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Abstract— This paper describes synthesis of controllers in-
volving Quadratic Programming (QP) optimization problems
for control of nonlinear systems. The QP structure allows an
implementation of the controller as a piecewise affine function,
pre-computed offline, which is a technique extensively studied
in the field of explicit model predictive control (EMPC). The
nonlinear systems being controlled are assumed to be described
by polynomial functions and the synthesis also generates
a polynomial Lyapunov function for the closed-loop system
involving the obtained controller. The synthesis is based on
a sum-of-squares (SOS) stability verification for polynomial
discrete-time systems, described in continuous-time in this
paper. The presented synthesis method allows a design of
EMPC controllers with closed-loop stability guarantees without
relying on a terminal cost and/or constraint, and even without
using the prediction horizon concept to formulate the control
optimization problem. In particular, for a specified QP structure
the method directly searches for the stabilizing coefficients in
the cost and/or the constraint set. The method involves two
phases, where the first searches for stabilizing controllers by
minimizing a polynomial slack function introduced to the SOS
stability condition and the second phase optimizes some user-
specified performance criteria. The two phases are formulated
as optimization problems which can be tackled by using a black-
box optimization technique such as Bayesian optimization,
which is used in this paper. The synthesis is demonstrated on a
numerical example involving a bilinear model of a permanent
magnet synchronous machine (PMSM), where in order to
demonstrate the modeling flexibility of the proposed synthesis
method a QP-based controller for speed regulation of PMSM
is synthesized that is robust to parametric uncertainty coming
from the temperature-dependent stator resistance of the PMSM.

I. INTRODUCTION

Model predictive control (MPC) is an optimization-based
control technique that has experienced a considerable success
due to its ability to handle system constraints [1]. In the case
of a (discretized) linear system controlled by an MPC con-
troller whose optimization problem is a parametric Quadratic
Program (QP), the version known as explicit MPC (EMPC)
stores the offline computed solution of the parametric QP,
thus allowing one to avoid running an iterative optimization
algorithm during operation.

A key restriction of EMPC is the requirement to utilize
a linear dynamic prediction model in the controller formu-
lation, in order to ensure that a (convex) QP is obtained.
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Moreover, due to the memory limitations EMPC often cannot
involve long prediction horizons and is usually applied
without the terminal constraint and/or terminal cost which are
the elements from MPC theory used to provide guarantees
on the stability of the closed-loop system. An alternative
approach to establish guaranteed closed-loop stability is an
a-posteriori stability verification, which can be performed for
a given controller after its design is finished, and which can
be done in the case of a discrete-time linear system with
QP controller by using the S-procedure [2] or Mixed Integer
Linear Programing (MILP) [3]. In the case of a more general
class which involves discrete-time systems described by
polynomial functions, such a-posteriori stability verification
can be done using sum-of-squares (SOS) programming [4].

The synthesis method of this paper develops from the
stability verification technique of [4]. It allows the design of
EMPC controllers with closed-loop stability guarantees for
polynomial systems without relying on a terminal cost and/or
constraint, but also even without using the prediction horizon
concept to formulate the control optimization problem. In
particular, for a specified QP structure the method directly
searches for the stabilizing coefficients in the cost and/or
the constraint set. This can be regarded as a search for a
stabilizing control policy (i.e., a stabilizing mapping from
measurements to plant inputs) which is described, in a
compressed form, as a parametric QP (a mapping from the
QP input parameters to the optimal solution). Although the
control synthesis to be presented in this paper is applicable to
control structures other than those in EMPC (e.g., a general
optimization-based controller whose KKT system is a set of
polynomial equalities and inequalities), we present it here
with a special focus on the EPMC structure in order to
emphasize the possibilities which it creates for that particular
popular case.

As will be described in what follows, the synthesis method
is based on a reformulation of the SOS stability certification
tool [4] and involves two phases. The first phase introduces
a slack polynomial function to the stability verification
technique and allows a search for stabilizing controllers
by a black-box optimization technique, such as Bayesian
Optimization which is used in the numerical example of
this paper. The second phase takes the stabilizing parameters
from the first phase and optimizes for improvement of
some user-specified performance criteria, as well by applying
Bayesian optimization.

The synthesis of a discrete-time controller for a
continuous-time nonlinear system can be done either in
discrete-time by using an approximate discrete-time plant
model (e.g., obtained by forward Euler discretization) or in



continuous time by using the continuous-time plant model
and a subsequent approximate discrete-time controller im-
plementation with a short sampling time. Although the
method of this paper can be developed in both conceptual
frameworks, we present it here for the latter case in which
the continuous-time nonlinear model is addressed without
discretization. For this purpose, we describe in Section II
a continuous-time version of the method in [4], which is an
additional minor contribution of this paper. The development
dealing with discrete-time polynomial systems would involve
the discrete-time version from [4]. Section III describes the
two phases of the control synthesis method, and Section IV
demonstrates it on the bilinear model of a permanent magnet
synchronous machine (PMSM).

II. CONTINUOUS-TIME SOS STABILITY VERIFICATION

This section describes the continuous-time variation of
the discrete-time SOS stability verification from [4]. The
obtained stability-certification is a starting point for the
development of the control synthesis technique in this paper.
Consider a continuous-time polynomial plant model

ẋ = fx(x, u), (1a)
y = fy(x), (1b)

where x ∈ Rnx is the state vector, u ∈ Rnu the input vector,
y ∈ Rny the output vector, ẋ ∈ Rnx the derivative of the
state, fx : Rnx+nu → Rnx the system function and fy :
Rnx → Rny the output mapping. The functions fx and fy
are assumed to be vector-valued multivariate polynomials,
i.e., each component function of fx and fy is a multivariate
polynomial in (x, u) and x, respectively. Consider as well an
abstract form of the control law defined by the polynomial
equalities and inequalities

s = fs(y; η), (2a)
Ks = {θ | ∃λ s.t. h(s, θ, λ; η) = 0, g(s, θ, λ; η) ≥ 0} ,

(2b)
u ∈ κ(Ks; η), (2c)

where s ∈ Rns is the input to the controller, θ ∈ Rnθ and
λ ∈ Rnλ internal variables, and the functions fs : Rny →
Rns , h : Rns+nθ+nλ → Rnh , g : Rns+nθ+nλ → Rng , and
κ : Rnθ → Rnu are vector-valued multivariate polynomials
whose coefficients are parametrized in some way by the
controller’s tuning parameters η ∈ Rnη .

Remark 1: The discrete-time formulation in reference [4]
formulates the problem by including an additional subsys-
tem, which for instance may correspond to an observer. In
the formulation given here we omit it in order to keep the
expressions shorter.

Remark 2: A QP-based controller can be written in the
form (2) by representing its solution with the KKT optimality
conditions [5], which are a set of polynomial equalities and
inequalities that can be included in h and g. Although the
focus of this paper is on the QP-based controllers which
may lead to an EMPC implementation, we write the control
law in the form (2) to emphasise the flexibility of the method

which may address a broad variety of other control structures
as well.

For selected tuning parameters η of the controller, the
global closed-loop stability in the state variable x can be
certified by a Lyapunov function V satisfying

−‖x‖22 −∇xV (x, θ, λ)T ẋ ≥ 0, (3a)

V (x, θ, λ)− ‖x‖22 ≥ 0. (3b)

Considering the system dynamics (1) and the control law (2),
the conditions (3) should be satisfied for all vectors

(x, θ, λ, ẋ) ∈ T (4)

where the set

T = {(x, θ, λ, ẋ) | ẋ = fx(x, κ(θ; η)), (5)

ĥ(x, θ, λ; η) = 0, ĝ(x, θ, λ; η) ≥ 0}

encapsulates the closed-loop system dynamics with the spec-
ified control law, and the functions

ĥ(x, θ, λ; η) = h(fs(fy(x); η), θ, λ; η), (6a)
ĝ(x, θ, λ; η) = g(fs(fy(x); η), θ, λ; η), (6b)

are introduced to make the notation lighter.
Remark 3: Notice that in the equations (3)-(5) the ẋ does

not represent the derivative, but actually a variable denoted
by ẋ whose equality to fx(x, κ(θ; η)) is enforced by having
the vector of variables (x, θ, λ, ẋ) in the set T.

Remark 4: The above formulation substitutes the system
output y, the input to the controller s and the input to the
system u by using equations (1b) , (2a) and (2c), respectively.
This formulation was chosen because it is characterized by a
smaller number of equality constraints and allows a simpler
exposition of the method. The treatment of the aforemen-
tioned relations as additional equality constraints in (5), or
elimination of some other variables by their substitution (e.g.,
elimination of the variable ẋ by substituting it with (1a)) are
straightforward alternatives.

Remark 5: The conditions (3a) and (3b) involve the terms
‖x‖22 whose weighting factors could be optimized as well. In
this document, we proceed by keeping them fixed to unity.

The previous formulation involves the nonnegativity con-
ditions (3) imposed over the set (5), which is a problem that
can be tackled by using SOS programming. In particular, by
denoting

ξ = (x, θ, λ, ẋ) (7)

and by restricting the Lyapunov function to be a polynomial
of a certain (user specified) degree, a sufficient condition
for the nonnegativities (3) over the set T are the following
polynomial equalities

−‖x‖22 −∇xV (x, θ, λ)T fx(x, u) = σ0(ξ)

+ σ1(ξ)T ĝ(x, θ, λ; η) + p1(ξ)T ĥ(x, θ, λ; η)

+ p2(ξ)T (ẋ− fx(x, κ(x; η)), (8a)

V (x, θ, λ)− ‖x‖22 = σ̄0(ξ)

+ σ̄1(ξ)T ĝ(x, θ, λ; η) + p̄1(ξ)T ĥ(x, θ, λ; η), (8b)



where the σ0 and σ̄0 are SOS polynomials (defined below)
with some user specified degrees, σ1, σ̄1 are vectors whose
components are SOS polynomials with user specified de-
grees, and p1, p2, p̄1 are vectors of arbitrary polynomials
with user specified degrees as well. A polynomial σ(ξ) is
said to be SOS if there exists a representation

σ(ξ) = v(ξ)TPv(ξ), (9)

where v(ξ) is a vector of polynomials and P � 0 is a
positive semidefinite matrix of appropriate size, resulting
in σ(ξ) being nonnegative for every ξ. The satisfaction of
the nonnegativity conditions in (3) over the set (5) follows
directly from (8) since for ξ ∈ T the SOS polynomials σ
are nonnegative and the arbitrary polynomials p are equal to
zero.

The previous discussion of closed-loop stability verifica-
tion thus boils down to the feasibility of the SOS problem

find V, σ0, σ1, p1, p2, σ̄0, σ̄1, p̄1

s.t. (8a), (8b),
σ0, σ1, σ̄0, σ̄1 SOS polynomials,
V, p1, p2, p̄1 arbitrary polynomials,

(10)

where the decision variables are the coefficients of the poly-
nomials (V, σ0, σ1, p1, p2, σ̄0, σ̄1, p̄1). This problem converts
to a semidefinite programming (SDP) convex optimization
problem, and can thus be solved efficiently. The conversion
can be done automatically by using freely available software
like Yalmip [6]. For more information about the conversion
of (10) to SDP, the reader is referred to, e.g., [7], [8].

Remark 6: Although the method extends to the case with
reference tracking, we formulate it here for the case of
regulation of the state x to the origin of the state-space in
order to avoid cumbersome expressions and better emphasize
the fundamental concepts of the method. The application of
the method to the case involving reference tracking in delta
formulation is demonstrated in the computational example
section.

While the SOS program (10) ensures global stability in the
state variable x, the method can also be modified to address
local stability over a set

X = {x | ψi ≥ 0, i = 1, . . . , nψ}. (11)

This is done by including the inequalities of the set X
in the set T, and by subsequently assigning them SOS
polynomial multipliers (since they are inequality constraints)
in (8) as well. The satisfaction of such a modified condition
(8) however does not guarantee invariance of the closed-
loop system over the whole set X, but only over the largest
sublevel set of the Lyapunov function which is contained in
X, likewise in the case of discrete-time version in [4].

III. CONTROLLER SYNTHESIS

An attempt to involve the controller tuning parameters
η as decision variables in the SOS programming stability
verification (10) makes the problem loose the SDP structure,
since after the conversion the constraint (8) would now be

equivalent to a Bilinear Matrix Inequality (BMI) instead of to
a Linear Matrix Inequality (LMI). The optimization problem
would thus end up in a form which is in general challenging
to solve.

The synthesis optimization problem addressed in what
follows can be formulated as

min. P(η) + δst(η)

s.t. η ∈ D,
(12)

where the δst(η) is a function indicating the existence of the
SOS stability certificate from (10):

δst(η) =

{
0, for η with a stability certificate,
+∞, otherwise, (13)

the P(η) is a user-specified performance criteria for the
closed-loop system with control parameters η, and the set D
models some basic requirements on the tuning parameters η
(e.g., a requirement that the Hessian in the cost function of
a QP-based controller is symmetric positive definite)

The solving of optimization problem (12) in what fol-
lows consists of two phases. The first phase searches for
feasible (i.e., stabilizing) control parameters η in (12). This
is achieved by introducing a slack polynomial function
into the stability certification constraint (8) (described in
Section III-A) and then by minimizing its presence by using
Bayesian optimization to obtain parameters η feasible in
(12) (described in Section III-B). The second phase takes
the generated stabilizing tuning parameters of (12) as initial
conditions which are providing an indication about the
location of a stabilizing region, and then starting from that
data further explores for improvement of the performance
criteria P(η) by means of Bayesian optimization and its data
exploitation property (described in Section III-C).

A. Reformulation with slack polynomial function

To allow controller synthesis, we introduce an additional
SOS polynomial in the condition (8a), denoted σsl(ξ) and of
the same degree as the σ0(ξ), in order to play the role of a
slack, which results in the constraint (8a) taking the form:

−‖x‖22 −∇xV (x, θ, λ)T fx(x, u) = σ0(ξ)− σsl(ξ)

+ σ1(ξ)T ĝ(x, θ, λ; η) + p1(ξ)T ĥ(x, θ, λ; η)

+ p2(ξ)T (ẋ− fx(x, κ(x; η)), (14)

while the constraint (8b) will be retained without modifi-
cation. Since any arbitrary polynomial can be written as a
difference of two SOS polynomials [9], the σ0(ξ) − σsl(ξ)
term can express any arbitrary polynomial up to the degree
of σ0(ξ) and σsl(ξ). Thus, the constraint consisting of (14)
and (8b) has a feasible solution for any fixed value of the
parameter η, provided that the degree of σ0(ξ) and σsl(ξ) is
no smaller than the degree of the other polynomials in (14).

Since the goal will be to minimize the presence of the
slack as much as possible to make it become identically
equal to zero, consider a cost function which is an integral of
the SOS slack polynomial σsl(ξ). In particular, for σsl(ξ) =∑nβ
i=1 viβi(ξ) where vi are the polynomial’s coefficients and



(βi)
nβ
i=1 the corresponding monomials, the integral over some

simple set Y (like for instance a unit box which will be used
in the numerical example) is:∫

Y

σsl(ξ)dξ =

nβ∑
i=1

vi

∫
Y

βi(ξ)dξ, (15)

and is a linear function in the coefficients vi weighted by the
integrals of the βi monomials over the set Y (these integrals
are constant values).

Since this cost is a linear function in the coefficients of
the SOS polynomial σsl(ξ), together with the constraint set
containing (14) and (8b) it represents the SOS problem:

Iσ(η) = min.
∫
Y

σsl(ξ)dξ

s.t. (14), (8b),
σsl, σ0, σ1, σ2, σ̄0, σ̄1 SOS polynomials,
V, p1, p2, p3, p̄1 arbitrary polynomials,

(16)
which corresponds to an SDP for any fixed η, and Iσ(η)
is the optimal value of the problem. As σsl(ξ) is an SOS
polynomial and thus globally nonnegative, the integral Iσ(η)
is zero only when the polynomial σsl(ξ) is identically equal
to zero. This Iσ(η) = 0 corresponds to the case involving η
for which the stability certificate from (10) exists. Otherwise,
the slack function σsl(ξ) (and its corresponding integral
Iσ(η)) are non-zero and minimization of Iσ(η) as a function
of η would lead to stabilizing controller parameters (i.e.,
those satisfying Iσ(η) = 0), as discussed next.

B. Search for stabilizing control parameters

Let D be the set of tuning parameters η satisfying
some basic design requirements, as defined in (12). The
set containing the tuning parameters η with SOS stability
certificate is {η | Iσ(η) = 0 , η ∈ D}. In the case when it is
nonempty, it corresponds to the set of optimal solutions of
the optimization problem

min. Iσ(η)

s.t. η ∈ D.
(17)

In case of {η | Iσ(η) = 0 , η ∈ D} being empty, the optimal
value of (17) would be larger than zero and it is not possible
to find tuning parameters η with stability certificate (10).

The minimization (17) that leads to stabilizing tuning
parameters {η | Iσ(η) = 0 , η ∈ D} can be performed by
using a black-box global optimization method. In this paper,
we use Bayesian optimization which is a derivative-free
method for finding a constrained global optimal solution of a
black-box cost function. The constraint set can be specified
either explicitly (like the set D in (17)) or as an error in the
evaluation of the cost (i.e., the value +∞ returned by cost
function), and the values of the cost function are allowed to
be either deterministic or stochastic (see [10] for information
pertaining to the practical aspects of the method). The
algorithm is conceived in such a way that at each iteration
of the Bayesian optimization method, the currently available

cost evaluation pairs {ηi, Iσ(ηi)} are used to build a statistical
model of the cost function based on Gaussian Processes.
This model is then employed to construct an acquisition
function a(η), which is such that its minimizer represents
the next sampling point η that balances between exploitation
of the currently known cost values and exploration of the less
known regions of the cost function Iσ(η). The feature that
the next sampling point η is determined by minimizing the
acquisition function a(η) instead of operating with the actual
cost function Iσ(η) makes the method particularly suitable
for problems where the evaluation of the cost function Iσ(η)
is time consuming or in some other sense expensive.

C. Optimization of performance

The optimization problem (12) can be addressed by
Bayesian Optimization, which would treat the +∞ values
from δst(η) as the error in the evaluation of the cost. A
problem however is that in the initial phase before any tuning
parameters with SOS stability certificate are found (i.e., any
parameter η with δst(η) = 0), the Bayesian optimization
would have only values +∞ available, which are not very
informative for choosing where to sample η next in order to
reach a region with stabilizing parameters. For this reason,
the solving of (12) by Bayesian optimization should be pre-
ceded by a search for stabilizing tuning parameters with (17),
so that after a certain number (e.g., twenty) of stabilizing
tuning parameters η is found by (17) one can use them as
initial points to start Bayesian optimization on (12). These
intial points (which would be different among themselves due
to the exploration property) would provide some information
to the Bayesian optimization solving (12) about the location
of the stabilizing region in the space of tuning parameters,
and by the exploitation property of Bayesian optimization it
would be a region of focus for further investigation while
minimizing the performance criteria P(η).

There is a great amount of flexibility in the choice of the
cost term P(η) in (12), as it is allowed to be any performance
criteria which can be evaluated for a fixed vector of tuning
parameters η. A possible broadly applicable choice is an
approximate evaluation of the integral of the infinite horizon
trajectory cost over some set W:

P(η) =

∫
W

C∞,η(x)dx , C∞,η(x) =

∫ ∞
0

l (x(t), u(t)) dt,

(18)

where C∞,η(x) is the infinite horizon trajectory cost obtained
with controller η when starting from the state x, and l(x, u)
is some stage cost. Equation (18) can be evaluated approx-
imately by using Monte Carlo (MC) approximation for the
integral and finite horizon approximations for the trajectory
costs obtained from a discretized version of the continuous-
time system:

P(η) =

Nmc∑
j=1

C̃Nst,η(xj) , C̃Nst,η(x) = Ts

Nst∑
k=0

l(xk, uk),

(19)



where Ts is the sampling time of the discrete-time simulation
of the continuous-time system (obtained by applying the
forward Euler method for example), xk and uk are the state
and input values at the k-th simulation step, the C̃Nst,η(x)
is the finite horizon trajectory cost involving Nst simulation
steps from the initial state x, and the Nmc is the number
of samples from the set W in the MC approximation
of the integral. As the evaluation of P(η) involves MC
approximation, the Bayesian Optimization should consider
the cost function values as stochastic.

IV. COMPUTATIONAL EXAMPLE

This section demonstrates the control synthesis method
by an example involving a QP-based controller for control
of a bilinear system with parameter uncertainty. The SOS
programming problems are implemented by using Yalmip [6]
as a modelling tool together with MOSEK as SDP solver,
and the Bayesian optimization is applied by using Matlab’s
Statistics and Machine Learning Toolbox [10].

A. QP-based controller for a bilinear system with paramet-
ric uncertainty

This section synthesises a QP-based controller for speed
control of a permanent magnet synchronous machine
(PMSM). The small size of the QP control structure used
in this section allows its implementation for the control of a
bilinear PMSM model in EMPC fashion. In comparison to
the MPC scheme for PMSM developed in [11], the controller
synthesis of this section directly deals with the bilinear model
of the system, thus circumventing the need for using a linear
discrete-time prediction model like in [11] which is valid
only at nominal (or some other fixed and in advance chosen)
rotational speed. Furthermore, the controller presented here
is synthesized robust to the stator resistance variations caused
by temperature changes, and also without the outer speed-
control loop based on an additional PI controller, which are
features both mentioned in [11] as desirable to be addressed
in future research.

The continuous-time model of the two-pole PMSM in the
dq reference frame fixed to the rotor (see, e.g., [12]) has the
form

dId(t)

dt
= − R̃s

Ls
Id(t) + Ωr(t)Iq(t) +

1

Ls
Ud(t),

dIq(t)

dt
= − R̃s

Ls
Iq(t)−

(
Id(t) +

Φ0

Ls

)
Ωr(t) +

1

Ls
Uq(t),

dΩr(t)

dt
=
Kt

J
Iq(t)− Γ

L
(t),

where Id(t) and Iq(t) are the d and q component of the stator
current vector I(t) = [Id(t), Iq(t)]

T , Ωr(t) is the rotational
speed of the rotor, Ud(t) and Uq(t) are the d and q com-
ponent of the input voltage vector U(t) = [Ud(t), Uq(t)]

T ,
Γ
L

(t) is the load torque, the parameter R̃s is stator resistance,
Ls stator inductance, Φ0 the flux from the rotor’s permanent
magnet, Kt torque coefficient and J the rotational inertia of
the rotor. The value of stator resistance R̃s is characterised
by slow variations caused by the changes in temperature,

TABLE I
PMSM PARAMETERS AND NOMINAL VALUES, BASE VALUES FOR THE

PER-UNIT SYSTEM, AND THE PER-UNIT PMSM PARAMETERS.

Name Notation Value
Stator resistance Rs 4.3 Ω
Stator inductance Ls 3.56 mH
Flux from rotor Φ0 0.0245 Wb
Torque coefficient Kt 36.8 mNm/A
Rotational inertia J 11 · 10−7 Nm
Nominal (phase) voltage Unom 36/

√
3 V

Nominal current Inom 0.8 A
Nominal torque Tnom 30 mNm
Base value of voltage Ub = Unom 36/

√
3 V

Base value of current Ib = Inom 0.8 A
Base value of impedance Zb = Unom/Inom 25.98 Ω
Base value of speed ωb 5000·2π rad/s
Base value of rotor’s flux Φb = Unom/ωb 0.0397 Wb
Per-unit stator resistance rs = Rs/Zb 0.4138
Per-unit stator inductance ls = ωbLs/Zb 0.0717
Per-unit flux from rotor φ0 = Φ0/Φb 0.6172
Per-unit torque constant Kt = (KtIb)/(Jω2

b ) 51.11

leading to the values of R̃s which during operation can be
several times larger than the Rs contained in Table I where
the parameters of PMSM from [11] are given. The system
has an input constraint concerning the magnitude of the input
voltage vector:

‖U(t)‖2 ≤ Unom, (21)

while due to the thermal inertia of the machine, the stator
current vector I(t) is allowed to make temporary violations
of the constraint ‖I(t)‖2 ≤ Inom during transients, but still
not of an excessively large magnitude which could cause
damage on the machine or voltage source (e.g., it should be
ensured that ‖I(t)‖2 ≤ 5Inom).

By using the base values in Table I, the following normal-
ized model is obtained:

did(τ)

dτ
= − r̃s

ls
id(τ) + ωr(τ) iq(τ) +

1

ls
ud(τ), (22a)

diq(τ)

dτ
= − r̃s

ls
iq(τ)−

(
id(τ) +

φ0

ls

)
ωr(τ) +

1

ls
uq(τ),

(22b)
dωr(τ)

dτ
= Ktiq(τ)− Tb

Jω2
b

γ
L

(τ), (22c)

where τ = ωbt is per-unit time, id(τ) = Id(t)/Ib, iq(τ) =
Iq(t)/Ib are per-unit stator current components, ωr(τ) =
Ωr(t)/ωb per-unit rotational speed, ud(τ) = Ud(t)/Ub,
Uq(τ) = Uq(t)/Ub per-unit input voltage components,
γ
L

(τ) = Γ
L

(t)/Tb per-unit load torque, and the per-unit
parameters appearing in the model are as defined in Table I.
The input constraint for the per-unit model takes the form
‖u(τ)‖2 ≤ 1, and the constraint on the current which can
be temporarily violated during transients ‖i(τ)‖2 ≤ 1. The
corresponding state vector is x(τ) = [id(τ), iq(τ), ωr(τ)]T

and the input vector u(τ) = [ud(τ), uq(τ)]T . It can be seen
that the plant model is bilinear as it involves products of the
state variables.



For the purpose of tracking a constant speed reference r,
the steady-state target operating point xs = [ids, iqs, ωrs]

T ,
us = [uds, uqs]

T at which the rotational speed is equal to r
is to be computed. In order to keep the synthesis example
simpler and avoid additional complications, we consider the
case involving a zero load torque (i.e., γ

L
= 0) which results

in the steady-state target operating point of the form

xs =

0
0
r

 , us =

[
0
φ0 r

]
. (23)

Consideration of a non-zero load torque, such as for example
a γ

L
which is a polynomial function of the rotational speed

or a constant γ
L

whose value is provided to the controller
by an estimator, is also possible and reflects itself on the
expression for the steady-state target (23).

The QP-based controller will be synthesised so that the QP
takes as its inputs the target us and the deviation from the
steady-state target ∆x = x− xs, and provides as its output
(its optimal solution) the deviation ∆u from the steady-state
target us (i.e., the input signal to the PMSM is u = us+∆u).
The form of the QP is selected to be

min. 1
2z
THz + ∆xTFz

s.t. Gz ≤ d−Gus,
(24)

where z ∈ R2 is the decision vector, H ∈ R2×2 is a
symmetric positive definite matrix, F ∈ R3×2, and since
the optimal value of (24) corresponds to the input deviation
∆u, the constraint matrices G ∈ R6×2 and g ∈ R6 are
chosen such that they approximate the input constraint ‖us+
∆u‖2 ≤ 1 by an inner polytopic approximation consisting
of nh = 6 halfspaces gTi z ≤ di, ∀i ∈ {1, . . . , nh} where
gi = [ cos(πi/nh) , sin(πi/nh) ]T , di = cos (π/nh), as can
be seen on Fig. 2. The controller’s tuning parameters (the
vector η) are the elements of the H and F matrix, thus
resulting in η ∈ R9 (due to the symmetry of H).

To represent the solution of the QP (24) as a system of
polynomial equalities and inequalities, consider its corre-
sponding KKT system [5]:

Hz + FT∆x+GTλ = 0, (25a)

λT (Gz − d+Gus) = 0, (25b)
d−Gz −Gus ≥ 0, (25c)

λ ≥ 0, (25d)

where λ ∈ R6 is a dual variable, (25a) represents the
stationarity condition, (25b) is complementarity slackness,
(25c) is primal feasibility and (25d) dual feasibility. The
existence of λ so that (25) is satisfied by some θ is a
necessary and sufficient condition for that θ to be optimal in
(24), provided some constraint qualification conditions are
satisfied, which is the case for (24) with the specified G and
d (for a detailed treatment of optimality conditions in convex
optimization, see e.g. [13]).

For the controller synthesis, the vector of variables is
selected to be

ξ = (r,∆x, λ,∆ẋ, r̃s) (26)

and all other variables are expressed as a function of ξ. In
particular, at all places at which they appear, the xs and us
are expressed as in (23), the x and u as x = xs + ∆x and
u = us + ∆u, respectively, the ∆u as ∆u = z, and the z as
z = −H−1(FT∆x+GTλ) which is obtained from (25a).

For the purpose of reference tracking, the Lyapunov con-
ditions (3) are formulated in delta space and have the form

∆xT∆x−∇∆xV (∆x, r, r̃s)
T∆ẋ ≥ 0, (27a)

V (∆x, r, r̃s)−∆xT∆x ≥ 0. (27b)

It can be seen that the Lyapunov function V (∆x, r, r̃s)
depends on the speed reference r (specified below to be in
the range [−1, 1]) and on the stator resistance r̃s (specified
below to be in the range [rs, 5rs], where rs is as stated in
Table I). For control law (2), by selecting the input parameter
s = [∆x, us]

T and the internal variable θ = z, the h(s, z, λ)
and g(s, z, λ) polynomials take the form

h(s, z, λ) =
[
λT (Gus +Gz − d)

]
, (28a)

g(s, z, λ) =

[
d−G(us + z)

λ

]
. (28b)

The local stability certification set (11) is used to incorporate
the bound on the reference |r| ≤ rmax with rmax = 1, the
bound on the state vector −xmax ≤ xs + ∆x ≤ xmax with
xmax = [5, 5, 2]T , and the bound on the stator resistance
rs,min ≤ r̃s ≤ rs,max with rs,min = rs and rs,max = 5rs
where rs is the parameter from Table I. The set (11) is thus
defined by

ψ =


r + rmax

−r + rmax

xs + ∆x+ xmax

−xs −∆x+ xmax

r̃s − rs,min

−r̃s + rs,min

 . (29)

The control synthesis is run with the Lyapunov function
V (∆x, r, r̃s) of order 4, SOS σ and arbitrary p polynomial
multipliers of order 2, and the SOS slack polynomial σsl

of order 4. The search ranges for tuning parameters in
η are chosen to be [−1, 1] for each component, which
is together with the positive-definiteness constraint for the
matrix H embedded into the set D. After 120 Bayesian
Optimization iterations applied to (17) for the search of
stabilizing solutions (involving a unit box as the set Y in
(15)), 17 stabilizing tuning parameters η (i.e., vectors in
the set {η | Iσ(η) = 0 , η ∈ D}) were obtained, with an
average time per Bayesian optimization iteration of about
9.5 minutes. These stabilizing parameters were then used
as initial points in a total of 240 Bayesian Optimization
iterations applied to the performance optimization problem
(12), with the average time per iteration slightly larger
than 3 minutes. The performance criteria used was the
MC approximation of the integral of trajectory costs (19).
For it, the trajectories were simulated using forward Euler
discretization with Ts = 100µs (equivalent in per-unit to



Fig. 1. The EMPC regions and the input components u = [ud, uq ]T obtained with ω and r fixed to ω = 0, r = 1. As can be seen, the number of
regions of the EMPC is 13.

Fig. 2. Evolution of the state vector x starting from the initial x0 = [−0.166, 0.441,−0.998]T for the reference r = 1 and resistance rs = 1, the
corresponding Lyapunov values along the trajectory, and the input vectors u = [ud, uq ]T along the trajectory (the target input is us = [0, 0.617]T ).

τs = ωbTs) with the value of r̃s fixed to r̃s = 2.5rs. The
Nst was selected to Nst = 500, and NMC to NMC = 90
which was spread equally for the reference values r = 0,
r = 0.8 and r = −0.8. The stage cost was selected to be

l(xk, uk) = ∆xTkQsc∆xk + qsc‖uk−1 − uk‖22, (30)

where Qsc ∈ R3×3 is diagonal with 2, 0.5 and 1 on its
diagonal, and qsc = 1. The set W used for initial states in
(19) was selected identical to the locality constraint (29).

A slice of the control law with the obtained H and F
matrix is represented on Fig. 1 with ω and r fixed to ω = 0,
r = 1. The controller was tested in simulation for various
values of r̃s ∈ [1, 5] by applying it with the sampling
time Ts = 100µs and starting it from many random initial
points. Despite the discrete-time application of the controller,
the sampling time Ts = 100µs was sufficiently small for
a good approximation and during testing no violations of
the Lyapunov decrease were observed. Fig. 2 shows the
state trajectory, the Lyapunov function values and the input
signals obtained with speed reference r = 1 and a randomly
generated initial state.
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