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Inhomogeneity and Lagrangian unsteadiness in turbulent thermal convection
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We present an experimental study of nonhomogeneous turbulence using a Rayleigh-
Bénard convection cell. The fluid motion is forced by a temperature difference between two
horizontal plates. Using Lagrangian tracking on a large volume we can capture part of the
large-scale circulation. The velocity statistics are strongly affected by the inhomogeneous
mean flow, but we recover the typical homogeneous isotropic turbulence statistics by
removing the local average. We discuss and explain a Lagrangian unsteadiness which
persists because of the large-scale circulation oscillations. Our Lagrangian approach is a
way to study specificities of the convective roll motions in turbulent thermal convection. We
propose a model based on the convolution between the large-scale circulation oscillations
and the turbulent fluctuations to explain the shape of the velocity PDFs. However, the
acceleration statistics are not affected by the mean flow.
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I. INTRODUCTION

Understanding the properties of turbulent transport which occurs in thermal flows is still a
challenge. Many natural (atmospheric and oceanic dynamics, processes in planetary cores) and
industrial (cooling of buildings, heat exchangers) flows are indeed controlled by thermal convection
without mechanical forcing. The most common used laboratory model system is the Rayleigh-Bénard
cell. A layer of fluid confined in a closed cell is cooled from above and heated from below. If the
thermal forcing is sufficient, a turbulent flow can appear. Temperature gradients are confined into
the thermal boundary layers close to the top and bottom plates. Their destabilization implies the
development of fluid pockets called thermal plumes. During the last two decades, much progress
were made to understand the coupling between thermal forcing and heat flux across the cell or
the turbulent properties of velocity and temperature fields [1–3]. Nevertheless, numerous points are
still open to discussion like plume dynamics, boundary layers structure [4], or interactions between
large-scale flow and fluctuations.

Improvements of techniques and computing resources during the last decade allow high-resolution
spatiotemporal Lagrangian measurements in turbulent flows [5,6]. This point of view is very adapted
to flows with important mixing [7]. Moreover, some facets of the turbulence as finite-Reynolds effects
are described with stochastic models using a Lagrangian approach [8,9]. The Lagrangian tracking
of particles opens the door of multiparticle statistics [10]. Although experimental and numerical
Lagrangian studies are well developed for classic turbulence [11], this is not the case for thermal
convection. To our knowledge, there is one large numerical study of Lagrangian transport in thermal
convection [12,13]. Two different Lagrangian experiments were also proposed. The first one, in
Lyon, was made using a large particle with embedded temperature sensors which was immersed
in a Rayleigh-Bénard cell [14]. Recent improvements of the technique have led to robust statistics
[15]. This instrumented particle is able to explore all the flow, but finite-size effects are observed.
The second one, in Hong Kong, explored the very center of convection cells (where the flow is quite
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FIG. 1. Top view of the convection cell and measurement setup. The purple area corresponds to a horizontal
slice of the measurement volume observed by the three cameras. See text for more details about the dimensions
and camera specifications.

homogeneous) with submillimetric particles [16,17]. To be complementary, we propose to combine
submillimetric particle tracking and observation of a large part of the flow.

In this article we present an experiment of Lagrangian tracking in a turbulent Rayleigh-Bénard
cell. We propose to introduce a first bridge between the Hong Kong studies and the Lyon ones.
The measurement volume is wide enough to observe part of the large-scale circulation (LSC). We
are deliberately out of the homogeneous isotropic turbulence (HIT) framework. Indeed, we want to
observe the impact of the LSC on turbulent statistics of tracers. This article focuses on one-particle
statistics (in opposition to two-particle statistics as pair dispersion). We will discuss both the effects
of the inhomogeneity and unsteadiness of the LSC structure on the velocity statistics. Then we will
present the acceleration ones.

II. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUES

Our experimental setup is an octagonal cell (Fig. 1) filled with deionized water with a height
of H = 30 cm, an inner diameter of D = 40 cm. The top and bottom plates are made of
anodized aluminium. We impose the heat flux from the bottom with a heating electrical resistance.
The top plate temperature is fixed with a regulated glycol circulation. The walls are made of
polymethylmetacrylate. The imposed heat flux is 600 W, and the top plate is maintained at
30.4 oC. The resulting difference of temperature is �T = 19.2 oC. The Rayleigh number is therefore
Ra = gα�T H 3/νκ = 2.0 × 1010, where g is the acceleration due to gravity, α the thermal expansion
coefficient of water, ν its kinematic viscosity, and κ its thermal diffusivity. The Nusselt number is
Nu = QH/λ�T ≈ 100 (including about 15% of losses) where Q represents the heat flux across
the cell and λ the thermal conductivity of water. The Prandtl number, defined as Pr = ν/κ , reaches
4.4 for a mean temperature of 40 oC. In these conditions the convective flow is turbulent. A roll
confined between two diametrically opposite sides of the lateral walls appears with a turnover time of
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FIG. 2. PDFs of the velocity components vk normalized by the corresponding standard deviation. The
dashed line represents a Gaussian distribution.

about 80 s. We have qualitatively observed using shadowgraphy that it can change spontaneously of
sidewalls pair between which it is fixed with a typical time scale of some hours. This LSC is indeed
known to exhibit a long time dynamics with spontaneous changes of position and orientation-like
reversals or cessations (see, e.g., Refs. [2,18,19]). The large time scale of the flow is much longer
than the observation time of the experiments reported here (six runs of 180 s), and its study goes
beyond the scope of the present work.

Three coplanar 1088 × 2048 pixels2 cameras are placed around the cell at equal vertical distance
from both plates and at polar angles ψ = 45◦, 180◦, and 270◦ (respectively numbered 1 to 3 on Fig. 1).
We perform a 3D Lagrangian tracking in a measurement volume of approximately 11 cm aside and
17 cm in height centered in the cell. It corresponds to a ratio of about 6 pixels per Kolmogorov length,
η = (ν3/ε)

1/4 ≈ 500 μm, where ε is the mass rate of kinetic energy dissipation. We estimate the
energy dissipation as ε = Ra Pr−2(Nu − 1)ν3/H 4 [20]. We seed the flow with polystyrene particles
with a diameter of 250 μm and density of 1.03 g/cm3. These particles are illuminated using eight
vertical bars of six white LEDs with a brightness of 864 lumens (see Fig. 1 for the spatial disposition).
We perform sets of six 180 s acquisitions. The total measurement time of one set corresponds to
about 2700 times the Kolmogorov time scale, τη = √

ν/ε ≈ 0.4 s, and 540 times the free-fall one,
τff = √

H/gα�T , so the flow is well averaged for time scales to which the LSC remains fixed
between two opposite sidewalls. The sampling frequency must be large enough compared to the
Kolmogorov time scale to resolve dissipative scales. In addition, oversampling is compulsory to
resolve and properly filter measurements noise (for instance, due to the refractive index thermal
fluctuations [16]) from the reconstructed trajectories [21] and estimate the velocity and acceleration
statistics. As empirically suggested by previous Lagrangian tracking experiments to accurately
measure velocity and acceleration [6], we use a sampling frequency of 200 Hz, hence oversampling
by a factor of 80 the dissipative time scale. The trajectories and their temporal derivatives are filtered
using the traditional method of convolution with a Gaussian kernel of width 0.3 τη, which does not
affect the dissipative scale resolution.

III. VELOCITY STATISTICS

First, we present in Fig. 2 the probability density functions (PDFs) of the three components of the
Lagrangian velocity. For the HIT case we expect Gaussian PDFs. Nevertheless the two horizontal
components are found to be highly non-Gaussian. As we will see this is related to the fact that the
Lagrangian statistics are affected by the inhomogeneity of the flow. In our measurement volume,
the large-scale flow is principally horizontal and highly inhomogeneous. Figure 3 illustrates this
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FIG. 3. Vertical slices of the mean Eulerian velocity vE
y . Inset: Sketch of the convection roll and of the

measurement volume in the {�y,�z} plan.

point by showing the y component mean Eulerian field vE
y of the flow obtained by binning the space

and averaging the Lagrangian data in each bin. We observe the signature of the convection roll
present in the cell. The axes are chosen ad hoc to match the x axis with the rotation axis of the roll.
Consequently the x component mean velocity vE

x is nearly null (not shown here). The measurement
volume is higher than wide so that we do not really see the vertical mean flow confined close to the
vertical walls (see inset of Fig. 3).

To put forward the influence of the mean flow on the Lagrangian statistics, we split up the velocity
into a mean local velocity at the particle position (vE

k ) and a fluctuating Lagrangian one (v′
k):

vk(t) = vE
k (x(t),y(t),z(t)) + v′

k(t), (1)

where k = x,y,z. Figure 4 shows the PDF of each component of the fluctuating velocity v′
k . We

observe that the v′
z and v′

y PDFs collapse on a Gaussian distribution. The non-Gaussianity seen in
Fig. 2 for vy and vz was therefore entirely related to the large inhomogeneity of the mean flow
due to the LSC. However, the v′

x PDF is nearly unchanged compared to the vx one. As previously
pointed, the x axis was chosen to be aligned with the rotation axis of the convection roll, so that
the mean field vE

x is nearly null. This brings the following paradox: (1) since vE
x is null, according
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to Eq. (1) it is expected that vx(t) ≈ v′
x(t) so if the PDF of vx is non-Gaussian, so should be v′

x ;
(2) however, the analysis on vy and vz suggests that the non-Gaussianity arises because of the LSC,
so in the absence of a x component mean velocity, one could expect x component fluctuations
to be Gaussian. This paradox can be solved by considering there are two sources of Lagrangian
unsteadiness. First, in the Lagrangian framework the large-scale inhomogeneity of vE(x,y,z) results
in a nonstationary Lagrangian perturbation vL(t) = vE(x(t),y(t),z(t)) along the particle trajectory
(x(t),y(t),z(t)) as seen in Eq. (1). This unsteadiness has been taken care of by removing from
the Lagrangian trajectories the local Eulerian average. Then the remaining non-Gaussianity of v′

x

results from an intrinsic unsteadiness of the flow very likely to be attributed to small motions of the
convection roll. The roll is confined between two opposite sides of the cell (at the time scale of our
acquisitions). But it could still weakly oscillate at sufficient short time scales to impact the velocity
statistics without being visible on the average. To confirm this explanation, we show in Fig. 5 the
ratio v

′RMS
x /v

′RMS
y where RMS means the root-mean square. In statistically stationary conditions, we

should expect a ratio close to one, as for both horizontal components the effect of thermal plumes
on velocity fluctuations should be similar. On the contrary, v

′RMS
x is about 50% higher than v

′RMS
y ,

which can be attributed to the signature of roll motions.
Mathai et al. [22] have observed very similar velocity PDFs for suspended particles in a turbulent

system with a non-null mean flow. They attribute this to a periodicity in the velocity induced by the
particle interaction with the mean flow. In our case it is a little bit different because such a velocity
periodicity is likely due to the mean flow oscillation itself. But the resulting velocity statistics
should be similar. Indeed, we probably observe the so-called sloshing motion of the convection roll
[23–25] in our cell. We propose a simple model to explain the shape of the PDF of v′

x . The ratio
v

′RMS
x /v

′RMS
y is quite homogeneous, so we consider at the first order that the convection roll motion is

an oscillating solid translation along the x axis. A diagram is presented in the inset of Fig. 6. We call−−→
Vinst the velocity induced by the roll motions. At every time the roll center position is called X(t),
and we have

−−→
Vinst(t) = Ẋ(t)−→x . With this model the vy velocity is not affected by the roll oscillation.

Velocities Vinst(t) are in a range [−Vmax,Vmax]. At the first order we assume that all velocities have
the same probability to occur in this range. For the example of a periodic oscillation with amplitude
X0 and pulsation ω we have Vmax = X0ω. If we assume that in absence of roll oscillation the PDF
of v′

x would be a centered Gaussian with standard deviation σ (related to turbulent fluctuations), the
PDF induced by the roll oscillation would be simply obtained by the convolution of this Gaussian
with a centered rectangular function of width 2Vmax. The resulting fit equation is the convolution

064406-5



LIOT, GAY, SALORT, BOURGOIN, AND CHILLÀ
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product (∗):

PDFfit(v′
x) =

[
1√

2πσ
exp

(
−v

′2
x

2σ 2

)]

∗
[

erf

(
v′

x + Vmax

Vnorm

)
− erf

(
v′

x − Vmax

Vnorm

)]
. (2)

We can fit the experimental PDF of v′
x shown in Fig. 4 with this expression. For the ease of

fit we use sharp error functions to build our rectangular distribution. The error function sharpness
are fixed with Vnorm = 0.01 mm/s which does not affect the shape of the rectangular distribution
for Vnorm 	 1 mm/s. Figure 6 compares the best fit from Eq. (2) with the PDF of v′

x with fit
parameters in good agreement with the phenomenon scales. These ones reach σ = 2.8 ± 0.1 mm/s
and Vmax = 8.7 ± 0.1 mm/s. σ is a bit smaller than the standard deviation of v′

y and v′
z, which reach,

respectively, 4.1 mm/s and 3.8 mm/s. This difference perhaps denotes an anisotropy due to the high
velocities in the �y direction. With the value of Vmax we estimate the typical time scale of the roll
motions. Considering the octagonal shape of the cell, the maximal amplitude for the roll translation
is estimated to be in a range between a quarter and a half of one sidewall width, i.e., between 3.5
and 7 cm. Therefore, if we assume a periodic oscillation, and the relation Vmax = X0ω, the fitted
value for Vmax corresponds to a pulsation ω ∈ [0.12,0.25] rad/s, i.e., an oscillation period in the
range [26 − 51] s, which is significantly less than the acquisition time (six runs of 180 s). This is
consistent with the fact that the roll oscillation is averaged while computing vE

x . Furthermore it is in
agreement with previous LSC oscillation time scale measured at Ra = 6.5 × 109 and Pr = 5.3 [26].

This sloshing has not been observed by Ni et al. [16]. Their velocity PDFs obtained in the very
center of the convection cell are very Gaussian, whereas the sloshing should also occurs in their
cell. This difference could be due to geometric effects. In our cell the convection roll is confined
between two opposite flat walls, whereas the Ni et al. cell is perfectly cylindrical. Because they put
up less resistance to a longitudinal motion compared to cylindrical walls, the flat sidewalls could
allow sufficiently important sloshing to be detected on our velocity statistics contrary to the Ni et al.
ones [16].

IV. ACCELERATION STATISTICS

We study now the acceleration statistics. Figure 7 shows the normalized PDFs of the three
acceleration components and the one of the vertical acceleration obtained by Ni et al. in the very
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(Ra = 4.3 × 109, Pr = 6.1).

center of a convection cell (i.e., with very few effects of inhomogeneity) [16]. All distributions have
a similar stretched exponential shape, which is common for the Lagrangian acceleration in classic
turbulent flows [6,11,21]. The acceleration standard deviations reach, respectively, 2.5 mm/s2,
2.3 mm/s2, and 2.0 mm/s2 for ax,ay and az respectively. The PDF shape is in a good agreement with
previous experimental [16] and numerical [12] works in turbulent thermal convection. To confirm
this point we compare the acceleration variance to the kinetic energy dissipation rate. If we observe
a space-time region small enough, the acceleration variance can be linked to the kinetic energy
dissipation rate [6,27]:

[std(ak)]2 = a0ε
3/2ν−1/2, (3)

where k = x,y,z and a0 is supposed to be an universal constant. The ε value derived from the global
quantities (see the setup description and Ref. [20]) does not take into account the inhomogeneity of
the flow. The numerical study of Kunnen et al. [28] shows that the value of ε highly depends on the
localisation in the flow. Using their maps of ε in a cylindrical cell we estimate the kinetic energy
dissipation rate in our measurement volume between 30% and 40% of the one computed from global
quantities. For the vertical acceleration we obtain a0 = 2.8 ± 0.5. We compare this value to the
systematic study performed by Ni et al. [16] for different Rayleigh numbers. The expected value for
Pr = 4.4 ranges between around 2.5, so our measurement is in quite good agreement with this study.

Nevertheless, the numerical simulations from Schumacher [12] (Ra = 1.2 × 108, Pr = 0.7) show
an anisotropy of the acceleration with wider PDFs for the horizontal accelerations. This can be related
to the plumes vorticity [29]. In our experiments we do not capture the lateral jets where the plumes
are concentrated, which can explain why we don’t observe this anisotropy. Contrary to the velocity,
the acceleration is not affected by the mean flow. It does exhibit a slightly inhomogeneous mean
acceleration field (especially for az) but the fluctuations reach several tens of the mean acceleration
field (not shown here) and the PDFs are not affected. Moreover this robustness of acceleration
statistics is very likely to be related to the small correlation time (∼1 s) and correlation length of
acceleration components compared to the typical scales of the flow inhomogeneity and unsteadiness.

V. DISCUSSION AND CONCLUSION

We have proposed a Lagrangian experiment to explore turbulent statistics in a large part of a
convection cell with two aims: to study the inhomogeneity of the LSC and the roll motions. By
observing a wider area than the very center of a turbulent convection cell, we have shown that the
Lagrangian statistics are differently affected by the mean flow imposed by the wall confinement.
The velocity distributions are very far from the well-known HIT Gaussian shape. By removing

064406-7



LIOT, GAY, SALORT, BOURGOIN, AND CHILLÀ

the contribution of the mean flow we recover Gaussian PDFs, except for one velocity component
affected by the motions of the convection roll. The low number of plumes in the center of the
cell, compared to the falling and rising jets, explains that we observe these Gaussian PDFs. We
propose a very simple model based on an oscillating translation of the LSC to explain the shape of
the PDF of v′

x which takes into account the convolution between the turbulent fluctuations and the
additional perturbations induced by the convection roll oscillation. The acceleration statistics are
similar to the previous Lagrangian studies and are not affected by the mean flow. This study showed
two aspects of the Lagrangian unsteadiness. An inhomogeneous Eulerian mean field imposes an
unsteadiness along the trajectory of the particle which can be removed by simply subtracting the
local Eulerian mean field along the Lagrangian path of tracers. Alternatively this shows how the
remaining non-Gaussianity (after local inhomogeneity has been removed) can be advantageously
used to infer subtler properties of the flow phenomenology. Here, for instance, we could infer the
typical time scale of roll oscillations from the velocity PDFs coupled to a simple model. Some
improvements in the tracking technique would be very interesting to observe a wider volume and
track particles over a longer time in order, for instance, to explicitly investigate the roll dynamics or
the Lagrangian correlations. The area close to the walls where the thermal plumes are concentrated is
an other zone of investigation where some specificities of the turbulent convection could be observed.
We plan also to study the particle transport, using pair dispersion, to investigate peculiarities of an
inhomogeneous turbulent flow.
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