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This work presents a method to handle walking on rough terrain using inverse dynamics
control and information from a stereo vision system. The ideal trajectories for the center

of mass and the next position of the feet are given by a pattern generator. The pattern

generator is able to automatically find the footsteps for a given direction. Then, an inverse
dynamics control scheme relying on a quadratic programming optimization solver is used

to let each foot go from its initial to its final position, controlling also the center of mass

and the waist. A 3D model reconstruction of the ground is obtained through the robot
cameras located on its head as a stereo vision pair. The model allows the system to know
the ground structure where the swinging foot is going to step on. Thus, contact points

can be handled to adapt the foot position to the ground conditions.
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1. Introduction

Center-of-Pressure based walking schemes mainly allow walking on planar homo-

geneous surfaces.1 Using such schemes, several works have recently succeeded in

making real humanoid robots walk on uneven terrain.2,3,4 These are usually adap-

tations to a horizontally composed plane, or systems where preview control considers

information from the current inclination of the upper body. Methods such as the

one proposed by Nishiwaki2 use predictive attitude compensation control, adjust

the Zero Moment Point (ZMP) reference to repetitive walking, and use gains of

impedance to update the desired landing position. Some existing methods like the

one proposed by Morisawa,3 Kaneko,4 Ott,5 do not use visual information to guide

the foot on the ground. They concentrate on some efficient formulations of the ZMP

preview window, and the rejection of error modeling using the robot attitude esti-
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mated by an accelerometer and a gyrometer, to compensate for the roughness of the

terrain. By coupling both aspects with the information provided by a portable laser

(namely Hokuyo), Nishiwaki2 proposed the current best system implemented on a

real humanoid robot. Indeed, HRP-2 is able to cope with gravels, unknown slopes of

10 degrees and so on. Still this approach is based upon a kinematic control scheme

driven to regulate global dynamical parameters such as the total angular momen-

tum derivative about the robot Center-of-Mass (CoM). However, this method does

not directly handle the dynamics of the robot, and it uses an inverse kinematics

scheme where inequalities cannot be formulated. The work presented by Morisawa3

suffers from the same limitation. To address this issue, this paper proposes a control

scheme based upon inverse dynamics: the whole dynamics of the robot is consid-

ered and because inequalities can be explicitly formulated, it is possible to rely on

a balance criteria in its generality.

In addition, the work of Nishiwaki pointed out the necessity of handling noise

which occurs even with a laser sensor. One problem with current laser sensor tech-

nology is time to fly and the weight. A humanoid robot needs a relatively dense

reconstruction to elect potential contact points while walking, and fast enough lasers

are currently too heavy to be embedded inside a humanoid robot. To reconstruct a

surface, 3D information provided either by a Kinect or a stereoscopic system would

need to be implemented, but it represents a difficult task both in computer vision

and robotics. The problem is that depth or range sensors provide a huge amount of

data that has to be processed to get high level information, which makes real time

reconstruction difficult. Yet, as mentioned above, a precise dense reconstruction is

critical for pattern generation in rough terrains. We have empirically estimated that

precision below a few centimeters may cause strong impacts on the robot feet with

the floor or, on the contrary, may cause the robot feet to never reach the floor. In

either case, the robot may lose balance and fall down. One solution, which is used

here, is parallel processing using GPUs that allows to get very efficient 3-D dense

reconstruction systems.6,7

This work uses a generic hierarchical optimization solver based on the robot

dynamic model to track the position of the CoM and to autonomously control the

swinging foot according to the output of a pattern generator. The solver consists of

an inverse-dynamics control cascade where motion is represented by tasks. As the

foot goes down, possible collisions are detected thanks to the reconstructed map of

the terrain which was obtained by the stereo vision system. In this way, collision

points are found and handled by the solver, and if necessary, some extremes of the

foot are properly taken towards the ground to maximize the support area without

losing dynamic balance. An important assumption of this work is that the ground

is supposed to remain static. The detection and the geometric reasoning on the foot

landing bear some similarity with a parallel work.8 However there is no dynamical

consideration and on-line foot-step adaptation.
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2. Inverse Dynamic Stack of Tasks

2.1. Task Function Approach

The task function approach9 (also called operational space approach10) is a frame-

work to describe tasks in terms of specific output functions chosen to ease the

observation and control of the task to be performed. In the case of robotics, it con-

sists in generating motion based on the definition of different tasks whose control

laws are expressed in a subspace of smaller dimension than the full robot state

space. Then, these laws are back-projected to the original space. For instance, to

raise the foot, the initial and final positions and orientations are used to define the

control law, instead of the whole joint space.

Formally, let C be the configuration space,M the task space, Tp(M) the tangent

space of M, and U an arbitrary control space, linearly linked to the configuration

tangent space Tp(C). A task is completely defined if the following three components

are specified:

• The task function e : C →M.

• The reference behavior ė∗ ∈ Tp(M), given by a vector field of M, which is

defined as an arbitrary desired behavior for the task velocity ė.

• The differential map G : U → Tp(M) relating the task to the control input.

The map G defines the direct relation between the reference vector field (ė) and

the control space as ė + δ = Gu, where u is the control signal and δ is the drift

of the task. The control law u∗ satisfying the reference behavior is obtained as

u∗ = G#(ė∗ + δ),11 where {.}# is any reflexive generalized inverse. Among the

possible inverses, the Moore-Penrose pseudo-inverse is generally chosen, but other

inverses (typically a weighted inverse) can also be used.

Even though the presented generic formulation directly corresponds to the in-

verse kinematics, it also covers the inverse dynamics:10 the reference behavior is

described by the desired task acceleration (ë∗), and the control input by the joint

torques vector (τ). In this case, the approach finds the desired torque control input

τ∗ that will generate the reference behavior ë∗ using any necessary joint accelera-

tions q̈.11 The inverse-dynamics framework is used in this article.

2.2. Inverse Dynamics

For a humanoid robot, let n represent the total number of degrees of freedom (DoF)

comprising the na actuated DoF and the r non-actuated DoF corresponding to the

position and orientation of the robot free-floating body (n = na+r). If the position

is represented by Cartesian coordinates and the orientation by Euler angles, which

is a typical case, then r = 6. The configuration of the robot will be represented

by the generalized coordinates q = [xb qa]T ∈ Rn, where xb ∈ Rr represents the

pose of the robot with respect to the world, and qa ∈ Rna is the angular position

of the na actuated joints. Supposing that there are nc points in contact with the
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environment, let xp = [x1 x2 · · · xnc ]T ∈ R3nc represent the contact points in the

world frame, and f = [f1 f2 · · · fnc
]T ∈ R3nc the punctual contact forces, with

fi acting at xi. For an underactuated robot in contact with the environment, the

dynamic equation of the system can be written as

Aq̈ + b+ JTc f = ST τ (1)

where A ∈ Rn×n is the generalized inertia matrix, b ∈ Rn is the dynamic drift

including Coriolis, centrifugal and gravity forces, Jc =
∂xp

∂q ∈ R3nc×n is the Jacobian

of the contact points, τ ∈ Rna is the actuated torque vector, and S = [0 I] ∈ Rna×n

is a matrix that selects the actuated joints (0 ∈ Rna×r and I ∈ Rna×na).

Let Sn, with elements {snij} = δ(3i− j) where δ is the Kronecker delta function,

be a matrix that selects the normal components so that f⊥ = Snf and x⊥p = Snxp
are the vectors containing only the normal components of f and xp. Considering

the “rigid contact point model”, the complementarity conditions to avoid interpen-

etration are:

ẍ⊥p ≥ 0, f⊥ ≥ 0, ẍ⊥p f
⊥ = 0. (2)

When the first case of the condition is satisfied (ẍ⊥p ≥ 0 and f⊥ = 0), the contact

breaks and the rigid bodies separate from each other. To guarantee contact persis-

tence, the other condition must be fulfilled. Considering that the contact Jacobian

gives the relation ẋp = Jcq̇, this condition states that ẍ⊥p = 0, or equivalently

Jcq̈ + J̇cq̇ = 0, (3)

and

f⊥ ≥ 0. (4)

If all the contact points lie on the same horizontal plane, Eq. (4) ensures the dynamic

balance of the robot since it is a necessary and sufficient condition for the ZMP to be

well defined inside the support polygon.11 However, it has been implicitly assumed

that the interaction between both rigid bodies presents large friction coefficients so

as to neglect friction forces. If these coefficients are not negligible, the conditions

can be generalized to friction cones in a straightforward way,12 but this is currently

computationally expensive.

2.3. Stack of Tasks

The Stack of Tasks (SoT) consists in hierarchically using dedicated tasks for each

desired type of motion. A task i consisting of any observable si = si(q) willing

to reach a desired s∗i can be specified without loss of generality by the ith task

ei = si − s∗i which must tend to zero. At the acceleration level to be used for the

dynamic control, the relation between the task space and the joint space becomes:

ëi = J̇iq̇ + Jiq̈ (5)

where Ji = ∂ei
∂q is the Jacobian of the ith task.
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In this work we use a dynamic SoT in the sense that not only the tasks are

taken into account, but also the dynamic model of the robot as well as the contact

constraints. The usage of the dynamics of the robot implies the computation of the

torques τ and the accelerations q̈ that will be applied to the robot. The contact

constraints will force the computation of the desired forces f that are feasible with

the motion. Thus, with these formalisms, the operational-space inverse-dynamics

problem can be reduced to finding the variables (q̈, τ , f) that are consistent with

the dynamic equations and minimize the distance to the task reference.

The computation of these variables is done using a cascade of Quadratic Pro-

grams (QP) that takes into account equalities or inequalities at any level of the

hierarchy; then, they can be specified with arbitrary priority. Due to the hierar-

chical characteristic, this cascade has been referred to as Hierarchical Quadratic

Programming (HQP).13 The explicit computation of all the variables (q̈, τ , f) has

the advantage that forces are obtained in a straightforward way and no consistency

verification or projection is necessary to guarantee their feasibility. Also, explicit

constraints on each of the variables can be formulated, and either a torque-controlled

or a position-controlled robot can be used. Using a lexicographic order, and consid-

ering nt tasks of the form (5), the whole dynamic SoT based on the HQP can be

summarized as (1) ≺ (3) ≺ (4) ≺ (5)1 ≺ · · · ≺ (5)nt
, where the elements on the left

of ≺ have higher priority than the elements on the right.

2.4. Condensation

To allow for faster computation of the solver, the variables (q̈, τ , f) can be decoupled

since the space generated by them can be divided in three subspaces, and only two

of them are useful for control purposes. The first subspace is the motion space,

where joint accelerations (q̈) can be freely chosen, and the corresponding forces

(f) and torques (τ) are accordingly set. The second is the actuation space, where

the acceleration is fixed and only forces can be freely chosen given that forces

and torques are related. The third space is useless since motion variables can be

theoretically chosen, but resulting forces are impractical.

The explicit distinction between the actuation space and the motion space can

be done by introducing two decoupled spaces.14 This formulation states that the

dynamic model as well as the tasks can be reformulated in terms of the bases of

the two decoupled spaces, leading to the usage of decoupled variables instead of the

original optimization variables. With this modification, a faster computation of the

SoT is achieved, since the decoupled spaces are of lower dimension than the original

coupled variables. System balance is generally ensured by adding sufficient tasks to

fill up the SoT, so that there is no more redundancy to minimize the torques. But

if the SoT is not full, a last task of ‘joints friction’ or posture is generally added to

complete it.15

Concretely, this formulation14 is used in this work and the results will be briefly

summarized here. The dynamic model of the robot, accounting also for kinematic
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6 O.Ramos, M.Garćıa, N.Mansard, O.Stasse, J-B Hayet, P.Souères

contact constraints, can be rewritten as:

S̄b+ S̄JTc f + S̄B−T δc + S̄B−TV u = 0 (6)

where the matrix S̄ = [I 0] is defined to cancel out ST (so that S̄ST = 0), B is the

Cholesky decomposition of the generalized inertia matrix A such that A−1 = BBT ,

δc = −G+J̇cq̇ is the contact drift, V is a basis of the kernel of JcB such that

V V T = I − (JcB)+(JcB), and u is a vector in this kernel. With these definitions,

tasks in (5) can be expressed as:

ëi = J̇iq̇ + JiBδc + JiBV u. (7)

Thus, using this formulation, the condensed dynamic SoT for nt tasks can be ex-

pressed as (6) ≺ (4) ≺ (7)1 ≺ · · · ≺ (7)i ≺ · · · ≺ (7)nt
, using the vector (u, f) as

the optimization variables. The control torque can be obtained as

τ = Sb+ SJTc f + SB−T (δc + V u). (8)

The fact of reducing dimensionality while keeping the capabilities of the ded-

icated HQP solver has been proved to be numerically stable and to allow a

fast resolution.14 Some experimental results show about 4ms for typical HRP-2

problems.14 This makes the usage of the decoupled control scheme including the

whole robot dynamics with complex set of equality and inequality constraints pos-

sible in real time at 200Hz.

3. Pattern Generator

3.1. Model Predictive Control

The model predictive control (MPC) assumes that the robot CoM is maintained

at a constant height zc, so that its position can be fully represented only by two

components (xc, yc). Since the motion in the horizontal directions (x, y) can be fully

decoupled, only the x components will be explicitly described, but the y components

are obtained in a similar way. Using a sampling period T , the discrete variable for

the position is noted as xck = xc(tk) = xc(kT ), where k is the k-th sample, and the

state variables comprising the position, velocity and acceleration of the CoM are

noted as x̂k = (xck, ẋ
c
k, ẍ

c
k). The ZMP on the ground is represented by (xz, yz). With

this notation, the discrete dynamic system relating the ZMP and the CoM is:1xck+1

ẋck+1

ẍck+1

 =

1 T T 2

2

0 1 T

0 0 1


xckẋck
ẍck

+

T
3

6
T 2

2

T

 ...
x ck (9)

xz =
[
1 0 −zc

g

]xckẋck
ẍck

 . (10)
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Considering a prediction horizon of N samples, and recursively using the previ-

ous dynamics, the velocity of the CoM from tk+1 to tk+N can be expressed as16

Ẋk+1 =

 ẋ
c
k+1
...

ẋck+N

 = Pvs x̂k + Pvu
...
Xk (11)

where
...
Xk = (

...
x ck, · · · ,

...
x ck+N−1) is the jerk of the CoM from time tk to tk+N−1, and

the matrices Pvs and Pvu are given by

Pvs =

0 1 T
...

...
...

0 1 NT

 Pvu =

 T 2/2 0 0
...

. . . 0

(1 + 2N)T 2/2 · · · T 2/2

 .
In the same time horizon, from tk+1 to tk+N , the ZMP is expressed as:

Xz
k+1 =

x
z
k+1
...

xzk+N

 = Pzs x̂k + Pzu
...
Xk (12)

where the matrices Pzs and Pzu are

Pzs =


1 T T 2

2 −
zc

g
...

...
...

1 NT N2T 2

2 − zc

g



Pzu =


T 3

6 −
Tzc

g 0 0
...

. . .
...

[1 + 3(N − 1) + 3(N − 1)2]T
3

6 −
Tzc

g · · · T 3

6 −
Tzc

g

 .
We use the pattern generator proposed in17, which regulates the speed of the CoM

and obtains the foot placement as output of the optimization process. The opti-

mization variable is uk = (
...
Xk,

...
Y k, X

f
k , Y

f
k ), where (Xf

k , Y
f
k ) are the positions on

the ground of the following m foot steps. In the remaining part of this paper, m = 2.

The resulting optimization problem17 is stated as:

min
uk

α

2

(
‖ Ẋk+1 − Ẋref

k+1 ‖
2 + ‖ Ẏk+1 − Ẏ refk+1 ‖

2
)

+
β

2

(
‖ Xz

k+1 −X
z ref
k+1 ‖

2 + ‖ Y zk+1 − Y
z ref
k+1 ‖2

)
+
γ

2

(
‖

...
Xk ‖2 + ‖

...
Y k ‖2

)
(13)

where Ẋref
k+1 and Ẏ refk+1 are the desired mean values for the speed of the CoM, Xz ref

k+1 ,

Y z refk+1 are the references for the ZMP, and α, β, γ are some constants. These ZMP

references are not fixed in advance but are permanently recomputed from the feet
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position decided by the algorithm so that the ZMP lies in the middle of the foot.

Let (Xfc
k , Y fck ) be the current position of the foot on the ground. Then, the ZMP

references are given by:

Xz ref
k+1 = U ck+1X

fc
k + Uk+1X

f
k (14)

Y z refk+1 = U ck+1Y
fc
k + Uk+1Y

f
k (15)

where U ck+1 and Uk+1 describe the time at which the feet are in contact along the

preview window. U ck+1 is always equal to 1 at the beginning of the preview window

because it is the current robot support foot. Thus, if ck is the remaining number

of iterations for the current robot support foot, and sl is the necessary number of

iterations to realize a step, then

U ck+1 =
[
1ck 0N−ck

]T
, Uk+1 =

[
0ck 1sl 0N−sl−ck

0ck 0sl 1N−sl−ck

]T
where 1n = [1 . . . 1︸ ︷︷ ︸

n 1’s

] and 0n = [0 . . . 0︸ ︷︷ ︸
n 0’s

].

For sake of space, the constraints related to the single support phase, which

ensure that the ZMP remains inside the support polygon, are only briefly described.

These are expressed as: [
dx(θ) dy(θ)

] [zx − xf
zy − yf

]
≤ b(θ) (16)

where (xf , yf ) is the foot position, θ is its orientation, dx(θ), dy(θ) are column

vectors containing the x, y coordinates of the normal vectors to the feet edges, and

b(θ) is the column vector containing their position with a security margin. More

details about the formulation of the double support phase are available in 17.

3.2. Foot Compliance

The pattern generator presented in the previous section assumes co-planar foot-

steps and a CoM trajectory that is restricted to a plane.1 Given a certain CoM

reference velocity it generates feet trajectories, ZMP trajectories, and a CoM tra-

jectory which, all together, generate a balanced motion for an inverted pendulum.

To generate whole-body trajectories, one approach18 is to use tasks for the CoM,

and for the feet to follow the given trajectories in a perfect way and in open loop

(eventually using a stabilizing method5). If some irregularity on the horizontal sur-

face is found, the control system is likely to fail, the robot will not be able to keep

its balance and it will fall down. One of the main objectives of this proposed con-

trol scheme is to allow the foot to be compliant with respect to irregularities or

roughness in the terrain. That is, if an irregularity is found, the foot should not try

to push on it due to the pattern generator specification, but it should be able to

comply, and adapt itself to this irregularity by properly rotating about some axis.

This compliance will allow the robot to use the pattern generator to walk on rough
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Fig. 1: Contact surfaces with different contact point numbers (from 5 to 2)

surfaces without losing balance. More specifically the compliance is at the task level

and not at the mechanical level to avoid additional control for the passive material.

The approach assumes that collision detection is available and that the robot

can know the exact position of the points in contact with the ground, as well as the

forces at those points at every instant of time.19 With the encoders and the Inertial

Measurement Unit (IMU) information, this allows to reconstruct the component xb
of the generalized coordinates. The number of points is specified in terms of the

vertices of the convex hull formed by all the points belonging to the contact area,

as Fig. 1 shows. The foot follows the steps defined by the pattern generator, which

assumed a horizontal surface. However, when it is moving down to the ground and

it finds some contact point (generated by the irregular ground or by a small obstacle

whose size is assumed to be smaller than the step height) it will instantaneously

stop its motion downwards to comply with the irregularity that was found. The

following cases might happen:

• There are three or more contact points

• There are two contact points

• There is only one contact point

If there are more than three contact points, the foot is assumed to be able to

safely step on those points, which will generate the support polygon, and it simply

stops its motion. When there are less than 3 contact points, the foot does not

continue moving down to the ground but it still needs to move to find at least one

more contact to have a consistent support polygon. In this case, if the foot is left

uncontrolled after the first contact(s), the dynamics of the whole-body might take

the foot to an unstable position. To avoid these instabilities, the foot extremes have

to be controlled so that the maximum support polygon is obtained.

For a single contact point, the foot is in the situation shown by Fig. 2(a),19

where the single contact point is pc1 and the foot extremes are denoted by pe1, pe2,

pe3 and pe4. In this case, four triangles with areas Ai, i = 1, 2, 3, 4, are formed by

joining the contact point to two consecutive foot extremes. The area of the triangle

formed by the consecutive foot extremes pei and pei+1 is given by

Ai = 0.5 ‖ (pc1 − pei )× (pc1 − pei+1) ‖ . (17)

The triangle with the greatest area will contain the extremes of the foot that are
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(a) 1 contact point (b) 2 contact points (case 1) (c) 2 contact points (case 2)

Fig. 2: One or two contact points on the sole of the robot

farther from the contact point, and thus, it is desirable to take those extremes to

the ground so that the largest support polygon is obtained. To that end, a task is

assigned to each of these extremes controlling only the vertical z position so that

they go to the ground. While these points are moving, if a contact point is detected,

it is added as a contact to the solver and its position is checked against the points

that were going to the ground. Then, the task for the closest extreme is removed,

and the foot continues its rotation until another contact point is detected, in which

case, the remaining extreme task is removed.

If there are only two contact points, there are two possibilities shown in Fig. 2(b)

and Fig. 2(c). To obtain the case, a line L is passed through both contact points

and the extremes of the foot are determined to lie in one side or on the other side

of the line. Let the contact points be pc1 and pc2, the vector joining these points be

v = (vx, vy) = pc1 − pc2, and the vector joining one point with one extreme of the

foot be vi = (vix, viy) = pei − pc2. The idea is to rotate the points so that the line

L is aligned with the vertical line. Then, the sign of the arc-tangent can be used

to determine the side of the line in which a point lies. The angle that line L must

rotate to be aligned with the vertical is θ = atan2(vy, vx). Then, each vi is rotated

by the angle θ as:

vfix = vixcos(−θ)− viysin(−θ), (18)

vfiy = vixsin(−θ) + viycos(−θ). (19)

After this rotation, the angle to the line is determined as φ = atan2(vfiy, v
f
ix), the

sign of φ indicating whether the point is on one side or the other of line L. If only

one point is on one side and three are on the other side (Fig. 2(b)), the three points

are taken to the ground. If two points are on each side (Fig. 2c(c)), then, the area

of the quadrilateral formed by the contact points and the extremes on each side is

computed and the largest area indicates that those extremes are farther and must

be taken to the ground. As in the case of a single contact, as soon as a new contact
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Fig. 3: The upper level specifies a direction of motion. Then the pattern generator finds foot-steps,
foot trajectories, a CoM trajectory and a waist trajectory. The Dynamic SoT ensures that the

resulting whole-body motion is dynamically consistent with the robot model and its constraints.

appears, it is added as a contact to the solver, and the task for the closest extreme

is removed.

3.3. Compliant walking Scheme

The heuristics presented in the previous section are used to determine if the foot

completely stops its motion or which part of it should be moved towards the ground

if there are less than 3 contact points. However, the latter case poses an additional

problem for the computation of the Jacobians. The contact forces f can be expressed

in terms of a 6D spatial force Φ at some frame of the foot, and it is common to

have a direct measurement of the Jacobian relative to this frame, J6. Then, the

contact Jacobian for the contact point is computed as Jc = XJ6, where X is a

matrix involving the cross product with the contact points.14 The problem arises

from the fact that if there are only 2 or 1 contact point, X is not full-column rank

and the expression for δc in (6) has to be modified to δc = −(XJ6B)+XJ̇6q̇. After

this modification, the SoT described in section 2.4 can be directly used.

The compliant walking scheme is obtained by using the output of the pattern

generator as input to the inverse dynamics solver as shown in Figure 3. The pattern

generator outputs three elements: the trajectory for the CoM, the trajectory for the

waist of the robot, and the footprints for each foot. The usage of these elements

within the SoT is done with tracking and interpolation tasks. Tracking tasks are 6D

operational tasks described with a PD law and aim to control the position and/or

orientation of a certain characteristic of the robot (the CoM, or an operational

point). The interpolation task is a task that takes an operational point from an

initial to a final pose satisfying some fixed (and hard) time constraints, and it is

described in Appendix A. The dynamic SoT that is used considers the following

tasks:

• Tracking task for the x and y components of the CoM trajectory given by

the pattern generator, which assumes a constant height.

• Tracking task to partially track the waist trajectory. This task controls the

height (position in z) of the waist at a certain constant value, as well as

the orientation in x, y. As observed, not all the six degrees of freedom are
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controlled, and therefore the name of partial tracking task.

• Interpolation task on the swinging foot. The pattern generator gives the

footprints on the ground. This task takes the swinging foot from its initial

position to its desired final position. There are two interpolation steps:

the first task takes the foot from the initial position on the ground to

an intermediate position that lies halfway between the initial and final

positions with a predetermined height. The second interpolation takes the

foot from the intermediate to the final position, if possible. The foot reacts

in a compliant way if a contact is detected before arriving to the final

position on the ground, as explained in section 3.2.

Unlike schemes that only follow the output of the pattern generator using kinematic

tasks, the dynamic SoT makes it possible to handle rough surfaces by adding com-

pliance at the task level to the foot at the moment of detection of a contact with

the environment.

4. Planning on Dense Surfaces

4.1. Stereo-Reconstruction of Dense Surfaces

To perform the dense reconstruction of the floor surface in front of the robot, we

rely on a real-time approach similar to the KinectFusion algorithm.6 This approach,

originally developed for a RGB-D sensor, models 3-D surfaces as zero-valued level

sets of functions defined over the workspace volume. These functions are referred

to as Truncated Signed Distance Functions (TSDFs) and they are incrementally

built by integrating the depth measurements the sensor provides, frame after frame.

TSDFs are defined in the 3D space and their value is the signed distance to the

closest obstacle. Here, we extend this approach, initially proposed for RGB-D depth

data, to disparity data generated from a stereo head. Although the stereo data is

noisier than the one from RGB-D sensors, it is a passive sensor and can be used

outdoors in sunlight conditions.

Consider, as in the previous sections, that k is a discretized time index. The

idea is to update a mathematical representation of the surface through a volumet-

ric TSDF model (defined over a 3D grid), referred to as Fk. The basic steps for

integrating one new set of disparity measurements at time k, to update Fk and the

corresponding surface, are the following:

(1) Filter the raw depth measurements generated from the stereo head (Dk). For

that purpose, here the bilateral filtering was used.

(2) From these filtered measurements and the prediction of the estimated surface

at the previous step, estimate the transformation between the measured surface

and the predicted one using the iterative closest point algorithm (ICP) and

update the camera pose.

(3) Compute a volumetric grid formed from “local” TSDF values FDk
, to which

confidence weights WDk
are associated, and integrate them into the global vol-
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Fig. 4: From a pair of images of the scene in front of the robot (left) a dense disparity map is

estimated (middle) and from this disparity map a dense surface integrating the previous frames
into the volumetric grid is estimated (right). These images were taken from the HRP-2 stereo

vision system with the cameras tilted towards the ground to allow ground reconstruction tasks.4

It is assumed that a mechanism is implemented to make the robot search for traversable areas.20

umetric grid {Fk,Wk}.
(4) Predict a new surface for the next iteration by using ray-casting over the zero-

crossings of the fused global volumetric grid {Fk,Wk}.

The core of this algorithm is the computation and fusion of volumetric grids

(i.e., the third step mentioned above). For a 3D point p, expressed in the global

frame g, its value in the current local volumetric grid {FDk
,WDk

} is computed as

FDk
(p) = Ψ(λ−1 ‖tg,k − p‖ −Dk(x)),

WDk
(p) ∝ cos(θ)/Dk(x),

with λ =
∥∥K−1[x> 1]>

∥∥ and

Ψ(η) =

{
min(1, ηµ ) sgn(η) iff η ≥ −µ

null otherwise

where µ is a truncation distance (a parameter of the algorithm), and x =

π([K,1]T−1g,kp) ∈ R2 is the image projection of p. K is the 3 × 3 matrix of in-

trinsic parameters of the camera, π is the projection operator, Tg,k =

[
Rg,k tg,k

0 1

]
is

the pose of the camera at time k in the global frame g, and θ is the angle between

the associated pixel ray direction and the surface normal.

The global volumetric grid at time k is formed by the weighted average of all

individual volumetric grids up to k − 1. It can be shown that the optimal grid can

be incrementally obtained using a simple point-wise on-line weighted average

Fk(p) =
Wk−1(p)Fk−1(p) +WDk

(p)FDk
(p)

Wk−1(p) +WDk
(p)

,

Wk(p) = Wk−1(p) +WDk
(p).

To use this algorithm with stereo data and generate local data Dk, a disparity

map from a pair of rectified images is estimated, from which the depth map Dk

is derived assuming that the stereo rig is completely calibrated. The literature of
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Foo
t

Fig. 5: Example of a situation handled by our pattern generator with the inverse dynamics stack
of tasks. The gray part represents the real environment, and the green line the stereoscopic recon-

struction. The foot is in its final position after the adaptation by the proposed method.

algorithms that estimate disparity maps is huge, but since a real time one is needed

for this application, the one proposed in21 has been used. This algorithm estimates

a piece-wise disparity map using an initial sparse disparity map of high textured

points as vertices that define a triangulation of the image. Then, the dense disparity

map of each sub-region is estimated using the initial, sparse disparity map as a prior

in a probabilistic scheme. The steps of the reconstruction process are illustrated and

further described in Fig. 4.

4.2. Planning with the visual reconstruction

The visual information obtained from the 3-D vision reconstruction can help the

robot pose its feet on the ground as an approximation to the real ground. Due to

problems in light conditions (the rough terrain and the obstacles do not always

behave as Lambertian surfaces in reality), noise, lack of good features for recon-

struction, calibration errors among other problems related to the computer vision

system, the reconstruction is not perfect. However, its usage enables the robot to

foresee the ground on which it will step and to take the step in a smoother way

when close to the irregularities.

Consider the scheme in Fig. 5. It shows the real ground in gray, the foot rep-

resented by a rectangle, and the 3D visual reconstruction as an approximation to

the ground-truth is shown as an irregular pattern above the ground. Without foot

compliance, the foot would always try to arrive to the position of the horizontal

ground, and in the case shown in the picture, it will evidently fail and make the

robot fall down since it would try to continue going downwards even though there

is an obstacle that stops it. Adding the foot compliance described in section 3.2,

the foot will react to the irregularities and its position will be accordingly modified.

However, since the foot initially tries to move until reaching the flat ground, in

case of an irregularity, it might find the first contact with a considerable velocity

which might make the impact very harsh. To avoid these strong impacts, the visual

reconstruction is used.

The final position of the foot, set to the ground by the output of the pattern

generator, is modified according to the information given by the 3D reconstruction,

which is an approximation to the reality. Then, in the interpolation task of the

compliant walking scheme (section 3.3) the final position in the ground is modified to

be the one ‘predicted’ by the 3D reconstruction. The advantage of this modification
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is that the foot will arrive to the real irregularity with a lower velocity and the

contact impact will be smoother. According to this prediction, the foot is moved

but the real contacts from the real environment are taken into account to rotate

the foot according to the heuristics for the foot compliance. The visual information

only serves as a means to predict the environment but it is the environment itself

which will determine the real contact with the foot.

5. Results

To validate the proposed scheme, a simulation using the full dynamic model of the

HRP-2 robot has been performed on a ground with some irregularities and obstacles.

This ground was obtained using the robot cameras. Since structured light RGB-D

sensors are not present on the robot, the stereo vision system located in the head

has been used to reconstruct the ground. As mentioned above, the robot design is

such that these cameras are tilted towards the ground.4 Fig. 6 shows the robot and

a rough ground model obtained by visual reconstruction.

Fig. 6: Robot and rough ground model from visual reconstruction

The case where the robot walks on a rough surface is shown in Fig. 7, where the

second row depicts a closer view of the corresponding robot foot of the first row. The

robot starts from an initial position where both feet are on a flat horizontal surface.

Then, the robot performs a step with the right foot. However, before arriving to

the theoretical flat ground, a contact is detected and the foot stops its motion

down (a),(e). Since only two contact points were detected, the right foot rotates

‘backwards’ as shown in part (b),(f). Then, the left foot performs a step. As with

the right foot, the left foot is stopped before arriving to the flat ground since a

contact is detected (c),(g). In this case, it rotates to the ‘front’ until it reaches the

real ground and more than 2 contact points (d),(h). A similar behavior is obtained

for more steps on this type of surface and the feet rotation is achieved according to

the heuristics determined in section 3.2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7: HRP-2 walking on a rough surface. The second raw depicts a zoom of the foot and directly

corresponds to the first raw. The zoomed view is focused on the right foot for (e), (f), and on the

left foot for (g), (h).

In Fig. 8, obstacles are added to the surface. The initial position is shown in (a).

Then, the robot raises its right foot and moves it to the next theoretical footprint

assuming horizontal flat ground (from the pattern generator). However, the foot

finds an obstacle before arriving to the ground. The foot compliance is shown in (b)

since the obstacle was detected, and (c) shows the foot rotating to reach a proper

support polygon that will make it stable. After this, the robot continues walking. It

should be noted that in this case there is only an obstacle for the right foot and the

left foot steps on a theoretically flat and horizontal ground. After the step of the

left foot, (d) shows again the right foot stepping on the ground. In this case, there is

no need to rotate the foot since the supporting surface is enough (the foot steps are

almost completely on the obstacle and, thus, a proper support polygon is obtained).

Part (e) shows the left foot in the swinging phase and (f) in double support phase.

It can be observed that the right foot was properly kept on the obstacle while the

right foot was swinging, and the robot balance was not lost.

6. Conclusions

The control scheme presented in this paper makes the humanoid robot able to

walk on rough terrain by detecting collision points with its stereo vision cameras

and moving the foot properly to reach a larger support polygon. This behavior is

equivalent to compliance at the foot. The approach has been tested in a simula-

tion environment. Even though surfaces might be rough, the method is limited to

horizontal cases and would fail if the ground has a large slope, in which case, a mod-

ification in the pattern generator would be needed. However, the presented method

provides a very powerful reactive navigation system able to cope with a large set of
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(a) (b) (c)

(d) (e) (f)

Fig. 8: HRP-2 walking on an obstacle.

uneven grounds thanks to a very efficient inverse dynamics setup and an automatic

way of finding footsteps. The user, or a high decision planner, only needs to provide

a direction of motion.

Acknowledgments

The second author is supported by the grant 263150 from the Mexican National

Council of Science and Technology (CONACYT). For this work, the third, fourth

and sixth author were supported by grants from the OSEO ROMEO-2 Project, and

from the FP7-ICT-2013-10/611909 KOROIBOT project.

Appendix A. Interpolation Task

The interpolation task is a task that reaches a desired final position and velocity

in a specific period of time, assuming that the current position and velocity are

known. The basic difference from other types of tasks is the fixed and hard time

constraint, and for this reason it is used to drive the swinging foot from its initial

to its final position. Let x(t) describe the evolution of a generic feature and let

x0 = x(t0) and ẋ0 = ẋ(t0) denote its position and velocity at the initial time t0.

After a time duration T , the desired position and velocity will be xf = x(t0 + T )

and ẋf = ẋ(t0 + T ). The control is performed via the acceleration ẍ(t) which is set

to a linear function of the form:22

ẍ(t) = ẍ0 +
ẍf − ẍ0

T
(t− t0) (A.1)
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whose solution leads to quadratic velocity and cubic position trajectories given by:

ẋ(t) =
ẍf − ẍ0

2T
(t− t0)2 + ẍ0(t− t0) + ẋ0 (A.2)

x(t) =
ẍf − ẍ0

6T
(t− t0)3 +

ẍ0
2

(t− t0)2 + ẋ0(t− t0) + x0. (A.3)

The unknown parameters ẍ0 and ẍf are obtained from (A.2) and (A.3) at time

tf . However, time is not fixed, and as it passes by, the initial position and velocity

as well as the time remaining for tf need to be updated, and a new acceleration

trajectory (A.1) has to be computed. Then, since (A.1) is permanently updated,

only ẍ0 is needed (accelerations at the following instants of time are of no interest),

and the dynamic task in (7) is simply defined as ë∗ = ẍ0, which can be obtained by

solving the system (A.2) and (A.3) at time tf resulting

ë∗ = ẍ0 =
6

T 2
(xf − x0)− 2

T
(ẋf + 2ẋ0). (A.4)

Since only the component at the current time is used but the elements in the whole

horizon are needed, this task can also be seen as a preview control task. It should

be noted that T becomes smaller after each iteration and is close to zero when the

initial time reaches the final time. This situation is handled by keeping the previous

value of ẍ0 when T < th, where th is a threshold. In practice, keeping the previous

value of the acceleration gives good results.
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