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Abstract— This paper presents an object active visual search
behavior in a 3D environment performed by a HRP-2 humanoid
robot. The search is formalized as an optimization problem in
which the goal is to maximize the target detection probability
while minimizing the energy/distance and time to achieve the
task. Natural constraints on the camera parameter space based
on the characteristics of the recognition system are used to
reduce the dimension of the problem and to speed up the
optimization process to achieve a real time behavior. We present
simulation and real experimental results using an HRP-2 robot.

I. I NTRODUCTION

A. The visual search behavior

Looking for our car keys in the whole house or just
scanning the top of the table before locating and grasping
the pencil are some common search behavior we, as human,
perform easily. With our precise and robust vision system
and its amazing recognition ability along with the mastering
of our complex kinematics and the 3D motions it allows,
active visual search is an easy task.

With a search ability a robot doesn’t need to keep a record
of the precise 3D coordinates of objects with which it has
to interact. And even if such a record is maintained, what
happens if these objects are moved? Humanoid robots are
multipurpose platforms and will need to use generic tools to
extend their capacities. They must thus be able to look for
objects, to localize and use them. A search behavior would
be a great improvement in humanoid autonomy and a step
forward toward their rise outside laboratories.

Before starting a search behavior, the robot needs a model
of the desired object. This model could be provided by an
external mechanism, but a humanoid has all the required
abilities to build that model by its own. An undergoing
project in our laboratory, called the ”Treasure hunting” aims
at integrating in a unique cycle, the model building of
an unknown object, and the search for that object in an
unknown environment. With such a combined skill, the robot
may incrementally build a knowledge of its surrounding
environment and the object it has to manipulate without any
a-priori models. Latter the robot would be able to find and
recognize that object. The time constraint is crucial, as a
reasonable limit has to be set on the time an end user can
wait the robot to achieve its mission. This paper will focus

on the search behavior and we assume that the object model
is already created.

B. Problem statement and contributions

Object search is a sensor planning problem which is
proven to be NP-complete [1] thus a heuristic strategy is
needed to overcome that task. Because of the limited field
of view, the limited depth, the lighting condition, the recog-
nition algorithm limitation, and possible occlusion, many
images from different points of view are necessary to detect
and locate a given object.

The initial knowledge of the target position is encoded in a
discrete presence probability [2] which will be updated after
each detection attempt. By combining the target distribution
knowledge and a model of the recognition system accuracy,
we are able to calculate the likelihood of detecting the target
for a given sensor parameter. The proposed planning strategy
consists in optimizing a rating function at each sensing
step. The rating function analyzes the expected field of
view (according to already mapped environment) for a given
configuration according to various criteria defined furtherin
this paper. In [3], we introduce the concept ofVisibility Map
a statistical accumulator in the sensor configuration space
which takes into account the characteristics of the recognition
system to constrain the sensor configuration space and speed
up the optimization. This paper presents the full search
planning strategy along with experiments on the HRP-2
humanoid robot.

C. Related works

Few works on active 3D object search are available,
fortunately the sensor planning research field provides us
with some hints.

Wixon [4] uses the idea of indirect search (in which one
first finds an object that commonly has a spatial relationship
with the target, and then restricts the search in the spatial
area defined by that relationship) he proposes a mathematical
model of search efficiency, which shows that indirect search
can improve the search.

Works done by Ye and Tsotsos [2] tackle the field of
sensor planning for 3D object search. The search agent’s



knowledge of object location is encoded as a discrete prob-
ability density which is updated after each sensing action.
The detection function uses a simple recognition algorithm,
and all factors which influence the detection ability such as
imaging parameters, lighting condition, complexity of the
background, occlusions etc. are included in the detection
function value by averaging experimental results done under
various conditions. The vision system uses one pan tilt zoom
camera and a laser range finder to build a model of the
environment. The search is not really 3D as, the object
is recognized using a 2D technique, and the height of the
camera is fixed.

Works by Sujan [5] are not focused on object search but
on accurate mapping of unknown environment by the mean
of sensor planning. The author proposes a model based on
iterative planning, driven by an evaluation function basedon
Shannon’s information theory. The camera parameter space
is explored and each configuration is evaluated according to
the evaluation function. No computational timing tests are
provided, but the algorithm seems to focus on configura-
tions which are close to obstacles or to unknown areas to
improve the algorithm efficiency, this latter constraint will
be formalized with the notion of visibility map introduced
in II-B.

The operational research community [6] has extensively
studied the problem of optimal search, they came up with
interesting theoretical results on search effort allocation
which served as a basis for Tsotsos’s work.

The Next Best View (NBV) research field [7] studied the
sensor planning problem mainly for C.A.D. model building.
These works, although sharing some common aspects with
the present topic, rely on the fundamental assumption that
the object is always in the sensor field.

II. CONSTRAINTS ON THE SENSOR

A. Model of the recognition system

All recognition algorithms have some restrictions regard-
ing the imaging condition (lighting, occlusion, scale. . . ). One
of the main assumption which can be easily controlled by
active vision is the scale limitation: the smallest scale at
which the object can still be recognized constitute a max-
imum distance limit for the recognition algorithm (Rmax).
It is also suitable to have a sensor configuration in which
the whole object is projected inside the image in order to
maximize the number of imaged features, this imposes a
lower limit for the sensor distance to the object (Rmin).

Without any loss of generality regarding the recognition
algorithm, we can assume that these bounding values (Rmin

and Rmax) are determined theoretically or experimentally
during the model building and are stored with the object
model. These limit values depend on the recognition algo-
rithm and on the characteristics of the searched object and
are used to further constrain the sensor parameters in order
to improve optimization time.

We also assume that a model of the recognition system,
which gives the accuracy of the recognition depending on
the position of the target relative to the sensor, is available.

For instance, in this paper we use a gaussian formulation
of the recognition accuracy (equation 1), in whichz is the
distance of a given voxel to the camera optical center.
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B. The visibility map

The configuration space of the stereoscopic head has
initially 6 DOF, but because the roll parameter (rotation
around the line of sight) has a small influence on the visible
area (the stereoscopic field of view is square), the problem
is reduced to 5 dimensions.

The sensor configuration space is discretisized with the
same resolution as the occupancy grid for the x, y and z
parameters (5 cm). Whereas for pan and tilt, a resolution of
half the stereoscopic field of view value, which is 33 ˚ hori-
zontally and vertically, is used. With such a resolution anda
typical environment size of 6x12x2 meters, the configuration
space of the sensor has around 24 millions configurations.
A greedy optimization approach is impossible to achieve in
a reasonable time. To overcome that problem, we propose
an adaptative subsampling of the sensor configuration space
which takes into account the limitations of the recognition
system.

The basic idea of the treatment is to provide the rating
function with configurations which meets certain require-
ments:

• For each configuration, a certain amount of points of
interest must be visible.

• Points of interest must be seen under imaging conditions
which allow a reliable recognition.

• Configuration must have a low coupling (their view field
must weakly intercept).

• The set of all configurations must partition the visible
space.

In order to achieve these criteria, we use the concept of
visibility map introduced in [3]. Here we describe the steps
leading to the construction of this map.

A given 3D point in the environment votes in the sensor
configuration space for all the configurations from which it
can be imaged under good conditions (conditions allowing a
reliable recognition given a recognition method), this is what
we call the visibility sphere of a point. This hollow sphere
has an inner radius ofRmin and an outer radius ofRmax

as defined in II-A. Figure 1 shows a 2D representation of a
visibility sphere.

All the points of the visible 3D surface of the environment
(unknown or solid voxels with an empty neighbor) create
their own visibility sphere. The contribution of all the vis-
ibility spheres are summed up in an accumulation map we
call the visibility map. Figure 2 shows a horizontal cut of
the visibility map on which the two rotation dimensions are
projected in order to allow a 2D representation.



Fig. 1. The visibility sphere represents the 5D configuration set of the
stereoscopic sensor in which a particular 3D point can be well recognized
by a given recognition algorithm.

Fig. 2. This visibility map is only computed for reconstructed solid points
(gray points under the plane). Each point is creating a visibility sphere
around it. Lighter area on the plane represent configurations in which the
solid points can be well imaged

The visibility map can be seen as a 5 dimension, gray
values map:

• The value of each configuration in the visibility map is
called the visibility of the configuration. A candidate is
a configuration which has a non zero visibility.

• The set of candidates which have the same x and y
parameter is called a cluster (the cluster visibility is the
sum of all its candidates visibility). Figure 2 shows in
fact the clusters of the visibility map.

The visibility sphere of a point is precomputed according
to the Rmin, Rmax values and stored in a look-up-table
(LUT). The visibility map update is done incrementally,
which means that only points which have a change in their
state will be considered: new boundary points add their
votes to the visibility map and votes of removed points are
subtracted. Because of its incremental nature, the visibility
map computation gets faster (in average).

C. Local maxima extraction

In order to achieve the criteria listed in the previous section
the visibility map is filtered: The coupling (figure 3) inside
the same cluster is low because a change in the pan, tilt
parameters will bring a lot of new information in the field of
view. On the other hand, a change in the x, y, z parameters
will most likely produce a small change in the field of view.

Fig. 3. Illustration of the coupling between views

A local maxima extraction of the visibility map based on a
window with different size for the rotation and translation
parameters will output the ’locally best’ configurations for
which a reasonable amount of points is visible. A small size
is used for the pan and tilt parameter, reflecting the fact
that configurations with close orientation values are weakly
coupled. A larger window size is used on the translation
parameters. In this paper we use a window of size 3 for
rotation and 9 for translation (with a 5 cm resolution for the
position and 18 ˚ resolution in orientation).

The greedy exploration of sensor’s parameter space is
constrained to the local maxima of the visibility map. An
interesting feature of the visibility map comes from the fact
that solid and unknown points are treated the same way, and
generate their visibility sphere, thus suitable configurations
for exploring unknown areas are also created. The constraint
achieved by the visibility map and the local maxima extrac-
tion drastically reduces the configurations to consider at each
step. Typical values are around 1000 candidates (to compare
with the 24 millions possible sensor placement). Next section
will present the overall algorithm.

III. A LGORITHM

A. Overview

The flowchart of the next best view selection process is
depicted in figure 4. When a new world model is available,
the corresponding visibility map is computed and the local
maxima extraction is performed providing a candidate list.
The followings sections give the formulation of the rating
function, and describe the different steps of the next view
selection. More details regarding the rating function can be
found in [3].

B. The probability world map

A discrete occupancy grid is generated by the stereoscopic
sensor of the robot. Localization is done through a SLAM
process [8] which merges odometric information provided
by the walking pattern generator and visual information to
provide accurate positioning.

The target presence is represented by a discrete probability
distribution functionp. Since this probability will be updated
after each recognition action, it is a function of both position
and time.p

(

vi, t
)

represents the probability that the voxelvi



Fig. 4. Flowchart of the next view selection

is a part of the target. For a given camera configurationc,

P (c) =
∑

Ψ(c)

p
(

vi, t
)

, (2)

represents the probability that the object is inside the current
field of view Ψ. The field of view Ψ takes into account
occlusions for already mapped obstacles as well as the depth
of field.

C. The rating function

The rating function must evaluate the interest of a given
configuration according to different criteria:

1) the probability of detecting the object: the detection
probability (DP ),

2) the new volume that will be seen: the new information
(NI),

3) the cost in time/energy to reach that configuration: the
motion cost (MC).

The DP , NI andMC are combined in the rating func-
tion (3):

RF (c) = λDP ·DP (c)+λNI ·NI(c)−λMC ·MC(c), (3)

where λDP , λNI and λMC are scaling factor to balance
the contribution of each member of the rating function. This
function will be optimized to select the next view.

The weights selection can modify the current strategy of
the search:

• a high λNI will support a wide exploration of the
environment,

• a highλDP will support a deep search of each potential
target.

The table below gives the total distance traveled by the
robot for 50 different views, and the remaining unknown
voxels in the environment for different values ofλMC

(λNI = 1000).

λMC 0.01 0.1 0.2 0.5 2 3
Total distance (m) 91.3 71.4 56.3 45.7 21 16

Unknown (%) 13.8 13.7 13.7 16 21 19

a) The detection probability:From equation 1 and 2
we define the detection probability (DP ) for a given camera
parameterc as:

DP (c) =
∑

Ψ(c)

p
(

vi, t
)

ρ
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)

. (4)

b) The new information:This concept already intro-
duced by [9] and [5] is also used in the overall configuration
rating process with a different formulation:

NI(c) =

∑

Ψ(c)

(vi = unknown)

∑

Environment

(vi = unknown).
(5)

c) The motion cost: In addition to maximizing
the NI and DP , it is also interesting to minimize the
distance traveled to reach the configuration. The motion
cost computation is based on an Euclidean metric in the
configuration space of the sensor for the rotation parameters
and on a navigation function (NF ) based on a 2D projection
of the occupancy grid for the the translation parameters of
the sensor:

• NF (c) = 0 and the configuration is reachable without
moving the waist of the robot:

⇒ MC(c) =

√

αpan

(

p′ − p
)2

+ αtilt

(

t′ − t
)2

• NF (c) = 0 and the robot must rotate its waist:
⇒ MC(c) = αWR · (θwaist − θ′waist)

• NF (c) 6= 0:
⇒ MC(c) = αNF · NF (c)

where αpan, αtilt, αwaist and αNF are weights on each
DOF. In this paper,αpan, αtilt are low andαNF , αwaist are
higher because moving the whole robot takes more time and
energy than moving only the head.

Next section presents the optimization of this rating func-
tion in order to determine the next sensor placement.

D. Candidates examination

The local maxima extraction presented in section II-C
provides us with a list of candidates. If the candidates
are too numerous, a visibility constraint is applied and the
best candidates are taken (i.e. candidates which received a
maximum amount of votes). The number of candidates that
can be sent to the rating function depends on the reaction
time we want to achieve. Typically we set a limit of 1000
candidates to rate. The current implementation of the rating
function takes (initially) 3 ms per candidate, thus in the worst
case, it takes up to 3 sec to plan the next view. These steps
are depicted in figure 4.



E. The path planning & the recognition function

Once the next sensor placement is decided, a path is
planned to reach the desired position. Because the navigation
function only gives an optimistic evaluation of reachable
configurations, some target locations are rejected by the
planner. In such a case, the second rank candidate is picked
up and a new path is computed. We currently use anA∗

planner which only takes into account the bounding box of
the robot, uses a discreet set of orientations and does not
allow any backward motion. Theses limitations are clearly
visible in the experiment we present at the end of the paper
but does not interfere with the proposed search model.

Once the target configuration is reached, the world model
is updated, and the recognition of the object is attempted.
Few assumptions are made on the underlaying recognition
system and the output of the recognition is supposed to be
a list of object poses with their associated likelihoods. Each
object pose is then converted into the corresponding voxel
set and their probabilities are merged with the target presence
probability map through the update process. The update
process will then normalize the distribution probability in
order to have:

∑

Environment

p
(

vi, t
)

= 1. The process is then

reiterated until the object position knowledge reaches locally
a given threshold in the probability distribution.

IV. EXPERIMENTS

V. SIMULATION RESULTS

A full search behavior has been tested in simulation (Fig-
ure 5). The environment is a 6x4x1.5 meter room with two
obstacles, the target is hidden behind the large obstacle. A
simulation of the recognition system has been implemented,
although simple, it has the main characteristics of a real
recognition system with false target detection that adds some
noise to the probability map. In the simulation, the robot
finds the object after 15 views. Depending on the settings (the
λNI /λDP ratio) the robot will lock the target after the first
view or will do some remaining exploration before focusing
its attention on the target.

VI. EXPERIMENTAL SETUP AND RESULTS

Real experiment using HRP-2 humanoid robot has been
successfully achieved. The recognition system is a color
detector based on a normalized color histogram. The 3D
position of the center of the color region detected in an
pair of image is computed using the camera calibration
information. The matching score is proportional to the size
of the segmented color region, the closer this size is to real
object size, the higher the matching score will be.

The experimental room ( Picture in figure 6) is 6 by 4
meters and is divided in two parts by a 2 meters wide panel.
Figure 7 shows an image sequence captured form the control
interface during the experiment. The environment reconstruc-
tion is only based on disparity information and needs to
be well textured. The aim of the experiment we present
here, was to have a full exploration and mapping of an
unknown environment, in order to validate the model in a real

Fig. 5. Image sequence of the search behavior, the object is hidden behind
the large obstacle

world experiment in presence of heavy reconstruction noise
and localization error. There was no target object hidden in
the room, thus the planning was mainly driven by the new
information retrieval even though the detection probability
was taken into account in the optimization process. The
whole exploration is done in 29 views, the robot finishes
exploring the first part of the room in 23 views after mapping
enough environment to allow a planning to explore behind
the wall for the 6 remaining views.

VII. CONCLUSION

This paper exposed the framework for a search behavior
developed for the humanoid robot HRP-2. The problem,
which falls in the sensor planning field, is formulated as
an optimization problem. The concept of visibility map
introduced in [3] to constrain the sensor parameter space
according to the detection characteristics of the recognition
algorithm is used to reduce the dimension of the sensor
parameter space. Simulation and real experiments using the
HRP-2 robot have been achieved to validate the proposed
search model. A more powerful path planner such as Kine-
oWorks is on the way to be integrated to provide full body,
3D planning for the robot, and will allow sensor placement
to be less constrained. Moreover, a better recognition system
based on feature point matching is under development and
will allow to predict the pose of a partially imaged object.



Fig. 7. Images of the real environment exploration as seen through the control interface during the experiment. We notice the heavy reconstruction noise
mainly due to false point matching

Fig. 6. A picture of the experimental room during HRP-2 exploration

This predicted pose will then be merged in the probability
map in order to generate sensor configuration from which
the prediction will be confirmed or not.
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