VISION BASED MOTION GENERATION FOR HUMANOID ROBOTS

O. Stasse Gepetto TEAM, LAAS, Toulouse, France Habilitation à Diriger des Recherches 4th April 2013

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT

Bio sketch

	Start	End	Laboratory	Status
	2011	-	LAAS, UPR 8001 CNRS	Researcher at CNRS,
	2003	2011	CNRS/AIST, Joint Robotics Laboratory (UMI), ISR	Researcher at CNRS, Assistant Professor
	2000	2003	IUT de Villetaneuse, L2TI (EA),LISV	Assistant Professor, ATER
	1997	2000	Paris 6 (UPMC) AIST, Japan	PhD

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Motivations

Long term scientific goal

Motion generation for complex sensory based behaviors Application: Service and Rescue Robotics

Difficulties

- Planning: trajectory, tasks
 Curse
- Control: balance, limits
- Curse of dimensionality

Behavior - Game Theory Behavior: An optimization problem The game $\mathbf{f}(\mathbf{t})$ score $\int \min_{\mathbf{q}(t),\mathbf{v}(t)} \mathbf{f}(\mathbf{q}(t),\mathbf{v}(t))$ $-\mathbf{h}(\mathbf{q}(t), \mathbf{v}(t)) < \mathbf{0}$ $-\mathbf{g}(\mathbf{q}(t), \mathbf{v}(t)) = \mathbf{0}$ $B \left\{ \right.$ Game & $\mathbf{v}(\mathbf{t})$ Other Agent Representation Rules of the Actions game to constrain $\mathbf{q}(\mathbf{t})$ the actions $h(t) \le 0, g(t) = 0$

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Approach

What are the necessary and meaningful constraints ?

How to build the cost function for the behavior of interest ?

Approach

AAS

CNIS

Humans routinely solve NP-Hard problems !

CNIS

AIST

AAS

Approach : Human software Computer Software Environment Robot Simulating Human Software on Robots: [Phd, 2000] Complexity returns on simulation cost and difficulty on analysis Software Computer Environment JACK

CINIS

Approach: Embodiment-applica

Approach: Analog computers

CNIS

Approach: JRL 2003-

Behavior: An optimization problem

$$\begin{cases} \min_{\mathbf{q}(t),\mathbf{v}(t)} \mathbf{f}(\mathbf{q}(t),\mathbf{v}(t)) \\ \mathbf{h}(\mathbf{q}(t),\mathbf{v}(t)) < \mathbf{0} \\ \mathbf{g}(\mathbf{q}(t),\mathbf{v}(t)) = \mathbf{0} \end{cases}$$

B

CNIS

Efficient formulation of the problems (NL \rightarrow QP)

Using general constraints to limit the search space

Composition of generic motion capabilities

Forget about Human Analogy ! (for now)

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Approach: JRL 2003-

AAS

Approach: Software only

What are the necessary and meaningful constraints ?

How to build the cost function for the behavior of interest ?

Dynamics Physical Limits Balance Tasks

How do we deal with such a huge search space ?

Planning Control

AAS

How to build an efficient world representation ?

SLAM Object recognition Tracking

Contributions

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Manuscript Organization

Walking With Simplified Model

> Whole Body Motion

Motion Generation Planning (Hybrid Models) Interval Analysis for Triangulation

Visual Object Models for Seeing Far Away

Self Localization and Map Building

Visual Search

Object Visual Model Construction

Computer Vision

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Overview

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT - O. Stasse HDR

Overview

the unknown projected into its vision system.

Next Best View & Body Pose

Constraints

Goal

CNIS

- Respecting the joint limits;
- Having both feet on the floor;

HRP-2 should maximize

- Being statically stable;
- Keeping a sufficient number of landmarks visibles:
- Avoid self-collision and collision with the environment.

Optimization Problem Solved using CFSQP.

NBV: NewUOA

Needs for a C-1 objective function

Contributions

CNIS

Proposing such a function;
 Shows that its evaluations with discrete measurement do not behave well with FSQP;
 The image discretization introduce local minima.

AAS

NBV: A 2-stage approach

NBV: A 2-stage approach

Optimization Problem

Projected unknown: NEWUOA. Pose: FSQP.

Contributions

 Using an optimization algorithm which do not need derivability of the objective function;
 Iterate between several approximations while keeping a feasible pose;
 Stop when having a fixed point

[Foissotte, Stasse, Wieber, Kheddar, ICRA 2009]

Non convex objects

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT - O. Stasse HDR

Non convex objects

LAAS

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT - O. Stasse HDR

Overview

Problem statement

Formulated as a discrete optimization problem

A heuristic strategy is needed

Because of the limited field of view, limited depth, lighting condition, occlusion
 Active vision is necessary

The Rating function to evaluate the interest of a potential next view is costly

Need to formalize constraints on the sensor to speed up the search

Visibility map (1/2)

A statistical accumulator in the sensor configuration space

- Takes into account the limitation of the recognition algorithm (each point can be well recognized when viewed at a distance lying between Rmin and Rmax).
- Each point of interest (unknown or solid) vote for all configurations from which it can be well imaged.

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Visibility Map (2/2)

• The contribution of all points of interest are summed up in what we call the visibility map.

The figures on show a 2D projection of the 4D visibility map.

 Clear areas represents interesting configuration (in which many points are visible under good recognition condition)

Computation time 380 ms

Experiments

An Exploration behavior with HRP-2 Humanoid Robot

Francois Saidi* Olivier Stasse* Kazuhito Yokoi* Fumio Kanehiro**

*AIST-CNRS Joint Japanese-French Laboratory (JRL) **Intelligent System Institute AIST

[Finalist for the Best Paper Award, ICAR 2007][IROS 2007, LCNS 2007]

Conclusion on Next Best View

- Pro
 - Generic
 - Autonomous
- Con
 - Slow...
 - Slow...
 - Slow...

Overview

AAS

Constraints for a feasible motion

Motion Constraint Satisfaction Problem

MCSP_u

Robot Dynamics Friction cone Torque Limits Joint Limits Self-Collision

Overview

General balance constraints

33/62

Coplanar contact forces

Momentum Derivative set to Zero

Acceleration along Z axis equal to zero

$$\mathbf{p}_{\mathbf{x}} = \mathbf{c}_{\mathbf{x}} - \frac{\mathbf{c}_{\mathbf{z}}\mathbf{c}_{\mathbf{x}}}{g}$$

Problem: How to find **c** knowing the constraints on **p** ?

AAS

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Finding the CoM trajectory

When the CoP reference is given – LQR approach

$$PC \begin{cases} \min \sum_{i=k}^{k+N-1} \frac{1}{2} Q(p_{x}(i+1) - p_{x}^{ref}(i+1))^{2} + \frac{1}{2} R \overset{\dots}{\mathbf{c}_{x}}^{2}(i) \\ \mathbf{c}_{x}(k+1) = \mathbf{A} \mathbf{c}_{x}(k) + \mathbf{B} \overset{\dots}{\mathbf{c}_{x}}(k) \\ p_{x}(k) = \mathbf{C} \mathbf{c}_{x}(k) \end{cases}$$

[Kajita, 2003]

$$\mathbf{c}_{\mathbf{x}}(k) \equiv \begin{bmatrix} c_{\mathbf{x}}(k) \ \dot{c}_{\mathbf{x}}(k) \ \dot{c}_{\mathbf{x}}(k) \end{bmatrix}^{\mathsf{T}},$$

$$\mathbf{A} \equiv \begin{bmatrix} 1 & T & T^{2}/2 \\ 0 & 1 & T \\ 0 & 0 & 1 \end{bmatrix}, \mathbf{B} \equiv \begin{bmatrix} T^{3}/6 \\ T^{2}/2 \\ T \end{bmatrix}, \mathbf{C} \equiv \begin{bmatrix} 1 & 0 & -\frac{c_{z}}{g} \end{bmatrix}$$

No guarantee that the generated solution is not going out the support polygon !

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Constrained Preview Control

QP with linear constraints

$$PC_{c} \begin{cases} \min \lim_{\mathbf{C}_{x}(k)} \frac{1}{2} \mathbf{C}_{x}^{2}(k) \\ \cdots \\ \mathbf{P}_{x} \mathbf{c}_{x}(k) + \mathbf{P}_{u} \mathbf{C}_{x}(k) \leq \mathbf{Z}^{\max}(k) \\ -\mathbf{P}_{x} \mathbf{c}_{x}(k) - \mathbf{P}_{u} \mathbf{C}_{x}(k) \leq -\mathbf{Z}^{\min}(k) \end{cases} \quad [\text{Wieber, 2006}] \\ \\ PC_{c}^{ref} \begin{cases} \min \lim_{\mathbf{C}_{x}(k)} (\frac{1}{2} \mathbf{C}_{x}^{2}(k) + \alpha \mathbf{C}_{x}^{2}(\mathbf{k}) + \beta (\mathbf{Z}_{k}(k) - \mathbf{Z}^{ref}(k))^{2}) \\ \cdots \\ \mathbf{P}_{x} \mathbf{c}_{x}(k) + \mathbf{P}_{u} \mathbf{C}_{x}(k) \leq \mathbf{Z}^{\max}(k) \\ -\mathbf{P}_{x} \mathbf{c}_{x}(k) - \mathbf{P}_{u} \mathbf{C}_{x}(k) \leq -\mathbf{Z}^{\min}(k) \end{cases} \end{cases} \end{cases} \end{cases}$$

CNIS

LAAS

Computation cost

AAS

Automatic Foot placement

New free variables: feet positions/ Walking without Thinking

[Herdt, A.R., 2010],[Herdt, IROS, 2010]

Visual servoing

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Angular momentum ?

$$\mathbf{p}_{\mathbf{x}} = \frac{m \mathbf{c}_{\mathbf{x}} (\mathbf{c}_{\mathbf{z}} + g) - m (\mathbf{c}_{\mathbf{z}} - \mathbf{p}_{\mathbf{z}}) \mathbf{c}_{\mathbf{x}} - \mathbf{W}_{\mathbf{R}}^{\mathbf{y}}}{m (g + \mathbf{c}_{\mathbf{z}})}$$

In practice not zero

AAS

Stepping over obstacles

AIST/IS-CNRS/STIC Joint Japanese-French Robotics Laboratory

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT - O. Stasse HDR

Overview

AAS

Stacks of Tasks

Task definition

Error between current and desired sensor values: Reference behavior of the error: The associated Jacobian matrix: $\dot{\mathbf{e}} = \mathbf{J} \dot{\mathbf{q}}$

Combining Simple Controllers

- Handle mutual collaboration or exclusion of tasks
- Establish priorities

Online Optimization

 The robot moves to minimize the criteria without guarantee that it will reach the maximum

 $\mathbf{e} = \mathbf{s}^{+} - \mathbf{s}$

 $\partial \mathbf{e}$

∂q

STACK

OPERATOR Virtual agent/Avatar Simulation/planning ELEOPERATOR SITE

Collaborative Working Environme

AAS

CNIS

www.robot-at-cwe.eu

Human operator Communicat ion block : http Clusters of collaborative working environments http Virtualized spaces

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Cooperation through force interaction

Robot@CWE final demonstrator

AAS

Stack of Tasks

- Pro
 - Allow combination of simple controllers
 - Integrate priority to exclude tasks when necessary
 - Take into account constraints
- Con
 - Rank deficiency is not handled properly
 - Local minima
 - Possible discontinuity between task switching without additional mechanisms

Overview

AAS

Fast Foot-step feasibility checking

AAS

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT - O. Stasse HDR

Function to approximate

Goal

Knowing in few micro seconds if a footstep is feasible. There is no real-time constraint for *building* the approximation.

$$(x_{right}, y_{right}, \theta_{right}, x_{left}, y_{left}, \theta_{left}) \in R^{e}$$

Constraints

Joint limits;
Deviation from desired ZMP trajectory (i.e. dynamic stability);
Self-collision;

 $\rightarrow \begin{array}{c} \text{Trajectory} \\ \text{Generator} \\ {}^{C} R^{30} \end{array} \begin{array}{c} \text{Constraints} \\ \text{Evaluation} \end{array} \begin{array}{c} R \\ R \end{array}$

Approximation: 11 days (4 dim.) Evaluation: 9 micro-seconds

Approximation map

Real-time foot step replanning

[IEEE TRO Perrin 2012]

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Conclusion

- Reactive motion generation
 - Possible at the control level, but generation is complex without proper tools to combine basic controllers: Stack of Tasks
 - Planning complex motion generation calls for powerful representation of steering method
- Robot such as HRP-2 have not yet been fully exploited:
 - Real-time multi-contacts motions
 - Whole body real-time generation with heavy objects
 - Extreme motions

Research Project (1/2) Make the robot able to acquire and use *knowledge* to solve NPhard problems. Build statistical oracles. Embodiment: Take into account constraints related to the body and the control scheme. • Making the robot aware of its body, the context, and the environment.

Approach

More advanced controllers

$$WwS \begin{cases} \min_{\mathbf{u}(k)} \sum_{l=0}^{M} (S_{l}^{d} - S_{l,k}^{m})^{\top} W (S_{l}^{d} - S_{l,k}^{m}) \\ \text{linear constraints on ZMP} \\ \text{linear constraints on Foot Position} \\ with \mathbf{u}(k) = \begin{pmatrix} \mathbf{X}(k) \\ \mathbf{X}^{f}(\mathbf{k}) \\ \mathbf{X}^{f}(\mathbf{k}) \\ \mathbf{Y}(\mathbf{k}) \\ \mathbf{Y}^{f}(\mathbf{k}) \end{pmatrix} \end{cases}$$

[Garcia, Stasse et al. IROS, 2013, submitted]

Using Human Motion

[Hak, TSMC 2012]

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT - O. Stasse HDR

Research Project

AAS

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT - O. Stasse HDR

58/62

Challenge 1: Evolving in Factories

Humanoid Robots in Factories

- Complex but structured environment
- Possible to add additional sensors to simplify perception problems
- Handle real life variability is mandatory
- Proof-Of-Concept

(Ford Vision of Future Factory)

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

Challenge 2: Extreme Man

Extreme Motions: Parkour

- Calls for new mechanical mechanisms: Variable Impedance
- Make the problem even more Non-Linear
- Size of the problem is two times bigger than classical structure

Projects

Status

- Coordinator of one FP-7 project submitted in the frame of ICT call 10 – Triple A
- Leading one Proof –Of-Concept project with a Big industrial partner.
- Participation to one challenging project sponsored by an international oil company.
- Involved in a proposal for European Robotics Challenges

Acknowledgments

Collaborators: A.Davison A. Kheddar F. Lamiraux N. Mansard P.B. Wieber E. Yoshida

Post-doctoral fellows:

- C. Dune
- B. Telle
- F. Saidi
- B. Verrelst

Others: T. Benrama AngeB

PAIST

AAS

Phd Students:

N. Perrin

Projects Colloboration:

- A. Escande
- P. Evrard
- D. Larlus
- R. Sellaouti
- B. Vanderborght

Fast humanoid robot collision-free footstep planning using swept volume approximations

Nicolas Perrin, 1,2 Olivier Stasse, 2 $\,$ Florent Lamiraux $^1 and \,$ Elichi Yoshida 2

- 1: CNRS/LAAS, Université de Toulouse UPS, INSA, INP, ISAE 7 avenue du colonel Roche, F-31077 Toulouse, France
- 2: CNRS-AIST Joint Robotics Laboratory, UMI3218/CRT, Tsukuba, Japan

HRP-2

with

CNRS-AIST JRL (Joint Robotics Laboratory) UMI 3218/CRT – O. Stasse HDR

