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Due to large-scale flow inhomogeneities and the effects of temperature, turbulence
small-scale structure in thermal convection is still an active field of investigation, especially
considering sophisticated Lagrangian statistics. Here we experimentally study Lagrangian
pair dispersion (one of the canonical problems of Lagrangian turbulence) in a Rayleigh-
Bénard convection cell. A sufficiently high temperature difference is imposed on a
horizontal layer of fluid to observe a turbulent flow. We perform Lagrangian tracking
of submillimeter-sized particles on a large measurement volume including part of the
large-scale circulation (LSC), revealing some large inhomogeneities. Our study brings
to light several insights regarding our understanding of turbulent thermal convection:
(i) by decomposing particle Lagrangian dynamics into the LSC contribution and the
turbulent fluctuations, we highlight the relative impact of both contributions on pair
dispersion; (ii) using the same decomposition, we estimate the Eulerian second-order
velocity structure functions from pair statistics and show that after removing the LSC
contribution, the remaining statistics recover usual homogeneous and isotropic behaviors
which are governed by a local energy dissipation rate to be distinguished from the global
dissipation rate classically used to characterize turbulence in thermal convection; and
(iii) we revisit the superdiffusive Richardson-Obukhov regime of particle dispersion and
propose a refined estimate of the Richardson constant.
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I. INTRODUCTION

Various natural and industrial flows are buoyancy driven. Atmospheric or oceanic dynam-
ics, Earth’s mantle flows, and heat exchangers are some examples where the natural thermal
convection—without mechanical forcing—has a dramatic influence on the flow. The main model
system is the Rayleigh-Bénard cell. A horizontal layer of fluid, confined in a cell, is cooled from
above and heated from below. If the thermal forcing is large enough, the flow is turbulent and
the fluid is well mixed. A consequence is that the temperature is nearly homogeneous on average,
and thermal gradients are confined in boundary layers, close to the horizontal plates. Boundary
layers are thermally unstable, which leads to the emission of coherent structures, named thermal
plumes. Despite the significant progress in modeling of turbulent thermal convection in the past
decade [1–3], the link between these structures and the global heat flux is still not fully understood.
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Examples of open questions are the dynamics of the turbulent plumes [4], the interactions between
the mean flow and the boundary layers, and the influence of the inhomogeneity on the heat transport.

The system is controlled by two nondimensional parameters:
(i) The Rayleigh number, Ra, is the balance of the buoyancy effects and the dissipative ones. It

accounts for the thermal forcing:

Ra = gα�T H3

νκ
, (1)

where g is the acceleration due to gravity, �T is the temperature difference between the cooling and
the heating plates, H is their separation distance, α represents the thermal expansion coefficient of
the fluid, ν the fluid’s kinematic viscosity, and κ its thermal diffusivity.

(ii) The Prandtl number, Pr, compares the two dissipative processes (thermal and viscous
diffusion):

Pr = ν

κ
. (2)

The response of the system is estimated by the Nusselt number, Nu, which compares the heat flux
through the convection cell to the purely diffusive one,

Nu = QH

λ�T
, (3)

where Q is the heat flux and λ the thermal conductivity of the fluid.
High-resolution spatiotemporal Lagrangian measurements in turbulent flows are now possible

thanks to improved digital imaging techniques and computing resources [5,6]. Flows with important
mixing and transport properties deserve to be studied with a Lagrangian approach [7]. Moreover, the
Lagrangian point of view is relevant to stochastic models which describe some aspects of the turbu-
lence, such as finite Reynolds effects [8,9], and intermittency [10]. Important transport properties of
turbulent flows are related to multiparticle dispersion [11], among which pair dispersion is the most
fundamental and has been pioneered by Richardson [12]. The way two particles go away from each
other has been largely studied in turbulent flows simultaneously experimentally, numerically, and
theoretically (see, e.g., the review articles by Sawford [13] and Salazar et al. [14]). It has important
applications, including oceanic plankton or atmospheric pollutant dispersion [15,16], for which
thermal convection is a key ingredient. Three regimes can be distinguished:

(i) For time scales shorter than t∗ = (�2
0/ε)2/3, where �0 is the initial separation, as represented

in Fig. 4, and ε the kinetic energy dissipation rate, a ballistic regime is observed. It is called the
Batchelor regime, and the squared pair dispersion D2

�0
(t ) [as defined in Eq. (6)] scales as t2 [17].

(ii) For t∗ < t < TL, where TL is the Lagrangian correlation time, the superdiffusive or
Richardson-Obukhov regime appears and D2

�0
(t ) ∝ t3 [12].

(iii) For t > TL, a diffusive regime is reached and D2
�0

(t ) ∝ t [15].
Nevertheless, these three regimes are poorly investigated in turbulent thermal convection,

contrary to isothermal turbulence. Indeed, the presence of thermal plumes and the strong inhomo-
geneities of the flow should lead to turbulent statistics far from the usual homogeneous and isotropic
turbulence (HIT) framework. To our knowledge, few experimental works were reported. The first
one used a single large particle with embedded thermistors to combine Lagrangian temperature
and velocity measurements [18–20]. The second one [21,22] used submillimeter-sized particles,
focusing on the very center of convection cells where the flow is quite homogeneous and isotropic.
Recently we reported on a Lagrangian study of the velocity and acceleration statistics in a large
measurement volume of a Rayleigh-Bénard cell where the mean flow is highly inhomogeneous [23].
Very recently, a study focused on the aspect ratio influence on Lagrangian statistics [24]. Some
experimental studies have been performed in rotating Rayleigh-Bénard turbulence [25–28]. More-
over, heat flux and particle dispersion were numerically studied by Schumacher and co-workers all
through the decade. Among these previous studies, the pair dispersion was explored numerically in
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thermally driven flows [29,30]. The Batchelor and Richardson-Obukhov regimes were observed. In
experimental studies, mostly the case of initial separations close to the dissipative length scale was
investigated [22], with some evidence of the Richardson regime.

The purpose of this paper is to explore how flow inhomogeneity observed in a wide central zone
of a thermal flow affects the turbulence. We deliberately place this study out of the HIT scope
and address the role of large-scale circulation (LSC) on Lagrangian transport. The Lagrangian
tracking of particle pairs in a turbulent Rayleigh-Bénard cell is presented. A significant part of
LSC is observed thanks to the size of the measurement volume. The growth of the mean-square
separation of particles is analyzed. The main aspect of this article concerns the influence and the
modeling of the inhomogeneous mean flow on pair dispersion. We also discuss the estimation of the
Richardson constant in the Richardson-Obukhov regime.

II. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUES

The convection cell consists of an octagonal-shaped setup with eight transparent polymethyl
methacrylate vertical walls. The two horizontal plates are made of anodized aluminum. They are
40 cm in diameter, tangent to the octagon made by the walls and vertically spaced 30 cm apart. A
custom-made 40-cm-diam spiral electrical resistance imposes the heat flux from the bottom while
the top plate temperature is regulated by a glycol circulation pump. The temperature of the plates
is monitored using eight PT100 temperature sensors, four inside each plate. The working fluid is
deionized and degased water, with a density ρ f = 990 kg m−3. The imposed heat power is 800 W,
the mean temperature is fixed to 40 ◦C, and the temperature difference reaches �T = 19.2 K. The
corresponding control parameter values are Ra = 2.0 × 1010 and Pr = 4.3. The Nusselt number
is consistent with the Grossmann-Lohse theory [1,31] and is Nu = 139 (after removing 15%
of thermal losses). In these conditions the flow is turbulent. The subsequent LSC consists in a
convection roll confined between two diametrically opposite sides of the octagonal cell. We observe
using shadow graphs that the convection roll orientation can change spontaneously with a typical
time of a few hours. Nevertheless, we do not observe such reversals on the time scale of our
acquisitions (180 s, which is confirmed by the shape-similar velocity distributions of each run [23]).
However, LSC sloshing in the x direction is observed during the acquisitions [23].

The flow is seeded with thousands of polystyrene particles. Their diameter is d = 250 μm
and their density is ρp = 1030 kg m−3. The Stokes number in a turbulent flow can be estimated
as [32,33]

St = ρp

18ρ f

(
d

η

)2

, (4)

where η is the Kolmogorov length. In our case we get St ≈ 7 × 10−3, which means that particles can
be considered as tracers. Nevertheless, we observe a decrease of suspended particle concentration
on a typical time scale of a few dozen minutes, probably due to the entrapment by the thermal
boundary layers. This problem is solved by splitting the acquisitions into six runs with reseeding
between each one.

The fluid volume is illuminated by two sets of four vertical light-emitting diode bars of 864 lm,
put in front of two different vertical walls, as shown in Fig. 1. Moreover, to improve the particle
visibility, the vertical wall on the far side of the tank from where the camera is situated is covered
with black paper. Thus, only three faces are still available to place the cameras. To avoid any angle
between the camera lens and the wall and to have the largest volume captured by all the cameras,
we choose to use only one camera per free face. Consequently, three cameras are positioned in
the horizontal plane situated at mid-height of the walls, at polar angles ψ = 0◦, 135◦, and 270◦
(as illustrated in Fig. 1). The measurement volume where we perform three-dimensional (3D)
Lagrangian tracking is about 11 cm per side and 17 cm high, and is centered in the cell (see Figs. 1
and 2). The cameras have a resolution of 1088 × 2048 pixels2. The maximum resolution is 6 pixels
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FIG. 1. Convection cell and camera position viewed from above. The gray zone corresponds to the field of
view observed by the three cameras. More details about dimensions and camera specifications are in the text.

per Kolmogorov length, defined as η = (ν3/〈ε〉)1/4, where 〈ε〉 is the average mass rate of kinetic
energy dissipation, estimated as [34]

〈ε〉 = ν3

H4
RaPr−2(Nu − 1). (5)

The acquisitions are split into six independent runs of 180 s. The total measurement time is
about 2880 times the Kolmogorov time, τη = √

ν/〈ε〉 ≈ 0.36 s, and 575 times the free-fall time,
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FIG. 2. Scheme of the convection roll and the measurement volume captured by the experimental
acquisition setup, compared to the whole convection cell.
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FIG. 3. Three-dimensional visualizations of the mean velocity field
−→
vE = vE

x
−→x + vE

y
−→y + vE

z
−→z . The two

plots corresponds to two different viewing angles. The arrow size is proportional to velocity magnitude, going
from 0 and 12 mm/s.

τ f = √
H/gα�T . We can therefore consider that the flow is fairly averaged as long as no LSC

orientation change occurs. The sampling frequency is fixed to 200 Hz (about 70 times the dissipative
time scale), which ensures a good resolution of small-scale Lagrangian dynamics with sufficient
oversampling to filter noise on reconnected tracks [6]. A Gaussian kernel is used to filter the
trajectories and their temporal derivatives; its width (0.3 τη) does not affect the smallest turbulent
scales.

The measurement volume is wide enough to capture a significant part of the LSC. Figure 2
presents the part of the convection roll captured by the measurement volume within the convection
cell. To visualize the inhomogeneity of the flow we compute pseudo-Eulerian maps from the La-
grangian data. They are averaged over a spatial grid, and the resulting velocity field is interpolated.
We call vE

k (k = x, y, z) the resulting average velocity. Figures 3(a) and 3(b) show three-dimensional
representations of the average velocity vector field, with two distinct viewing angles. In the y
direction, we observe a very inhomogeneous flow with large positive velocities at the top of the
measurement volume, large negative ones at the bottom, and null velocities at the center. The
other horizontal average velocity component (vE

x ) and the vertical one (vE
z ) are both nearly null,

as highlighted in Figs. 3(b) and 3(a), respectively.

III. PAIR DISPERSION AND INHOMOGENEITY

We address the question of the impact of large-scale inhomogeneities on pair dispersion. Figure 4
shows the principle of the pair dispersion: we study the evolution of the separation between pairs of
particles with time by defining

D2
�0

(t ) = 〈(−→� (t ) − −→
�0)2〉0, (6)

R2
�0,k (t ) = 〈(�k (t ) − �0,k )2〉0, (7)
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FIG. 4. Sketch of the pair dispersion principle. At time t0, two particles are separated with an initial distance
||−→�0||, while at time t > t0 they are separated by ||−→� ||.

where
−→
� (t ) and

−→
�0 are respectively the vectors connecting two particles at times t and t0 and �k

and �0,k their projections along the
−→
k axis (

−→
k = −→x ,−→y ,−→z ); 〈·〉0 represents the statistical mean

over pairs with an initial separation �0 (see Fig. 5).
The leading term of the Taylor development at short time of Eq. (6) leads to a ballistic (or

Batchelor [17]) regime:

D2
�0

= S2−→v (�0)t2 + O(t3), (8)

where S2−→v (�0) is the second-order Eulerian velocity structure function for a separation �0. This
regime is expected to last for times t � t∗ = (�2

0/〈ε〉)1/3. For time larger than t∗ the superdiffusive
(or Richardson-Obukhov [12]) regime appears [15]. It corresponds to a t3 dependence of D2

�0
(t )

and was observed in turbulent convection both numerically [29] and experimentally [22].
At a given 〈ε〉, the observation of the superdiffusive regime requires two conditions:
(i) t∗ must be significantly smaller than the Lagrangian correlation time TL; otherwise, the

ballistic regime transitions directly to the diffusive regime.
(ii) Experimental tracks of particle pairs must be longer than t∗.
Both conditions imply that the observation of the Richardson-Obukhov regime is most favorable

for small initial separations �0, as confirmed in numerical simulations for both isothermal [35]

FIG. 5. Pair dispersion for (a) small (1.9, 2.1, 2.3, 2.6, and 2.9 mm) and (b) larger initial separations �0

(4.3, 5.4, 7.0, 8.9, 11.4, 14.6, 17.7, 23.7, 30.3, 38.7, 49.3, 62.9, and 80.3 mm).
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FIG. 6. Second-order Eulerian structure functions of each velocity component versus the total initial
separation �0. The black line represents the model from Eq. (14). The dashed part corresponds to the range
where the model validity decreases. In the inset, the same axes and data are plotted except for S2

vy
, for which

the LSC term β2�2
0/3 from Eq. (14) is subtracted to isolate the small-scale turbulent contribution. Only the

part corresponding to the solid black line in the main plot is shown in the inset.

and thermal [29] turbulence. Experimentally, in high Reynolds turbulence, this regime is hard to
observe [16]. This is mostly due to the difficulty to access long tracks and to have good statistical
convergence for small initial separations (which require high seeding densities, making the tracking
more complex and noisy). In thermal convection, Ni and Xia [22] used very small initial separations
(0.9η–1.3η) in a small measurement volume and observed a fleeting superdiffusive regime. In our
case we choose to track long trajectories over a large measurement volume (up to 30 s corresponding
to 85τη) but with initial separations starting from 2.7η (η ≈ 0.7 mm).

We present in Figs. 5(a) and 5(b) the mean-square separation D2
�0

versus t/t∗ for short (range 1.9–
2.9 mm) and larger (range 4.3–80.3 mm) initial separations, respectively. In terms of Kolmogorov
scale, the ranges are respectively 2.7η–4.0η and 6.0η–114η. For all initial separations we observe
the early ballistic (t2) regime. For the shortest separations [Fig. 5(a)], the trajectories are long enough
compared to t∗ to observe the transition towards the superdiffusive (t3) regime. This regime is
discussed further in this paper. For the larger initial separations [Fig. 5(b)], the Richardson-Obukhov
regime could not be reached.

As described by Eq. (8), the short time pair dispersion is dominated by the t2 (ballistic)
regime. The prefactor is given by the second-order Eulerian structure function S−→v , which in
nonhomogeneous thermal flows embeds both the statistics of the turbulent spatial fluctuations and
the spatial inhomogeneities of the LSC. We compute the structure functions with a �0 separation
for each velocity component from

R2
�0,k

(t ) = S2
vk

(�0)t2 + O(t3), (9)

where S2
vk

(�0) corresponds to the Eulerian second-order longitudinal structure function of the k
component of the velocity for an initial separation �0.

Figure 6 shows these structure functions compensated by �
2/3
0 following classic HIT scaling. We

observe a strong anisotropy. S2
vx

(�0) and S2
vz

(�0) present the same plateau, which is in agreement

with the Kolmogorov scaling, S2
vk

∝ �
2/3
0 [36]. From this plateau (1.8 ± 0.1 mm4/3/s2) we can
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estimate the local average kinetic energy dissipation rate 〈ε〉loc in the subdomain delimited by
the measurement volume, instead of 〈ε〉 for the whole cell computed using Eq. (5). Indeed, in
the Kolmogorov theory we have S2

vk
= (11/9)C2〈ε〉2/3

loc with C2 the Kolmogorov constant [36]. In
our case of weak turbulence, where the Reynolds number based on the Taylor microscale reaches
Reλ ≈ 75, we take C2 = 1.7 [37]. We obtain 〈ε〉loc = 0.8 ± 0.05 × 10−6 m2/s3. We can compare
this value to the estimation of 〈ε〉 in the whole cell using Eq. (5), corrected by inhomogeneity effects.
Kunnen et al. [38] performed numerical simulations in a cylindrical cell for Pr = 6.4 and Ra =
1 × 109. From this work we estimate that in the center of the cell 〈ε〉loc is about 20–30% of its mean
value calculated with Eq. (5). Assuming these corrections, we choose 〈ε〉loc = (0.25 ± 0.05) 〈ε〉 and
we finally have 〈ε〉loc = 1.3 ± 0.3 × 10−6 m2/s3, which is quite consistent with the experimental
deductions. Note that the kinetic energy dissipation rate value used to estimate t∗ is computed as
25% of the value given by Eq. (5): 〈ε〉loc ≈ 1.3 × 10−6 m2/s3.

S2
vy

(�0) is dramatically different. It does not match with the Kolmogorov theory at all, but can
be explained by the influence of the mean flow. First we decompose the velocity components, in a
manner similar to previous Lagrangian works in von Kármán and thermal turbulent flows [20,39].
The flow velocity at a given time t and position (x, y, z) can be seen as the superposition of the
time average velocity at this position and a time-dependent fluctuation. Since we use tracers, their
velocity at a given time and position can be decomposed in the same way. Practically, the local time
average velocity corresponds to the pseudo-Eulerian velocity vE

k whose computation is explained at
the end of Sec. II. The Lagrangian fluctuation v′

k (t ) is the difference between actual particle velocity
and pseudo-Eulerian velocity at the particle position. This can be formulated as

vk (t ) = vE
k (x(t ), y(t ), z(t )) + v′

k (t ), (10)

where k = x, y, z. Using this decomposition, we can develop the structure function S2
vy

as

S2
vy

(�0) = 〈(
vE

y (−→r + −→
�0) − vE

y (−→r )
)2〉

−→r + 〈(v′
y(−→r + −→

�0) − v′
y(−→r ))2〉−→r

+ 2
〈(
vE

y (−→r + −→
�0 − vE

y (−→r )
)
(v′

y(−→r + −→
�0) − v′

y(−→r ))
〉
−→r , (11)

where −→r is a position in space. Since S2
vy

(�0) is an Eulerian quantity, 〈·〉−→r represents the spatial
average over all the accessible positions. The third term of Eq. (11) is a cross-correlation term
between the local mean flow and the fluctuations. In a previous study [20], a sensor-embedded
particle was used to explore the flow in a parallelepipedic cell for similar Pr and Ra. We observed
that the correlations between the mean flow and the Lagrangian fluctuations are very small
compared to the autocorrelations of the mean flow and the fluctuations. Consequently we neglect
the third term. The second term corresponds to the second-order Eulerian structure function of the
fluctuations. We have seen (Sec. II) for k = x, z that vE

k ≈ 0, which means that vk ≈ v′
k according to

Eq. (10). Consequently, S2
vk

≈ 〈(v′
k (−→r + −→

�0) − v′
k (−→r ))

2〉−→r . We also assume isotropy of turbulent
fluctuations as supported by our recent investigation of single-particle statistics [20]. The large
similarity of S2

vx
and S2

vz
in Fig. 6 reinforces the hypothesis for two-particle statistics. From this

observation, we assume that the second term of S2
vy

from Eq. (11) is similar to S2
vx

:

〈(v′
y(−→r + −→

�0) − v′
y(−→r ))2〉−→r ≈ 〈(v′

x(−→r + −→
�0) − v′

x(−→r ))2〉−→r ≈ S2
vx

. (12)

Finally, the first term of Eq. (11) is related to the mean flow structure. As we observe in Fig. 3,
inside our measurement volume the mean flow is mostly a shear flow in the {�y, �z} planes for every x,
with zero velocity in the center of the cell. Thus, we have vE

y (−→r ) = βz (within a constant), where
β is a shear rate defined from the y-component velocity gradient in the z direction (which is about
uniform). We estimate it to β ≈ 0.14 s−1 from the mean vertical velocity profile. The mean flow
structure is sketched in Fig. 7. Then the first term in Eq. (11) can be written as

〈(
vE

y (−→r + −→
�0) − vE

y (r)
)2〉

−→r = β2�2
0,z. (13)
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FIG. 7. Sketch of the mean flow in the {�y, �z} plane. The red arrow represents the mean streamlines. The
green arrows represent the velocity vectors of two particles separated by �0.

Furthermore, the initial pair separations are assumed to have three similar �0,k in order to avoid
considering particles with a very large separation in one direction and a very short separation in
another one. Consequently we have �0 ≈ √

3�0,z. Finally, we can write

S2
vy

(�0) ≈ β2

(
�2

0

3

)
+ S2

vx
(�0). (14)

The black line in Fig. 6 compares this no-free-parameter model to experimental data. It is valid
while the three components of the initial separation are similar. Since the volume is larger in the
�z direction than in the horizontal ones, this condition is violated for �0 � 50 mm. The solid part
of the line corresponds to the zone where the model is expected to be valid, whereas the dashed
part, which departs from experimental data, corresponds to a range of initial separations where the
condition �0 ≈ √

3�0,k is not satisfied anymore. Figure 6 and its inset show the same experimental
results, except for S2

vy
. In the inset, the mean-flow component in Eq. (14), β2�2

0/3, is subtracted

from experimental data S2
vy

. This leads to a collapse of the curve on the S2
vx

and S2
vz

on the model

validity domain. This collapse shows that the Eulerian second-order structure function S2
vy

recovers
the HIT behavior if the mean flow influence is removed.

IV. ABOUT THE RICHARDSON-OBUKHOV REGIME

The observation of the Richardson-Obukhov regime is experimentally subtle in turbulent convec-
tion. Moreover, the superdiffusive regime could include extra diffusion due to the LSC-generated
shear rate. For short initial separations, we observe in Fig. 5(a) a transition towards a t3 regime
similar to that of the Richardson-Obukhov regime. In this regime, the expected pair separation
expression is

D2
�0

= g〈ε〉loct
3, (15)

where g is called the Richardson constant [14,16]. In HIT, the expected value is g ∈ [0.65–0.7] in
the range of Reynolds number Reλ corresponding to our experiment [14]. Figure 8 shows the pair
separation compensated by 〈ε〉loc t3 for the smallest initial separations [corresponding to Fig. 5(a)].
A plateau is well defined for t between 0.7 t∗ and 1.1 t∗ with g ∈ [2–4]. This range is consistent
although a bit larger than the HIT value. However, it is significantly larger than values reported
in turbulent convection by Ni and Xia [22] (g ≈ 0.1 for �0 ∈ [0.9η–1.3η]). Moreover, the plateau
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FIG. 8. Compensated plot of the pair dispersion D2
�0

/(〈ε〉loct3) for short initial separations: 2.7η, 3.0η,
3.3η, 3.7η, and 4.0η.

is observed for lower t/t∗ than in Ref. [22]. Additionally we find a systematic dependency on the
plateau in Fig. 8 with the initial separation, �0.

Both observations can be explained from the peculiar behavior of pair dispersion for initial
separation close to the dissipative scale, and by the value of the average kinetic energy dissipation
rate used. The shift in the time value for the occurrence of the plateau between our data and that
of Ni and Xia can be explained by our use of 〈ε〉loc to compute t∗, which leads to a higher t∗
than when using 〈ε〉. Concerning the plateau value, numerical simulations performed by Boffetta
and Sokolov [40] and Sawford et al. [13,41] show that, for initial separations of the order η, the
t3 Richardson-Obukhov regime is preceded by a local minimum, leading to an apparent short t3

lower plateau. This phenomenon disappears for higher �0. This is attributed to a contamination
of the initial range by dissipation effects [13,40]. Based on the ballistic cascade model proposed
by Bourgoin [16], we plot in Fig. 9 the pair separation compensated by (εt3) in HIT for initial
separations between η and 10η. The local minimum zone before the superdiffusive plateau is
clearly visible for an initial separation �0 ∼ η. A progressive disappearance of the minimum zone
is observed as �0 increases. This highlights that tracks too short can lead to a biased (misleadingly
too small) estimation of the Richardson constant, misleadingly taken as the apparent plateau

10−1 100 101 102
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10−1

100

101 Increasing Δ0

from η to 10 η
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2
(t

)
0
/
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3
)

FIG. 9. Pair separation 〈�2(t )〉0 for HIT computed from the ballistic-cascade model (adapted to account
for the dissipative scaling of S2 at small initial separations) [16], compensated by (εt3). The initial separations
rise linearly in the range [η, 10η].
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observed for small �0 near the local minimum between the ballistic and superdiffusive zone in
the D2

�0
/(〈ε〉loct3) plot. In this zone the apparent plateau also leads to an erroneous dependency of

g on �0. Figure 9 suggests that the plateau due to the local minimum zone is nearly level with the
actual Richardson plateau for �0 � 4 η. These observations very likely explain the apparent initial
separation dependency observed in Fig. 8 and also reported in previous work by Ni and Xia [22]. As
in both studies, due to the limited track length, it is likely that the local minimum zone is explored
rather than the actual plateau of the Richardson regime. Ni and Xia proposed an estimation of
the Richardson constant based on the smallest initial separation they had (�0 � η), for which the
plateau related to the local minimum zone significantly underestimates the actual value of g. In this
previous pioneering study, the tracks for an initial separation larger than η were too short and not
usable to estimate g. In our study, the tracks of pairs with initial separations in the range 2.7η–4η are
marginally longer and allow for computation of the plateau due to the local minimum zone. Since
we have larger initial separations, the plateau related to the local minimum zone is naturally higher
(see Fig. 9) than for Ref. [22]. Based on the previous discussion, the plateau around the minimum
zone roughly levels to the actual Richardson plateau for initial separations close to 4η. Considering
the range of initial separations in Fig. 8 (2.7η–4η) we can therefore expect that the observed plateau
leads to a reasonable estimate of the actual Richardson constant; hence g ∈ [2–4]. Note that the use
of 〈ε〉 instead of 〈ε〉loc also further underestimates the plateau value in the work by Ni and Xia [22].

V. DISCUSSION AND CONCLUSION

To explore the influence of inhomogeneity and anisotropy on turbulent statistics, an experimental
study of pair dispersion in a turbulent thermal flow was performed. Our experimental setup and
analysis and postprocessing tools allow us to obtain long trajectories, compared to the Kolmogorov
time, exceeding Batchelor time t∗ in some cases.

The quantitative analysis of the ballistic regime of pair dispersion highlights the influence of
the large-scale circulation on the turbulent transport and gives a way to measure the mean kinetic
energy dissipation rate in the considered volume. Given its spatial inhomogeneity, a measurement of
this rate is necessary to compare thermal convection turbulence to HIT. This assessment is in good
agreement with an estimation from global and Eulerian approaches. We also used pair dispersion
to access Eulerian velocity structure functions using only particle displacement (without needing to
derive their velocity). This is a way to study the influence of the inhomogeneity on thermal flow
turbulence. The particle dispersion in the �y direction is highly influenced by the convection roll.
This is visible on the Eulerian velocity structure function, which departs from the �

2/3
0 Kolmogorov

scaling. We proposed a model to describe the shape of this structure function which mixes a
phenomenological approach of the mean flow and experimental data from the other horizontal
velocity structure functions not affected by the mean flow. This last point is useful to take into
account the shape of the velocity structure function at low initial separations before reaching the
Kolmogorov scaling. With this choice, the non-negligible viscous dissipation for initial separations
close to the Kolmogorov scale is considered. This model is in good agreement with experimental
data, except for large initial separations, due to the loss of the hypothesis of equipartition for initial
separation components. While turbulent convection is intrinsically inhomogeneous and anisotropic,
this approach demonstrates that we can recover statistics from usual HIT simply by removing the
mean flow. This is not trivial, especially for two-particle statistics. This also shows that there is
no temperature influence on the turbulence organization, which is important for understanding the
temperature role in thermal turbulent flows. Our experiments validate this point in the center part of
the convection cell, where plumes are scarce.

For the smallest initial separations, we obtain trajectories longer than t∗ and we are able
to observe the transition from ballistic to superdiffusive regimes with a Richardson constant
comparable but larger than HIT. For short initial separations, this nontrivial transition reveals some
complex behaviors even in HIT. Moreover, the extra diffusion due to LSC-generated shear rate could
affect the observations of the superdiffusive regime. The difference with other experimental results
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could be explained from a well-predicted short plateau due to a local minimum zone which appears
between ballistic and superdiffusive zones at short initial separations on compensated plots.

To summarize, our study shines a light on three physical insights about turbulent thermal
convection. Using a decomposition between large-scale circulation and turbulent fluctuations, we
can compute the relative impact of each contribution to pair dispersion. Then, we compute Eulerian
second-order velocity structure functions from pair separations. Using the same decomposition to
remove LSC contribution, we reveal that the remaining statistics recover usual HIT behaviors, being
careful to use a local estimation of the kinetic energy dissipation rate. Finally, we propose a revisited
and more precise estimation of the Richardson constant.

In addition to these points, the pair separation is a good statistical tool to study the transport
properties of turbulent thermal flows, especially in the presence of an inhomogeneous mean
flow. Because of the large field of view in our experiment, we are able to study the effects
of inhomogeneity due to large-scale circulation specific to the Rayleigh-Bénard convection. In
future studies we aim to explore an even wider measurement volume and to be able to study
the jets where a high concentration of thermal plumes is observed. These coherent structures
should affect the different components of the pair dispersion [29]. Furthermore, measurements of
particle dispersion in the jets could give information on thermal transfer in the Rayleigh-Bénard
convection. Possible analysis would look at the next order of the Taylor expression of Eq. (8). This
can be done by computing the difference between the forward-in-time and the backward-in-time
pair dispersions [42], and would open new perspectives to study the energy cascade in turbulent
convection.
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