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1.  Introduction

Transport of confined colloids in small channels is a key for 
analyzing many situations in biology (blood flow, flow cytom-
etry, DNA analysis [1]), and flows in porous media [2] (chem-
ical engineering with polymer processing, clogging [3, 4], 

separation [5], geophysics i.e. fractured rocks [6]). Owing to 
this ubiquity, the comprehension of the behaviour of advected 
simple particles or colloids in narrow channels has thus a lot 
of interests. It has been studied both theoretically [7] and 
experimentally [8]. The hydrodynamic interactions induced 
by a particle flowing close to a wall begin to be understood 
[9]. These works led to a new flow metrology method based 
on particle transport in microchannels [10]. However in order 
to bear a close resemblance to natural or industrial systems, 
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Abstract
This paper presents experimental results about transport of dilute suspensions of nano-objects 
in silicon-glass micrometric and sub-micrometric channels. Two kinds of objects are used: 
solid, rigid latex beads and spherical capsule-shaped, soft polymersomes. They are tracked 
using fluorescence microscopy. Three aspects are studied: confinement (ratio between particle 
diameter and channel depth), Brownian diffusion and particle nature. The aim of this work is to 
understand how these different aspects affect the transport of suspensions in narrow channels 
and to understand the different mechanisms at play. Concerning the solid beads we observe the 
appearance of two regimes, one where the experimental mean velocity is close to the expected 
one and another where this velocity is lower. This is directly related to a competition between 
confinement, Brownian diffusion and advection. These two regimes are shown to be linked 
to the inhomogeneity of particles distribution in the channel depth, which we experimentally 
deduce from velocity distributions. This inhomogeneity appears during the entrance process 
into the sub-micrometric channels, as for hydrodynamic separation or deterministic lateral 
displacement. Concerning the nature of the particles we observed a shift of transition towards the 
second regime likely due to the relationships between shear stress and polymersomes mechanical 
properties which could reduce the inhomogeneity imposed by the geometry of our device.
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many points still need to be assessed and this field remains 
very active. For example, use of non-Newtonian fluids, with 
the appearance of transverse forces [11], could have large 
industrial interest such as for DNA separation [1]. Effects of 
wall roughness [12, 13] or softness [14, 15] are very important 
particularly in natural systems. The entrance geometry can also 
have substantial effects on particle distribution in a channel 
and subsequently their transport in a pore [8]. Furthermore 
transport of biomimetic vesicles and soft particles in microflu-
idic devices is an emerging topic with dramatic implications 
such as drug vectorization [16] or comprehension of the trans-
port of biological objects. For instance, a higher concentration 
of nano-objects transported by the blood inside the tumor tis-
sues has been observed compared to healthy ones (Enhanced 
Permeability and Retention effect [16]). It is hypothesized to 
be partly linked to margination [17] (non-homogeneous and 
particle dependent, radial distribution of blood components, 
i.e. red blood cells, platelets, lymphocytes), in synergy with 
inter-cellular spaces (gaps) between endothelial cells (the 
major components of the blood vessel walls) larger within 
a tumour tissue than in normal ones. Such mechanism is a 
good way to target a tumour using encapsulated drugs. These 
capsules could be made with self-assembled block co-poly-
mers, named polymersomes [18]. Behaviour of soft capsules 
or vesicles under flow is quite well documented [19, 20]. 
Nevertheless, the cross effects of Brownian diffusion, particle 
nature and confinement are still not well understood. Yet, in 
the case of sub-micrometric particles, these effects are crucial 
to explain the transport of nano-objects within the body, or in 
the context of porous media.

This paper presents some experimental results about trans-
port of nanometric and sub-micrometric solid, rigid beads and 
spherical capsule-shaped, soft polymersomes in silicon-glass 
channels. We first investigate the coupled effect of confine-
ment and Brownian motion on the transport of solid beads. We 
discuss the different results in light of inhomogeneous distri-
bution of particles in the channels induced by entrance effects, 
modulated by cross-effects between confinement, advection 
and Brownian diffusion. Then, some results about polymer-
somes are detailed.

2.  Experimental method

2.1.  Suspension of nano-objects

Two kinds of nano-objects are used: rigid, solid polystyrene 
beads, and soft, spherical capsule-shaped polymersomes. The 
polystyrene particles are commercial beads, with a density 
of 1.05 g · ml−1. They are carboxylate-modified in surface, a 
fluorophore is loaded in volume and their zeta potential was 
measured between  −49 and  −69 mV depending on the batch. 
Their fabrication process allows a high mono-dispersity. The 
diameters and size distribution, provided by the manufac-
turer (measurements by dynamic light scattering, DLS [21]), 
are compiled in table 1. Both values of the mean diameters 
and size distribution are consistent with our own DLS mea-
surements. They are made on a Malvern NanoZS apparatus, 
using ‘general purpose’ algorithm based on non-negative least 

squares (NNLS) analysis. The PolyDispersity Index (PDI, a 
normalized measurement of polydispersity) is of order 0.05, 
typical of monodisperse suspensions.

Polymersomes are self-assembled objects consisting in 
a double layer of block copolymer poly(ethylene glycol-b-
methylmethacrylate) (PEO-PMMA 2000–5040 g · mol−1) 
with solvent inside. They are fabricated using the ‘THF/
MeOH cosolvent’ method described in [18] and their charac-
terization is also described therein. Polymersomes are made 
fluorescent (emission wavelength: 515 nm) by adding DiOC18 
(3,3’-Dioctadecyloxacarbocyanine perchlorate), obtained 
from Thermo Fisher, in low proportion (0.1% w/w). Their 
zeta potential in the saline and pH conditions of the experi-
ments, was equal to about  −20 mV. Almost no aggregation 
is visible. Mean diameter and polydispersity are not finely 
tunable using this process. Mean size and size distribution of 
the objects were measured using DLS. They are compiled in 
table 1. These objects are more polydisperse than polystyrene 
beads. The polydispersity reported in table 1 is extracted from 
the width of the size distribution determined by DLS NNLS 
analysis. In addition, the typical variability we obtained by 
repeating measurement of the mean polymersomes diameter 
on the same batch is much smaller than this size distribution, 
which we thus consider a good estimate of sample polydis-
persity. Even though the ‘quality check’ of the algorithm indi-
cates in some cases a deviation with the model used in the 
fitting of the correlation function, this value gives a first order 
estimation of the size distribution. Indeed, the PDI of the four 
batches of polymersomes are always in the range 0.12–0.25, 
typical values for which the algorithm used to determine the 
diameter and size distribution of objects is appropriate. The 
mechanical characterization of such objects is challenging 
[22] and is the topic of dedicated studies. For example, 
using AFM measurements, Jaskiewicz et  al [23] measured 
the bending modulus and Young’s modulus of PDMS-b-
PMOXA polymersomes respectively to 7 ± 5 × 10−18 J and  
17 ± 11 MPa. To our knowledge there is not specific study 
about PEO-PMMA polymersomes mechanical properties.

These objects are separately dispersed in a solution buff-
ered using phosphate buffered saline6 diluted 50 times in 
water. Experiments are made in a temperature-regulated room 
(21 ± 0.5 °C) leading to a dynamic viscosity η = 0.98 ± 0.01 
mPa · s. The ionic strength reaches I  =  3 mM and pH = 7.5. 
The resulting Debye length is around 5 nm. With this short 
length compared to the particle and channel sizes, there is no 

Table 1.  Mean diameter d and polydispersity of the two kinds of 
nano-objects. For precisions about measurements technique, see the 
text.

Polystyrene beads (nm) Polymersomes (nm)

100 ± 6 140 ± 46
250 ± 9 210 ± 76
490 ± 15 850 ± 296
1000 ± 25 1100 ± 209

6 Composed of NaCl (137 mM), KCl (2.7 mM), Na2HPO4 (10 mM) and 
K2HPO4 (1.8 mM).
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ionic exclusion inside the channels. The concentration of the 
beads is fixed to 7.5 × 108 ml−1 to be suited for image anal-
ysis. It leads to low volume fractions from φ = 3.9 × 10−7 to 
φ = 3.9 × 10−4 depending on the diameter of the beads. We 
are not able to fix precisely the polymersomes concentration 
because of the polydispersity. Nevertheless the used concen-
tration, chosen by optically determining the number of poly-
mersomes per unit volume, is in the same order of magnitude 
as for beads in order to avoid interactions between objects.

2.2.  Microfluidic device and observation

We use a versatile model system made of nanoslits etched 
in silicon (zeta potential around  −30 mV at pH = 7.5 [24]) 
and covered with a 170 μm-thick borosilicate layer (root 
mean square roughness is inferior to 1 nm on 1 μm2). Two 
microchannels are connected, from their bottom corner, by 
ten nanoslits (width w = 10µm, length L = 50µm, period 
δ = 20 µm). Chips with different nanoslits depth have been 
used: h = 330, 830, 980, 1300, 1650 and 3390 nm. The 
uncertainty on the nanoslits depth measured by mechanical 
profilometry and calibrated AFM is about 1%. With the pro-
cess used to fabricate these chips, the bonding does not affect 
the nanoslits depth [25]. Figure 1 sketches the chip design. 
Figure 2(a) shows a bright field microscopy (reflection mode) 
picture of the nanoslits.

The flow in the nanoslits is pressure-driven (pressure drop 
∆P) using a pressure controller Fluigent MFCS whose sen-
sitivity is about 0.02 mbar. The particles are observed by 
fluorescence microscopy using a 40×  magnification objective 
with 1.4 numerical aperture. Acquisitions are registered using 
a sCMOS camera with a sampling between 100 and 400 fps 
and an exposure time between 0.5 and 2 ms, depending on the 
mean velocity of the particles. Figure 2(b) shows a fluores-
cence picture of particles flowing in the nanoslits. Particles 

are tracked using a home-made script combining Python and 
Matlab routines. Velocities are deduced from trajectories 
along the whole length of the nanoslits. In order to have high 
statistics, each run lasts 1–2 min making us able to track up to 
more than 104 particles giving more than 105 velocity events.

2.3.  Model of transport in narrow channels

To describe the transportation of particles in a confined 
channel, several mechanisms are involved. First, a particle 
does not experience an uniform velocity field on its surface. 
Consequently its velocity does not correspond to the fluid 
velocity in its center. Its actual velocity can be computed, in 
the case of a dilute suspension, using Faxén law [26]:

−→
Vp = −→v +

d2

24
�−→v ,� (1)

where 
−→
Vp is the particle velocity, −→v  is the fluid velocity at 

the center of the particle of diameter d and � represents the 
Laplacian operator. It corresponds to the integral of the fluid 
velocity over the full surface of the particle facing the flow.

Because of the aspect ratio of the nanoslits in some cases 
we cannot reduce the flow to a Poiseuille parabolic profile 
between two infinite plates. Instead of that we consider a lam-
inar flow inside a rectangular pipe. At the first order we use 
the velocity field along the nanoslit length (coordinate x) [27]:
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4h2∆P
π3ηL
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h
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where z ∈ [0, h] is the coordinate in the depth direction and 
y ∈ [−w/2, w/2] in the width one. η represents the dynamic 
viscosity of the fluid. We remind that L is the length of the 
nanoslits, w their width, h their depth and ∆P the imposed 
pressure drop. This expression is obtained with the same 
hypothesis as the Poiseuille’s law, especially the no-slip con-
dition at the walls. The error on the flow rate is lower than 
0.2% in the range of h/w ∈ [0.033, 0.34] we explore [27]. 

Figure 1.  Top view of the chip design used for the experiments. 
The microchannels are blue-colored; the nanoslits, visible in the 
zoom (green circle) are in red. The four blue circles represent the 
supply wells. Inset: side view of the chip.

Figure 2.  (a) Picture in white light of the nanoslits. (b) Fluorescence 
image of particles flowing in the nanoslits. Scale bar is equal for 
both pictures.
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We can thus consider that equation  (2) is robust enough to 
describe the flow in our nanoslits.

However when a particle is transported by a laminar 
flow, it disturbs streamlines and excites long-range flows. 
Retroactively the particle moves in response to fluid motion. 
Close to a wall it leads to a phenomenon called hydrodynamic 
interactions (HI) [28]. Few years ago, Pasol et al [9] proposed 
a way to compute these hydrodynamic interactions acting on 
a particle transported between two infinite plates.

In order to have the expected mean velocity of a particle 

inside a channel, the velocity 
−→
Vp (including Faxén’s law) is 

corrected by the HI using the work of [9]. Since we work with 
a dilute suspension (typically one particle in each nanoslit 
at the same time), we neglect the multi-particle interactions. 
The explicit formula, obtained from combined analytical and 
numerical approaches is particularly complex. The reader can 
see the detail in section 4 of the last reference. Then the par-
ticle velocity is integrated on the whole channel excluding 
zones where the center of the particle would be closer to the 
wall than its own radius: it cannot inter-penetrate the walls. 
Although the geometry of our device could lead to effects 
similar to deterministic lateral displacement [29] or hydro-
dynamic separation [30], we make the underlying hypoth-
esis that the particles are homogeneously distributed in the 
nanoslits depth. We define as Vt  the resulting mean velocity in 
the nanoslit direction. This predicted velocity is proportional 
to the pressure drop: Vt = αt∆P.

3.  Solid nano-objects: influence of geometry  
and Brownian diffusion

3.1.  Mean velocity: two regimes

We first present results for solid beads. For each configuration 
(bead diameter and nanoslits depth), the experimental mean 
velocity is measured for 3–8 different pressure drops. Let us 
recall that averages are made on around 105 velocity events. 
Figure 3 shows the experimental mean velocity as a function 

of the pressure drop for beads with diameter d  =  1000 nm 
flowing in nanoslits with depth h  =  1300 nm. The predicted 
velocity Vt  is also plotted. Experimental points are fitted using 
an affine law to correct possible systematic bias in the effective 
pressure drop applied to nanoslits: 〈vx〉 = αexp∆P +∆P0.

To compare experimental and predicted velocities the 
ratio β = αexp/αt is computed. The error bars are estimated 
by uncertainty propagation. We take into account the uncer-
tainty on the nanoslits height (1%), the bead diameter (see 
table 1) and the uncertainty due to 95% confidence bound on 
the experimental data fit.

Figure 4 shows the ratio β for rigid beads versus (a) the 
confinement and (b) the nanoslits depth.  The confinement is 
defined as: 

r =
d
h

.� (3)

For most of the confinement values or the nanoslits depth, 
the experimental mean velocity is close to the predicted one (β 
close to 1) within the experimental errors, except for two con-
figurations. The beads of diameter d  =  490 nm and 1000 nm 
in the nanochannels of depth h  =  3390 nm reveal a velocity 
more than 20% lower than the expected one. The agreement 
with predictions is quite remarkable for such high confine-
ments (up to around 0.8). The hydrodynamic model, including 
only velocity field averaging and hydrodynamic interactions, 
has thus a quite extended range of validity. We hypothesize 
that the difference between the first group (β ∼ 1) and the 
second one (β < 0.8) could be related to a change of the dis-
tribution of the beads in the nanoslit depth.

Figure 4(a) also reveals a trend which is similar for the two 
biggest beads (d  =  490 and 1000 nm). The ratio β increases 
with the confinement r, but with a shift. The weak Brownian 
diffusion of these beads could eventually permit them to have 
a quite homogeneous distribution in the nanoslits if the con-
finement is high enough (and consequently the distance to 

Figure 3.  Experimental and predicted mean velocity of a bead 
(d  =  1000 nm) flowing in a nanoslit (h  =  1300 nm) as a function of 
the pressure drop. An affine fit of the experimental points is added. 
Error bars are smaller than the points extension.

Figure 4.  Ratio for rigid beads between experimental and predicted 
velocity proportionality coefficients with ∆P as a function of (a) the 
confinement and (b) the nanoslits depth. See text for details about 
error bars. The legend is valid for both plots.
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the walls/center is short). The shift in confinement observed 
between d  =  490 nm and 1000 nm could be due to the higher 
Brownian diffusivity of the d  =  490 nm beads: at a given con-
finement, the smaller are the beads, the easier they will reach 
the center or the walls by diffusion. Consequently, beads will 
statistically explore the whole accessible velocity range. This 
inhomogeneous repartition should also exist for smaller and 
so more Brownian beads, but their strong diffusivity enables a 
homogeneous distribution in the nanoslits.

Inhomogeneous particle distributions have already been 
observed in confined channels. They can have different ori-
gins such as transverse lift during the particle travel or steric/
entrance effects.

Dersoir [31] (p 75) observed an inhomogeneous distribu-
tion of beads flowing in microchannels for a confinement 
r  =  0.29. The centers of the beads had a bimodal repartition in 
the channel depth, with peaks at about one particle diameter. 
Thus, the high-velocity streamlines at the center of the chan-
nels were rarely followed by beads. The origin is probably 
a transverse lift of the beads during their transport. Decades 
ago, some experimental and theoretical studies showed that 
neutrally buoyant beads have a transverse lift velocity in a 
Poiseuille flow even for a Reynolds number very small com-
pared to 1 [32, 33]. The Reynolds number compares inertia to 
viscosity:

Re =
ρUmL
η

,� (4)

where ρ represents the density of the fluid, Um the maximal 
velocity of the flow and L a typical length of the system. In 
our case, the Reynolds number based on the bead diameter 
(1 μm) reaches about 10−3 for a maximal typical velocity Um 
of 1 mm s−1. Using the Vasseur & Cox work [32] (figure 9) 
we can estimate the lift velocity of a bead in the nanoslits 
to vl ∼ 10−4Um. In our nanoslits, the typical drift length is 
only few nanometers. This is consistent with the absence of 
experimental evidence of significant drift in the nanoslits: the 
mean velocity does not depend on the location in the nanoslits 
along the flow (not shown here). It thus means that the inho-
mogeneous distribution occurs prior to or at the vicinity of the 
nanoslits entrance.

If an inhomogeneity of bead distribution is observed in the 
inlet microchannel, it should lead to a similar inhomogeneity 
in the nanoslits [31, 34]. Because the velocity in reservoirs 
from where the suspension is injected in the chip is almost 
null, we assume beads are distributed homogeneously by 
Brownian diffusion (even for the biggest objects). The length 
of an inlet microchannel is about 5900 μm from the well (blue 
circle figure 1) to the nanoslits entrance. For the microchan-
nels whose depth is 23 μm, the typical maximal velocity is 
0.05 mm s−1. Such a velocity and a lower confinement than in 
the nanoslits will lead to a negligible drift in the microchannel.

The only remaining hypothesis is an inhomogeneous distri-
bution in the nanoslits due to the entrance geometry, similarly 
to deterministic lateral displacement [29] or hydrodynamic 
separation [5]. The step which connects microchannel and 
nanoslits (see inset figure 1) could actually lead to a similar 

behaviour when beads cross this interface. If we neglect dif-
fusion, beads whose mass center is on a streamline in the 
microchannel will stay on this streamline inside the nanoslit, 
except if the streamline distance to the top wall is lower than 
beads radius, in an analogous way as for hydrodynamic filtra-
tion [5, 30, 35]. This specific geometry and the finite size of 
objects let beads cross the streamlines when they are tight-
ened at the entrance of the nanoslits [31, 34]. First, because 
of streamlines tightening in the nanoslits compared to the 
microchannel, some beads close to the top wall in the micro-
channel will not be able to remain on the same streamline in 
the nanoslit because of the exclusion zone (no inter-penetra-
tion wall/beads). In addition, this tightening could be more 
important close to the corner of the step and it could amplify 
this phenomenon by affecting more particles. Consequently, 
beads moving in a specific bandwidth close to the top wall 
of the microchannel will be concentrated at the vicinity of 
the top wall of the nanoslit. Figure 5 sketches the situation. 
It will lead to a bead concentration heterogeneity with more 
beads close to the top wall and a non-flat z position distribu-
tion of the beads in the nanoslits depth. The diffusion during 
the entrance could restore bead distribution homogeneity.

Note that for β < 1 we do not observe effect of the lat-
eral diffusion along the z axis during the particle travel in the 
nanoslits. When β ∼ 1, since particles distribution is homo-
geneous from the entrance of the nanoslits, possible lateral 
diffusion along the z axis (see figure 5) cannot affect velocity 
statistics. Eventually the combination of Brownian motion and 
confinement could be the good point of view to understand 
the different behaviours observed on the experimental mean 
velocity of beads in confined nanoslits. We thus construct an 
‘entrance Péclet number’ Peentrance to compare the typical time 
of advection and diffusion at the entrance of the pore. To sim-
plify, we assume a bead at the entrance of a nanoslit at time 
t1, but entirely in the microchannel. Zoom of figure 5 draws 
this situation. The typical time for the bead to diffuse from 
the top wall minus bead radius altitude to the center, which is 
the length necessary to homogenize the bead distribution by 
diffusion, is:

tdiff =
1

2D

(
h − d

2

)2

,� (5)

where D = kBT/3πηd ∼ 10−12 m2 · s−1 is the Brownian dif-
fusion coefficient of the bead at a temperature T (kB repre-
sents the Boltzmann constant). During the entrance process, 
between the time a bead starts entering in the nanoslit and the 
time t2 it is completely inside, the bead typically moves on a 
distance d at a velocity Vt . Thus the typical advection time at 
the entrance of the pore is:

tadv =
d
Vt

.� (6)

The Péclet number at the entrance of the nanoslit compares 
these two characteristic times:

Peentrance =
tdiff

tadv
=

3πη
8kBT

Vth2(1 − r)2.� (7)
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Figure 6 shows the experimental ratio β as a function 
of this entrance Péclet number. Since this number directly 
depends on the mean object velocity Vt , we plot the range of 
Péclet for each experiment. Two regimes related to the bead 
distribution in the nanoslits are visible: the ‘homogeneous’ 
and ‘inhomogeneous’ regimes. The two points corresponding 
to beads in the deepest nanoslits, with β < 1 are very close to 
each other whereas other points representing different beads 
in the same nanoslits are not. Moreover they correspond to 
a high entrance Péclet number when diffusion and confine-
ment are much too low to have a homogeneous distribution. 
It confirms that for these two configurations (h  =  3390 nm; 
d  =  490 and 1000 nm), the bead transport obeys to the same 
mechanisms and belongs to the ‘inhomogeneous’ regime. 
Then we notice that points corresponding to large and small 
beads are mixed approximatively between Peentrance = 102 and 

103. This similar behaviour is due to a cross effect between 
diffusion and confinement. Either beads are small enough to 
homogenize beads at the nanoslits entrance whatever the con-
finement, or if the Brownian diffusion is low, the confinement 
is high enough to have homogenization anyway. Additionally, 
the point at Peentrance ≈ 4 combines high Brownian diffu-
sion (d  =  100 nm) and quite high confinement (r  =  0.3). All 
these points belong to the ‘homogeneous’ regime. Even if this 
could be considered as a design-dependent effect because it 
is an entrance effect, the mechanism is quite general because 
nanochannels are always connected to larger channels or res-
ervoirs. This general representation using a Péclet number 
highlights the importance to consider both confinement and 
Brownian diffusion to understand the transport of beads in 
narrow channels.

The existence of these two regimes related to the distri-
bution of the beads in the nanoslit depth should let appear a 
transition in certain conditions on confinement, diffusion and 
object velocity. An other way to change the entrance Péclet 
number consists in varying the advection velocity, or pres
sure drop. The results presented in figures 4 and 6 show two 
clear, well separated regimes. Actually, experiments made 
with beads of d  =  100 nm reveal an interesting behaviour. The 
mean velocity as a function of the pressure drop for a bead of 
d  =  100 nm transported in nanoslits of depth h  =  1650 nm is 
plotted on figure 7. We separate on this figure the points in two 
groups: the ‘homogeneous’ regime where the ratio β ≈ 1 and 
the transitional state when 〈vx〉 deviates from Vt . For ∆P > 3 
mbar, the experimental mean velocity departs from the pre-
dicted velocity, transiting from the ‘homogeneous’ towards 

z

t1

t2

Figure 5.  Sketch (not to scale) of the supposed nanoslit entrance concentration mechanism. Gray/red lines represent streamlines. Whereas 
teal beads will remain on the same streamline before and after the entrance in the nanoslit, orange ones, above or on the red streamline, will 
roughly be on the same streamline in the nanoslit, pushed by the corner similarly to hydrodynamic filtration [30, 35]. The zoom shows a 
possible displacement (due to advection and diffusion) of a bead at the entrance of the pore between time t1 just before entering and time t2 
just after entering.

Figure 6.  Ratio between experimental and predicted velocity 
proportionality coefficients with ∆P as a function of the entrance 
Péclet number. The dashed lines show the extension of Peentrance 
corresponding to the different used ∆P, the point is chosen to be at 
the center of the Péclet range.

J. Phys.: Condens. Matter 30 (2018) 234001
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the ‘inhomogeneous’ regime. Such a non linear behaviour is 
also observed for beads of diameter d  =  100 nm transported 
in nanoslit of depth h  =  1300 and 3390 nm. On the contrary, 
mean experimental velocities in other configurations remain 
linear in the explored ∆P range. We point out that for the 
beads with diameter d  =  100 nm, the fit used to compute β in 
figures 4 and 6 is made on the points belonging to the ‘homo-
geneous’ regime, as described on figure 7.

Such a behaviour reveals that when the advection velocity 
increases, the diffusion is not able to homogenize the beads 
at the entrance of the nanoslits anymore. In term of entrance 
Péclet number, the three points corresponding to these experi-
ments (diamonds in figure 6) have a Peentrance a bit lower than 
the two points in the ‘inhomogeneous’ regime. In the case 
plotted figure  7, the Péclet number is larger than 2000 for 
∆P � 7.5 mbar. This is quite consistent with the Péclet num-
bers observed for the points in the ‘inhomogeneous’ regime. 
Furthermore, competition between advection and lateral dif-
fusion (along the z axis) during the particles travel inside the 
nanoslits could affect the mean experimental velocity. In the 
last presented case, with so Brownian beads, we observed that 
lateral diffusion starts to affect the velocity statistics along 
the nanoslits when the initial distribution is inhomogeneous 
(∆P > 4, data not shown). In this case, the mean velocity 
is not constant along the nanoslits. For the lower pressure 
drop, since the initial distribution is homogeneous (β ∼ 1), 
lateral diffusion cannot affect the transport in the nanoslits. 
Notwithstanding we do not use these points to compute fig-
ures 4 and 6 so it does not affect our results.

3.2.  Confirmation of both homogeneous and inhomogeneous 
distributions

To go further in the analysis of these two regimes, we look 
into the velocity and position distributions.

Figure 8 presents the evolution of the probability density 
functions (PDF) of the longitudinal velocity 〈vx〉 for beads 
of diameter d  =  100 nm transported in nanoslits of depth 

h  =  1650 nm. It corresponds to the mean velocities presented 
on figure 7. We observe a dramatic change of the PDF shape. 
For the lower ∆P a peak of most probable velocities is clearly 
higher than the low velocity tail of the distributions. These 
are the same distributions as the ones from Ranchon et  al 
[10] made in very similar conditions. When ∆P is increased 
the importance of the tail grows up to become higher than 
the peak. This is consistent with the observations made on 
figure 7: the high velocities become less important than the 
low ones leading to a reduction of the mean velocity com-
pared to the predicted one. On figures 4 and 6, beads of diam-
eter d  =  100 nm in nanoslits of depth h  =  1300, 1650 and 
3390 nm are in the regime β ∼ 1 because we selected only the 
low ∆P velocities to compute these points. But actually these 
points are very close to the transition, which appears when the 
advection is increased.

As we proposed in the previous subsection, such an evo
lution could be related to a transition from a regime where 
the beads are distributed homogeneously in the nanoslits 
depth towards a regime where it is not the case anymore. 
Since the microscope focal plane is perpendicular to the 
nanoslit depth axis, we do not have direct access to the par-
ticle depth position. Moreover, methods using the defocused 
image of particles (point spread function) would be useless 
here. The velocity of the particles leads to a noisy pattern, and 
the depth of field of the objective is not small enough with 
respect to the typical nanoslits depth. Nevertheless, the posi-
tion distribution can be computed assuming a Poiseuille flow 
in the nanoslits. Using the model described at section 2.3 and 
neglecting in a first phase Brownian diffusion, we are able to 
attribute to an experimental velocity value its vertical posi-
tion z in the nanoslit. Nevertheless the symmetry of the flow 
does not permit to distinguish two symmetric positions on 
either side of the nanoslit center. The particle position PDF 
can be computed only in a half of the nanoslits depth. Thus, 
we cannot observe with this method a potential asymmetry 
of the z PDF. Furthermore, because of the Brownian motion, 

Figure 7.  Experimental mean velocity of beads (d  =  100 nm) 
flowing in a nanoslit (h  =  1650 nm) as a function of the pressure 
drop. Points are separated in two groups: ‘homogeneous’ regime 
and transition. The affine fit to compute β in figures 4 and 6 is made 
on the points in the ‘homogeneous’ regime.

Figure 8.  Probability density functions (PDF) of the longitudinal 
velocity vx. Beads have a diameter d  =  100 nm and are transported 
in nanoslits of depth h  =  1650 nm. Because of lack of statistics, the 
case ∆P = 7.62 mbar is not shown.
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the actual velocity of the bead is not the one it should have at 
its vertical position z in the nanoslit. This introduces a bias at 
the two extremes of the accessible velocity range whereas in 
its center the effect is auto-compensated. In this central zone 
and because the velocity distribution due to the Brownian 
motion is symmetric, if a velocity is overestimated due to the 
Brownian motion, it will be statistically compensated by an 
underestimated velocity. The results are plotted on figure 9. 
The walls correspond to z/h  =  0 and the center of the nanoslit 
to z/h  =  0.5. The dashed parts roughly correspond to zones 
where the PDF is affected by the bias mentioned above. In 
the bias-unaffected zones we observe a clear transition from 
a flat distribution for pressure drops up to ∆P = 2.86 towards 
a higher concentration close to the walls for higher pressure 
drops. This is a net evidence of a transition to an ‘inhomo-
geneous’ regime corresponding to a drift of the experimental 
mean velocity compared to the predicted one.

These observations are now used as a reference to under-
stand the behaviours observed for the two largest beads. 
Figure  10 shows the PDF of the velocity fluctuations nor
malized by their standard deviation. Using this normalisa-
tion we can compare PDF for set of events with different 
experimental configurations (flow velocity, confinement). For 
each configuration {h, d} one pressure drop is represented. 
The corresponding computed position PDF of the beads are 
plotted on figure 11. First, the two experiments in nanoslits of 
depth h  =  3390 nm—where β is lower than 1—reveal a shape 
of the velocity PDF similar to the one observed on figure 8 
for high ∆P. The corresponding position PDF shows a large 
depletion for z/h  >  0.3 (close to the center). This confirms 
for this case that the gap between experimental and predicted 
velocities is also due to an inhomogeneous distribution of 
beads in the nanoslit depth, not compensated by Brownian dif-
fusion. On the contrary, in the case h  =  1650 nm with beads 
of diameter d  =  490 nm, we find a velocity PDF shape similar 
to the ones observed in figure 8 in the ‘homogeneous’ regime. 
This is confirmed by the position PDF which reveals a flat 
distribution up to z/h  =  0.4. In the last case (purple curve), 
a very confined configuration (r  =  0.77), the velocity PDF 
has a quite different shape. It is due to the narrowness of the 
accessible velocity range for the beads. The accessible range 
of position for the beads is also very thin (see figure 11). Even 
if beads are weakly Brownian in this case, the confinement is 
high enough to allow a homogeneous distribution of the beads 
in the nanoslits.

The existence of two regimes (‘homogeneous’, with β ≈ 1 
and ‘inhomogeneous’, with β < 1) is an non trivial behav-
iour of the transport of nano-objects in narrow channels. The 
explanation lies in the shape of the position distribution of the 
beads in the nanoslits depth. The geometry of the nanoslits 
entrance and the subsequent tightening of the streamlines 
coupled to the finite size of the beads clearly lead to a larger 
bead concentration close to the top wall of the nanoslits. The 
resulting mean velocity is intimately linked to Brownian 

Figure 9.  PDF of the position z of the beads in half of the nanoslits 
depth. Dashed parts correspond to bias-affected positions (see text 
for details). The center of the nanoslits correspond to z/h  =  0.5. 
Beads have a diameter d  =  100 nm and are transported in nanoslits 
of depth h  =  1650 nm. Because of lack of statistics, the case 
∆P = 7.62 mbar is not shown.

Figure 10.  PDF of the longitudinal velocity vx in different 
configurations for the two largest beads.

Figure 11.  PDF of the position z of the beads in half of the 
nanoslits depth. Dashed parts correspond to bias-affected positions 
(see text for details). The center of the nanoslits correspond to 
z/h  =  0.5.
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diffusion and confinement. If either confinement or Brownian 
diffusion is high enough the beads can be homogenized at the 
pore entrance. If it is not the case, if the fluid velocity in the 
nanoslits is too large, the bead distribution remains inhomo-
geneous. The construction of an entrance Péclet number com-
paring advection and diffusion processes at the entrance of 
the nanoslits clearly separates these two regimes. Moreover 
the regime transition observed for the smallest beads at low 
confinement is consistent with this Péclet number. Devices 
with similar steps are very common in microfluidic studies 
and applications and this effect does not seem, to our knowl-
edge, taken into account.

4.  Polymersomes: deviations from solid beads

A key aspect could change the observations made above: 
the particle nature. In the previous section  we used solid 
latex beads. Polymersomes as described in the section  2.1 
are transported inside the same nanoslits as used before. It 
should be emphasized that these experiments are much more 
delicate than for commercial beads. Indeed, this type of self-
assembly, usually made for micelles of typical size 20–50 nm, 
does not have a perfect reproducibility for such large objects, 
even if the protocol we use is optimized to get objects in the  
200 nm–1 μm range [18]. In addition, objects are only stable 
for around 10 d. Another key point is the polydispersity of the 
suspension. It can lead to clogging of the nanoslits by some 
objects bigger than h and dramatically disturb the experi-
ments. However we did not observe significant adhesion of 
polymersomes on the walls inside the nanoslits (both zeta 
potential of silicon and polymersomes are negative).

Some numerical simulations were performed to check a 
potential effect of polydispersity on mean velocity and PDF. 
We adapted the script used by Ranchon et al [10] which takes 
into account Faxén’s law, hydrodynamics interactions and 
Brownian diffusion. A Gaussian size distribution with the 
standard deviation presented in table 1 was used. No signifi-
cant difference with a monodisperse solution was observed 
(not shown here).

The ratio β = αexp/αt is computed exactly in the same way 
as presented in the previous section. Figure 12 shows this ratio 
as a function of confinement.

Contrary to the beads we do not clearly observe two 
regimes. For all the different polymersomes diameter, the 
experimental mean velocity does not really differ from the 
expected Vt . To compare to beads, β is plotted as a function 

of Peentrance (equation (7)) on figure 13, together with a selec-
tion of typical results for beads (selected from figure  6). 
Polymersomes spread within a similar range of Péclet number 
as beads: we have both experiments at high confinement and 
Brownian diffusion, and experiments at low confinement and 
Brownian diffusion. It seems to confirm that there is no a 
net appearance of the ‘inhomogeneous’ regime with polym-
ersomes: for Peentrance > 103 the polymersomes reach β ≈ 1 
whereas beads remains to β < 0.8. Nevertheless polymer-
somes at high Peentrance could be in the transition between the 
two regimes, with a value of β slightly lower than unity, but 
still at the limit of resolution due to error bars.

In order to go further in this analysis, some velocity PDF 
are plotted on figure 14 and compared to two velocity PDF 
for beads taken from both regimes. Contrary to the beads in 
the ‘inhomogeneous’ regime we do not clearly observe, for 
polymersomes, PDF with a tail higher than the high-velocity 
peak (we remind here that this tail in the second regime is 
attributed to an extra-concentration of beads at low velocities, 
i.e. close to the wall). However this high-velocity peak is not 
really visible on the PDF for polymersomes of mean diameter 
d  =  850 and 1100 nm (high Peentrance values): these configura-
tions reveal a flatter PDF than for beads at similar Peentrance 
values (h  =  3390 nm, d  =  1000 nm). For the case of highly 
Brownian polymersomes and low confinement (h  =  3390 nm, 
d  =  210 nm, low Peentrance value), the velocity PDF shows more 
probability of high velocities, even if it is less marked than 
beads in the ‘homogeneous’ regime. These different observa-
tions tend to confirm that we could have a transition to the 
‘inhomogeneous’ regime for polymersomes in configurations 
with weakly Brownian polymersomes and low confinement. 
The corresponding z position PDF presented in figure 15 seem 
to confirm this assertion. In the case of highly Brownian poly-
mersomes and low confinement (h  =  3390 nm, d  =  210 nm), 
the position PDF is flat, similarly to the one observed for beads 
of diameter d  =  490 nm in nanoslits of depth h  =  1650 nm: 
these objects are distributed homogeneously in the nanoslits 
depth. In the case of weakly Brownian polymersomes and low 
confinement (h  =  3390 nm, d  =  850, 1100 nm, high Peentrance 
values) the position PDF are very different from the beads one 
in the ‘inhomogeneous’ regime (h  =  3390 nm, d  =  1000 nm), 

Figure 12.  Ratio between experimental and predicted velocity 
proportionality coefficients with ∆P as a function of the 
confinement for polymersomes. See text for details about error bars.

Figure 13.  Ratio between experimental and predicted velocity 
proportionality coefficients with ∆P as a function of the entrance 
Péclet number for polymersomes (blue) and a selection of beads 
presented in figure 6 (red). The dashed lines show the extension of 
Peentrance corresponding to the different used ∆P, the point is chosen 
to be at the center of the Péclet range.
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but they also differ from the beads one in the ‘homogeneous’ 
regime: they do not reveal a flat distribution.

Actually the shape of velocity PDF for weakly Brownian 
polymersomes at low confinement seems quite similar to the 
one we observed in figure 9 at high ∆P: the largest polymer-
somes in the deepest nanoslits seem to be transitioning between 
the two regimes. The capsule shape of the polymersomes could 
shift the transition between the two regimes towards larger 
Péclet numbers. At pore entrance scale, because of the step 
between the microchannel and the nanoslits, polymersomes 
could have a different trajectory and thus be transported on 
different streamlines into the nanoslits. It would result in a 
reduction of the distribution inhomogeneity when confine-
ment and Brownian diffusion are both low (less marked). This 

difference could be explained by the softness and shape of 
these objects, according to several mechanisms: change of the 
shape of the polymersomes at the entrance of the nanoslits, 
viscous dissipation at the surface of the capsule or flow inside 
it. Zhu et al [36] recently observed using numerical simula-
tions that the way a soft capsule transported in a flow skirts 
an obstacle dramatically depends on the softness of this cap-
sule. Since the characterization of the mechanical properties 
of polymersomes and of their behaviour under flow are really 
challenging, a further interpretation is delicate.

5.  Conclusion

We study experimentally the transport of rigid, solid beads 
and soft, capsule-shaped polymersomes in silicon-etched 
micrometric and sub-micrometric channels. Three aspects 
and their cross-effects are investigated: Brownian diffu-
sion, confinement and object nature. Two main regimes are 
observed, corresponding to a transition from homogeneous 
to inhomogeneous particle distribution in the nanoslits depth. 
Respectively, the mean experimental velocity is comparable to 
or 20% lower than the predicted one. The first regime occurs 
when the Brownian diffusion is able to homogenize the par-
ticles at the pore entrance, either because of the small particle 
size or of the high confinement. The second one appears at 
low Brownian diffusion and low confinement. An entrance 
Péclet number, which compares advection and diffusion at 
the pore entrance, shows a clear distinction between these two 
regimes. The transition between these two regimes is observed 
with a very low confinement (r  =  0.03) and highly Brownian 
beads by varying the advection velocity. It is related to a dra-
matic change in the velocity distribution change: low veloci-
ties become more probable than high ones when the pressure 
drop which controls the advection velocity rises. The deduc-
tion of the beads position distribution in the nanoslits from 
the velocity distributions clearly shows this transition from a 
homogeneous to an inhomogeneous repartition of the objects. 
This deduction confirms that the two regimes observed on 
mean velocities are directly linked to this difference of dis-
tribution. Such a distribution could be driven by the pore 
entrance geometry. The step between the microchannel and 
the nanoslits combined to the finite size of the particles forces 
to cross streamlines and to concentrate close to the top wall of 
the nanoslits. The capsule shape of polymersomes seems to 
shift the onset of the second regime. Whereas the mean exper
imental velocity for the biggest polymersomes seems close to 
the expected one, the velocity and position distributions show 
a behaviour similar to the transition state evoked above. This 
shift could be due to a trajectory at the pore entrance quite dif-
ferent for such objects.

In conclusion, confined transport of colloids is quantita-
tively described by a hydrodynamic model (Faxén averaging 
of the velocity field and hydrodynamic interaction with the 
wall), even at high confinement. However we demonstrate 
an entrance effect, reminiscent of hydrodynamic filtration, 

Figure 14.  PDF of the longitudinal velocity vx in different 
configurations for polymersomes (solid lines) and a selection of 
experiments presented figure 10 (dashed).

Figure 15.  PDF of the particles position z in the nanoslits depth. 
Different configurations for polymersomes (thick lines) and a 
selection of beads presented figure 10 (thin lines) are shown. 
Dashed parts correspond to bias-affected positions (see text for 
details). The center of the nanoslits correspond to z/h  =  0.5.
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should be relevant in many configurations involving confined 
flows: it is related to the entry of particles from a deep micro-
channel or reservoir to a narrower channel. Finally this reveals 
the importance to take into account both Brownian diffusion, 
particle nature and confinement when microfluidic systems 
are used to manipulate nano-objects, particularly biological 
or biomimetics objects. An exciting perspective could be to 
characterize precisely the behaviour of polymersomes under 
flow, and to relate it to their mechanical properties, in order to 
understand the difference observed on the transport in narrow 
channels from solid, rigid beads.
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