value so that the
result is close to 0 inside the interval and increases quickly
outside of it.

Following the same principle, the inequality constraint (2)
related to the minimum distance beween the camera and the
object is formulated as:

Kd = expr (γ (dmin − d(C,ogcenter))) (7)

where γ and r parameters are set manually.
For the landmark visibility constraint, the formulation

depends on two cases. When Nl is greater or equal to Nlmin,
configurations maximizing Nl are slightly encouraged :

Kl = β (Nlmin −Nl) (8)

The β parameter influences how important is the maximiza-
tion of Nl in the optimization process. Its value should be
low enough so that the maximization of Nup stays the main
priority of the algorithm.

In the other case, configurations where Nl is less than
Nlmin are greatly penalized:

Kl = exp (δ (Nlmin −Nl)) + δ d (C,Cp) (9)

The penality is expressed through the δ value and gets larger
when the camera moves away from previously validated
position by using d (C,Cp), the distance between the actual
camera position, C, and the closest of the previous camera
positions where landmarks have been detected, Cp.

The evaluation function used as input to the NEWUOA
algorithm is then:

fe = λzKCz
+λxKΘcx

+λyKΘcy
+λdKd +λlKl−λnNup

(10)
The λ parameters are fixed manually to modify the balance
between the constraints. As Nup depends on the image
size, the value of the parameters used in the constraints
formulation should be modulated accordingly.



Fig. 1. (right) Best constrained visibility of unknown obtained depending
on fixed camera XY positions around a carved object (left). Clearer color
mean better results.

D. NEWUOA configuration

NEWUOA seeks the minimum of fe by approximating it
with a quadratic model, inside a trust region. Thus an initial
configuration is provided to the software which limits the
sampling to a subspace according to a range given by the
user. Due to the constraints used, many different cases can
result in local minimums in our evaluation function that are
quite disjoint as can be seen in the example shown in Fig. 1.
This figure shows the best results for fe obtained for a soldier
statue carved once and using different sampled values of
Cx and Cy . Darker points means worse evaluations. Known
voxels are represented as blue on the displayed object, and
unknown voxels in green. We can observe discontinuities
in the evaluation results due principally to the distance to
the object constraint, e.g the black zone in the center of the
image, and the landmark visibility constraint, e.g the black
zones on the right and on the top-left corner. In such cases,
the quadratic model cannot be pertinent if the trust region is
too big.

In our actual implementation, the optimization process is
biased by setting the starting pose of the camera to a pose
deduced from previous ones, and by limiting the trust region
size. When an optimum is found, NEWUOA is run again by
using the result configuration as a new starting pose. This is
done until a chosen maximum number of iterations has been
reached, or until the result pose is not better than the starting
one. Another way to improve the results is to choose a set
of possible starting poses around the object and launching
the optimization process for each of them. Results of all
optimizations are then compared to select the best camera
pose.

E. Second step: Posture Generator

Once an optimal camera pose has been found, the result
is used as a constraint on the humanoid robot head in order
to generate a whole-body posture that takes into account all
other constraints such as stability, collisions, etc.

The head posture is fixed by setting the embedded left
camera, with position hp and coordinate sytem vectors

(hi,hj ,hk), to the desired pose, with position C and co-
ordinate sytem vectors (Ci,Cj ,Ck), using:

((C + Ci)− hp) .Cj = 0 (11)
((C + Ci)− hp) .Ck = 0 (12)
hk.Cj = 0 (13)
hk.Ck ≥ 0 (14)
hi.Cj = 0 (15)
hi.Ck = 0 (16)
hi.Ci ≥ 0 (17)
d (C,hp) ≤ εd (18)

For this algorithm, the objective function for the PG is not
necessary. Nevertheless we use it as an esthetic criterion to
place the robot posture close to a reference posture where
joints are set to one quarter of their possible range from
their minimum limit. The associated non-linear optimization
problem to is solved using FSQP as described in more detail
in [2].

The starting robot pose is set using a pre-computed posture
and a position deduced from the desired camera pose. In
cases where the PG cannot converge, it can be launched again
with a different pre-computed starting posture, or a different
starting position.

IV. SIMULATIONS

We tested the influence of the trust region parameters on
the optimal found with NEWUOA. The parameter ρbeg sets
the maximum variation that can be taken by the camera pose
parameters, and the parameter ρend sets the accuracy of the
optimum search. Tests were conducted by selecting a camera
pose and by launching the optimization process with different
values for ρbeg and ρend. This was repeated several times
with different poses in order to check if some specific values
result in a convergence of NEWUOA toward a better pose
in most cases.

During our tests, it generally took NEWUOA between 1
and 3 seconds to find a minimum with an average computer.
This is quick enough to select and test different starting poses
in order to find a good Next-Best-View.

A. Modeling process simulation

We implemented the first step of our algorithm using a
C version of the original FORTRAN code published by
Powell [13]. The experimental setting is simulated by having
a virtual 3D object perceived by a virtual camera. The
modeling process loop the following steps:

1) The disparity map is constructed using the object 3D
informations and is used to perform a space carving
operation on the occupancy grid. Some known voxels
are randomly selected to be considered as landmarks.

2) The NEWUOA routine is then called in order to find
an optimal camera pose by minimizing our evaluation
function. In our current implementation, the starting
camera pose for NEWUOA is selected by rotating the
previous camera orientation 90 degrees on the Z axis



Fig. 2. Postures generated successively for the modeling of an unknown
object

and by positioning the camera at the same distance
from the object than the previous pose while the new
view vector is pointing at the occupancy grid center.
Other starting poses are generated by using a fixed
sampling of 3D positions centered on the computed
one. The view vectors are set toward the occupancy
grid center for each starting pose.

3) When an optimal camera pose is found, it is sent to
the PG in order to generate a whole-body posture.

Then we loop through all previously described steps until the
amount of unknown voxels is below a specified threshold, or
if it does not change after a space carving operation, i.e the
unknown voxels cannot be perceived due to the constraints
on the robot. An example of postures generated during a
successful modeling process is illustrated in Fig. 2 with the
updated occupancy grid at each step.

B. Pose generation

The second step of our Next-Best-View algorithm was
tested by verifying that camera poses obtained in the first step
do not result in a constraint, on the robot head, impossible
to satisfy when set in the PG with other constraints. Several
camera poses were computed using different virtual objects
with different states of space carving and the landmarks were
randomly generated amongst the known voxels on the surface
of the object.

During our tests, we could confirm that the constraints
set in the first step reduce the possible poses to what is
achievable by the PG with our current settings. In our first
simulations, we set the starting posture for the PG as a
standup position but found some cases where the posture
could not be generated. This happens when the camera is
set close to the minimum height limit. By using a squatting

Fig. 3. Postures generated using our NBV algorithm

position as a starting posture, this convergence problem was
not found afterwards.

Some of the whole-body postures obtained with the PG
were played with OpenHRP2 and then on a real HRP-2 robot
to ensure the stability constraint results in statically stable
postures. Two of them are shown in fig. 3.

V. CONCLUSION AND FUTURE WORK

A new method to generate automatically postures for a
humanoid robot depending on visual cues is presented. The
postures are selected amongst the possible configurations
allowed by stability, collisions, joint limitations and visual
constraints, so as to complete the modeling of an unknown
object using a minimum number of postures. An extended
version of this work has been submitted at ICRA 2009 [14].

The next target for our work is to use a planner which
is not based on a A∗ as proposed by Kuffner [15] and
Bourgeot [16]. Indeed such kind of planner usually create
an unwelcome stepping because the robot has its action set
decreased artificially to facilitate the path search resolution.
In the case of the visual search, as described in paragraph
VI-G, this increase very much the realization time of the
behavior.

VI. OBJECT VISUAL SEARCH

The object visual search has recently regain some interest
especially with new contest such as the Semantic Robot
Challenge [17] which interestingly is taking place in the
Computer Vision community. The 2007 contest winners
described their architecture in [18][19].

A. Visual recognition

1) SIFT model based approach: The object model used by
the robot consists of all the 3D features that had been spotted
during the learning phase, moved to a unique frame of
reference. What follows explains how such a representation
is used for object recognition.

First, feature detection is run on the scenery. The resulting
features are then matched between the scene and the object,



in the same way as it had been done for pairs of views
during the learning phase. Rigid motion evaluation is then
performed with unlikely matches cast aside.

The results for close-up scenes (up to 1 meter) are ex-
cellent, but worsen when the distance increases. In order to
measure the influence of distance on this algorithm, object
detection was run from many distances, in two different
experiments: with the object alone on a black background,
and in a heavily cluttered environment.

Fig. 4. A screenshot of the model successfully detected in the range map
of the scenery. It contains over 6000 3D SIFT features, but only the best
matches are represented.

Fig. 5. Left : The left eye’s image of figure 4’s scenery. Right : The pose
of the object is successfully determined using Rigid Motion minimization.

Beyond 2 meters, the object can still be located in the
scene’s 3D map, but the pose estimation fails. This is due
to the position error of the disparity map’s 3D points. As
specified [2], our approach uses geometric information to
check the geometrical relationship between the landmarks.
Thus we do not have problem related to the rotation of
the features as in a monocular approach [18] provided than
enough landmarks are detected during the visual model
construction.

B. Seeing far away: a generative model based approach

As the sift-based reconstruction method fails at detecting
objects far away, a method [2] was presented which aims

at providing coherent hypothesis of the object position and
scale in the robot field of view. It can detect object in
challenging conditions, such as difficult viewpoints, small
scale, extreme illumination conditions and occlusions. This
hypothesis can be used as an input for the visual search
when the 3D object reconstruction fails. It is an extension of
the method of [20] and uses additional information coming
from the robot to guide the model estimation process. In
particular we will use both the left and right images of the
robot cameras to compute dense disparity maps and then use
the resulting depth information as an extra component of the
model.

C. Visual Features

Images are represented by a set of n overlapping patches
and a gradient map (see figure 6).

Overlapping visual patches. Patches, denoted Pi, i ∈
{1, . . . , n}, are sets of pixels belonging to square image
regions. Five different characteristics are computed from
each patch.

First of all, a visual codebook is obtained by k-means
clustering SIFT [21] based representations of the patches.
Then, each patch Pi is associated to the closest codeword.
The assigned codeword is denoted wsift

i ; this is the first
characteristic. We also produce visual words based on color
information by clustering color descriptors [22]. The patch
Pi is also characterized by its closest color codebook word
wcolor

i . A RGB value is computed by averaging over pixels
extracted in the center of the patch. This 3D-vector is denoted
rgbi. We also consider the coordinates of the patch center
Xi = (xi, yi) in the image. Finally, the dense disparity map
provides an estimation of the depth di of the patch.

Gradient Map. In addition to this patch based character-
istics computation, we also extract a gradient map G(x, y),
that consists of the strength of the gradient at each (x, y)
pixel location.

In the end, the gradient map G(x, y) and the
characteristics of the n overlapping patches Pi:
{wsift

i , wcolor
i , rgbi, Xi, di}, i ∈ {1 · · ·n} compose all

the information we use to describe an image.

D. Model description

The strength of our model lies in the combination of two
(different but) complementary components: (i) a blob based
generative model using visual words for its good object
localization properties, and (ii) a MRF (Markov Random
Field) structure which provides a coherent field of labels
following object boundaries.

1) A blob-based generative model: We consider that an
image is made of “blobs”, and that each blob generates some
patches with its own model. Intuitively, if an image contains
three objects, we may have three blobs, one over each object
region. Each blob is thus responsible for generating a set of
patches the appearance of which corresponds to the object
category.

The generation of a patch requires to a) select a blob, and
b) generate a patch with the patch model specific to that blob.



The blob generation is assumed to follow a Dirichlet
process. The Dirichlet process exhibits a self-reinforcing
property: the more often a given value has been sampled
in the past, the more likely it is to be sampled again. This
means that each newly generated patch can either belong to
an existing image blob Bk or start a new region.

We characterize each blob Bk, 1 ≤ k ≤ K, with a
set of random variables: Θk = {µk,Σk, Ck, lk, Nk, Sk}.
µk,Σk are respectively the mean and the covariance matrix
describing the geometric shape of the blob, lk is the blob
label (object category), Ck is a Gaussian mixture model
representing the colors of the blob, Nk is the number of
patches generated by the blob, Sk is the scale of the blob
which is closely related to the distance between the object
and the camera.

We characterize each patch Pi by its features
(wsift

i , wcolor
i , rgbi, Xi, di).

The probability of generating a patch, given that it is
generated by the blob Bk of parameters Θk: p(P|Θk) is
made of 5 distinct parts, as the model assumes that patch
position and scale, color and appearance are independent for
a given blob. The probability for a blob Bk to have generated
patch P thus consists of five terms:

p(P|Θk) = p(wsift, wcolor, rgb,X, d|Θk)
= p(wsift|Θk)p(wcolor|Θk)

p(rgb|Θk)p(X|Θk)p(d|Θk)
(19)

The position X of a patch is chosen according to a normal
distribution of parameters µk and Σk for object blobs. It is
uniform for background blobs.

We assume that background and object blobs have a
Gaussian Mixture color model. The patch depth is closely
related to the blob size. Finally, the probability of the SIFT
and color codewords only depend on the class label. These
distributions encode object appearance information and are
responsible for the recognition ability of our model. They
are learned using training images in a way described later
on (section VI-F).

2) A MRF structured field of blob assignment: A MRF
of blob assignment regularizes the assignment of neigh-
boring patches and also aligns borders between the object
and the background with natural image contrast and with
strong depth changes. This field is defined over a grid (8-
connectivity), nodes correspond to patch centers.

This component basically defines a Gibbs energy that is
used to compute conditional probability of patch assignment.
This energy has a model fitting term based on the blob
representation previously defined as well as neighboring
constraint terms for spatial regularization.

The total energy E of the field is the sum of local energies
Ei defined for each patch Pi

Ei = Ui + γ
∑

j∈N (i) Vi,j (20)

where N (i) represents the 8 neighbors of Pi, γ balances the
proportion of the two terms. Let bi be the blob assignement
index of patch Pi. Ui = − log p(bi|Pi, N1:K ,Θbi) is a

Fig. 6. First row: patches are extracted in a very dense manner. Each
patch is associated to the closest visual word for sift and color descriptors,
and then represented by the words indexes (wSIFT

i , wcolor
i ), a RGB value

(rgbi), a position (xi) and a depth (di) given by the disparity map. Second
row: the model computes the best assignment of patches to object blobs or
background and estimates to blobs positions.

potential that measures the coherence between the patch and
the blob model, and p(bi|Pi, N1:K ,Θbi) is the probability of
the blob assignment knowing the patch and the parameters
of all the blobs. It stems from the model presented in the last
section and makes the link between the two components of
the model. Vi,j is a potential that measures similarity between
two patches Pi and Pj . It enforces local coherence of the
object/background labels, via constraints on the similarity
of neighboring patch labels. These contraints are computed
using the gradient map G and the distance between depth
values of neighboring patches. It encourages cuts along high
image gradients and depth discontinuity.

E. Model Estimation

Now that the model has been defined, its parameters have
to be estimated for each image to produce object/background
blobs labels (li) and patch assignments to blobs (bi). The
model is estimated by a Gibbs sampling algorithm [23] (spe-
cific case of Markov Chain Monte Carlo (MCMC) method).
A Gibbs sampler generates an instance of parameter values
from the distribution of each variable in turn, conditional on
the current values of the other variables. More details on the
model estimation could be found in [20].

F. Learning an object appearance

In order to learn the object appearance information, ex-
amples of images containing the object are fed to the
robot. Once again, these learning images are stereoscopic
views, taken from several viewpoints. The resulting dense
disparity map provides local information that we use to
create segmentation masks on positive images. This makes



Fig. 7. The model gives a list of patches actually being components of
the model. This produces segmentation masks.

the estimation of object model more accurate by knowing
exactly which part of the image belongs to the object and
which does not.

We also use a set of negative images (ie not containing
the object) provided by the robot camera while moving in
its environment.

Descriptors (SIFT + color) are extracted on local regions
exactly as described for the test images. These descriptors are
used first to create visual words by a quantification process,
and then to compute the probability for each visual word to
be observed as a component of an object blob or not. These
probability distributions (p(wsift|Θk) and p(wcolor|Θk)) are
stemed from an occurrence histogram obtained by a counting
process.

The model also provides the list of patches belonging to
a particular object instance. The patches correspond to sets
of pixels belonging to their support. Using the information
on all patches containing a given pixel, we can create a
segmentation of the object. Figure 7 provides segmentation
masks in terms of probability maps of the object location on
images where the detection succeeded.

G. Global strategy

In this section we present a high-level behavior which
relies on all the previously presented functionnalities to
reason and take autonomously a decision in order to find an
object. Our main contribution is to introduce the constraints
related to the walking algorithm and the recognition system
into one entity called the visibility map to reduce the space
of the sensor configuration.

1) Introduction: Sensor planning to find a known object in
an unknown environment using vision with a mobile platform
is an old problem which received a lot of attention during
the 80s. Most of this work relied on the use of a range finder
coupled with a camera, whereas the object model was either
a polyhedron, a 3-edge based representation or a voxel grid
description. Even so the recognition process is still valid, and
used in recent humanoid applications by Neo [24] to achieve
autonomous behavior, it is interesting to revisit this problem
in the context of humanoids. Indeed new available hardware
such as multi-core CPUs make efficient implementation of
such algorithms possible. However as this problem is NP-
complete, simplified models are still necessary to simplify

Fig. 8. Visibility sphere for a given 3D point.

the search. Finally, the motion capabilities of humanoid
robots, instead of the classical 2D representation of the
search space, requires the adoption of a 3D representation.

2) The simplified model: In this work we consider mainly
the problem of finding the best next camera pose to search
an object in an unknown environment. Here the camera
pose is given by a 3D position plus an orientation provided
by pan and tilt values, which give us a five dimensional
space. In order to simplify the problem we [1] take into
account two considerations: the robot’s motion capabilities,
the recognition system’s characteristics. Depending on the
task different recognitions can be used, as we have at our
disposal either a 3D-edge model [25] or a Spin-Image [26].

The first consideration allows to limit the domain of the
pan and tilt values according to the joint limits. Moreover
if we consider only the case where the robot walks[1], the
vertical axis can be deduced from the constraint on the CoM.
The second consideration implies to use a model of the
recognition system. But in addition to the classical statistical
model, we consider that they are practical bounding values
(Rmin, Rmax) for which the recognition system is able to
work. From this additional information found experimentally
and which vary according to the object we proposed the
concept of visibility map.

3) The visibility map: In order to explain what visibility
map is, we shall introduce the concept of visibility sphere.
Let us assume that we have a partial representation of the
world using a voxel grid representation. A visibility sphere
is the set of poses for which an unknown or solid point
of the voxel grid is seen within the perception interval
(Rmin, Rmax). A visibility map can then be defined by the
intersection between the constraints related to the robot’s
motions and the visibility spheres centered on each voxel
of the world map. When the robot walks, the height of the
camera is fixed, so the visibility map is a plane going through
the head of the robot.

4) Planning: Once the visibility map has been made, the
next step is to chose the best candidate location to search
the object while taking account three quantities: a cost for
motion, the new information and the detection probability.
The motion cost (MC) is an approximation of the cost to
reach a particular pose. It is based on the Chamfer distance
and a specific weighting of each DOF. The new information
(NI) is quantified by projecting the environment grid onto
the camera pose candidate. It also includes a likelihood of
occlusion. This part, which is the most costly, can be easily



Fig. 9. 3D reconstruction and the real environment in which the robot
evolves.

paralleled using multi-core architecture, or even with a GPU.
Finally the detection probability (DP) for any given voxel
is built upon the probability that this voxel belongs to the
target, and the resolution at which it is perceived. Those three
quantities are combined together in the rating function:

RF = αDP .DP + αNI .NI − αMC .MC (21)

The weights α balance the contributions between a wide
exploration of the environment and a deep search of each
potential target. A detailed explanation of this approach can
be found in [1].

5) Integration: It is important to notice that the key to
reduce the search space is the concept of the visibility
map which includes the constraints related to the walking
algorithm. Here more particulary this constraint is the height
of the CoM. Moreover this module is at the highest level
of abstraction and relies totally on the other modules to
perform the full behavior as depicted in figure 9. Once the
next best view is decided, it uses the path planner to feed
the motion generator with appropriate foot steps and posture.
The reasonning is performed on a visual reconstruction of the

world .

VII. CONCLUSION

We have presented our current status in trying to have a
robot building automously a representation of an object and
finding it back in an unknown environment. In our approach
we have try so far to make as few assumptions as possible,
but to use all the knowledge available on the robot and its
control structure. We still have some problems related to
the drift of the robot while realizing this complex overall
behavior partly due to the poor quality of the A∗ planner, and
because of the inherent floor reaction when trying to perform
complex actions. Our current work is trying to address those
issues.
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