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Abstract: This work addresses the problem of transient stabilization of a power grid, following
a destabilizing disturbance. The model considered is the cascade interconnection of seven New
England test models with the disturbance (e.g., a powerline failure) occurring in the first grid
and propagating forward, emulating a wide-area blackout. We consider a data-driven control
framework based on the Koopman operator theory, where a linear predictor, evolving on a higher
dimensional (embedded) state-space, is built from observed data and subsequently used within
a model predictive control (MPC) framework, allowing for the use of efficient computational
tools of linear MPC to control this highly nonlinear dynamical system.
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1. INTRODUCTION

Transient stabilization is of vital importance for emer-
gency control of large-scale interconnected power grids.
The stabilization problem is associated with the control of
electromechanical dynamics of coupled synchronous gen-
erators when subjected to a large disturbance; see e.g.,
Kundur (1994). Since it is typical of nonlinear and large-
scale control problems, it is a well-established subject with
a long history of research: see e.g. Bazanella et al. (1999);
Galaz et al. (2003); Ortega et al. (2005); Cornelius et al.
(2013). Failure of transient stabilization is recognized as
one cause of large blackouts such as the September 2003
blackout in Italy; see Corsi and Sabelli (2004) for details.
All of the transient stabilization controllers proposed in
the literature are model-driven, to the best of the authors’
knowledge. In addition to the inherent nonlinear and large-
scale nature, the wide-spread introduction of renewable
energy resources with uncertain characteristics makes it
extremely challenging to derive an accurate deterministic
model of the power grid. Therefore, an alternative, data-
driven method for the design of transient stabilization
controllers is currently required.

The stabilization controller proposed in this paper is based
on the Koopman operator model predictive control (MPC)
of Korda and Mezić (2016), where a linear predictor is
constructed from observed data generated by the nonlin-
ear dynamical system. The distinguishing feature of the
predictor is the fact that its state evolves on a higher-
dimensional, embedded, state-space, thereby being able to
capture the nonlinear behavior of the underlying dynam-
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ics. This predictor is subsequently used within a linear
model predictive control scheme, thereby allowing for the
use of highly efficient linear MPC tools to control the
nonlinear dynamical system. Importantly, the dimension
of the embedding space does not affect the computational
complexity of the optimization problem solved by the
MPC and therefore the control input can be evaluated
very fast, allowing for a real-time deployment.

In this paper, we numerically demonstrate the Koopman
MPC for transient stabilization of power grids. Numerical
simulations are conducted for the cascade interconnection
of seven New England test models shown in Susuki et al.
(2012) (see Figures 1 and 2). The cascade connection was
invented for exploring the mechanism of disturbance prop-
agation based on the theory of coherent swing instability
in Susuki et al. (2011). Transient stabilization of the cas-
caded grid is investigated using the data-driven methods
of Korda and Mezić (2016); this is the first demonstration
of these methods for control of power grid dynamics. The
results are promising, achieving a successful stabilization
of the cascaded grid without the model knowledge, with a
distributed control structure (one controller per grid) and
fast computation time; future work will investigate and
compare the efficacy of the proposed method on different
power grid models and control setups.

2. PROBLEM STATEMENT

We use the so-called nonlinear swing equations (see e.g.
Kundur (1994)) for modeling and analysis of coupled swing
dynamics in the cascaded system of seven New England
test models. The short-term electromechanical dynamics
of generator j in unit grid #i (j = 2, . . . , 10, i = 1, . . . , 7) in
Figure 1 are represented by the so-called swing equations
as follows:
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Fig. 1. Cascade interconnection of seven New England test models. The fault occurs in the first grid near bus 39 (modeled by adding a
small impedance between bus 39 and the ground).
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Fig. 2. One-line diagram of single New England test model within
the cascade. The first generator, normally connected to bus 39,
is replaced by a connection to the previous grid of the cascade.
Generator one in the first grid represents the infinite bus.
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The variable δij represents the angular position of rotor
in generator j in unit grid #i with respect to the infinite
bus (see e.g. Kundur (1994)) and is in radians [rad]. The
variable ωij represents the deviation of rotor speed in
generator i relative to system angular frequency 2πfb and
is in radians per second [rad/s]. The variable δ11 is the
angular position of the infinite bus and becomes constant
from its definition. The parameters Hj , Pm ij , Dj , Vij ,
Gij,ij , and Gij,kl +iBij,kl are in per unit system except for
Hj and Dj in seconds [sec]. The parameter Hj denotes the
per-unit time inertia constant of generator j, Dj denotes
its dampling coefficient. The constant Pm ij is the nominal
mechanical input power to generator j in unit grid #i,
and Vij is the internal voltage of generator j in unit grid
#i. They are assumed to be constant. The constant Gij,ij

denotes the internal conductance of generator j in unit grid
#i, and Gij,kl + iBij,kl denotes the transfer admittance
between generators j in unit grid #i and l in unit grid
#k. The constant V11 is the voltage of the infinite bus,
and Gij,11 + iBij,11 is the transfer admittance between
generator j in unit grid #i and the infinite bus. The
impedance Gij,kl + iBij,kl is the parameters that change
as the network topology changes. The control input uij is

the mechanical input power expressed as the fraction of
the nominal value Pm ij .

The fault causing the instability is modeled by adding a
small impedance, 10−7 Ω, between bus 39 and the ground.
The fault occurs in grid #1 at time tf = 0.87 s and the line
1− 39 trips (i.e., the this line is removed from the model)
at time t = 1 s. Prior to the fault time tf , the system
operates in a steady-state condition given by a power-flow
computation.

The goal is to control the instability by adjusting the
generator mechanical input power 1 while observing the
following engineering requirements:

• Frequency deviations convergence to zero. This im-
plies for the current power grid model that all of the
generators settle down to the nominal rotating fre-
quency (back to a state of frequency synchronization).

• Maximum frequency deviation does not exceed a
given bound. This is a mandatory requirement in the
practical power grid; otherwise, in order to avoid a
serous damage of turbine blades in a power plant,
the corresponding power plant (generator) will be
removed from the grid by a protective relay.

• Control action is within given bounds. This require-
ment is also practical because such controllers contain
a limiter (or saturation device) in order to prevent
exceeding physical limitations of the generators.

3. CONTROL STRATEGY

In order to control the instability we use the Koopman
model predictive control proposed in Korda and Mezić
(2016). The conceptual scheme of the strategy is depicted
and described in Figure 3. The main components of the
MPC controller are a predictor and an optimizer. The
distinguishing feature of the Koopman MPC controller
is the fact that the predictor is in the form of a linear
dynamical system evolving on an embedded (or lifted)
state space of larger dimension than the dimension of
original state space. Contrary to classical local linearizion
techniques, this predictor is valid globally (or in a large
subset of the state space) and fixed once and for all. The
linearity of the predictor and the freedom in the choice
of the embedding mapping implies that the optimization
problem solved can be rendered convex quadratic, even
if the original problem had non-convex objective function
and constraints and nonlinear dynamics (see Korda and
Mezić (2016) for details and Korda and Mezić (2017)
for a theoretical analysis of such predictors). Importantly,
by tranforming the optimization problem in the so-called
dense form (see Section 3.2), the computational complexity
can be rendered independent of the dimension of the

1 In this work, we chose to control the mechanical input power.
Alternatively, one could also control the generator voltages Vij .
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Fig. 3. Conceptual depiction of the Koopman MPC, where x ∈ Rn is the true state of the dynamical system, z ∈ RN is the embedded
state, ψ : Rn → RN is a nonlinear embedding mapping, x̂ is prediction of the true state using the linear predictor and u is the control
input. Bold symbols denote vectorization along the prediction horizon Np, i.e., u = (u0, . . . , uNp−1), z = (z0, . . . , zNp ). The symbol u?

0
denotes the first component of the optimal solution u? = (u?

0, . . . , u
?
Np−1) to the optimization problem solved by the optimizer. This

optimization problem is solved repeatedly at each time step k of the closed-loop operation, with the state of the predictor re-initialized
to z0 = ψ(xk). Note the difference between the “physical” time k and the time of the predictor i. The objective function J is a convex
quadratic function and the constraint sets Z and U are polyhedra. The optimization problem is therefore a convex quadratic program.

embedded state-space; see Remark 2 and Korda and Mezić
(2016) for details.

Remark 1. We note that the depiction of the MPC con-
troller in Figure 3 is only conceptual and in real appli-
cations, the dynamics of the predictor is a part of the
constraints of the optimization problem solved by the
optimizer.

3.1 Koopman MPC for power grid

Now we describe the use of the general scheme from
Figure 3 for the cascade instability control. In this case,
the state is given by x = (δ, ω). We choose the embedding
mapping ψ to be

ψ(x) =

[
cos δ
sin δ
ω

]
(2)

and for the time being we assume that a predictor of the
form

zi+1 = Azi +Bui, (3)

x̂i = Czi,

is given; here, u ∈ Rm is the control input with m being
the number of manipulated variables 2 ; see Section 3.3
for a method to construct such predictor from data. The
Koopman MPC controller then solves at each time step k
of the closed-loop operation the optimization problem

minimize
u0, . . . , uNp−1

Np−1∑
i=0

z>i Qzi + u>i Rui

subject to zi+1 = Azi +Bui, i = 0, . . . , Np − 1
umin ≤ ui ≤ umax, i = 0, . . . , Np − 1
zmin ≤ zi ≤ zmax, i = 0, . . . , Np − 1

parameter z0 = ψ(xk),
(4)

where ·> denotes the transpose of a vector and Q � 0,
R � 0 are given symmetric positive semidefinite weighting

2 In this work we shall consider distributed Koopman MPC with one
controller designed per grid (see Section 3.4). In this case, m = 9
is the number of generators in each grid. Of course, other control
configurations can be considered, leading to different dimensions of
the manipulated variable u. The discussion of Section 3.1 is fully
general, applying to any control configuration.

Algorithm 1 Koopman MPC – closed-loop operation

Require: Predictor (A,B), Cost matrices (Q,R), bounds
(umax, umin, zmax, zmin).

1: for k = 0, 1, . . . do
2: Measure xk = (δk, ωk) on the real system
3: Set z0 = ψ(xk) = [cos δ>k , sin δ

>
k , ω

>
k ]>

4: Solve (4) to get an optimal solution (u?0, . . . , u
?
Np−1)

5: Apply uk := u?0 to the real system

matrices. These matrices are chosen according to the
desired control goals; for example, a natural goal is to
minimize the sum of square deviations of the angular
frequencies from the synchronous frequency 2π60 rad/s,

i.e., to minimize
∑Np−1

i=0 ‖ωi‖22, where ‖.‖2 denotes the
Euclidean norm. Given the choice of the embedded state
z = ψ(x) in (2), this can be expressed by choosing

Q = bdiag(0ngen×ngen
, 0ngen×ngen

, Ingen
), R = 0,

where ngen is the number of generators (in each grid in
the case of distributed control or the total number of
generators in the case of centralized control) and 0n×n
and In denote, respectively, the zero and identity matrices
of size n × n and bdiag(·, . . . , ·) denotes a block diagonal
matrix composed of the arguments. Similarly, a constraint
that the maximum deviation of the generator angles is no
more than θmax and maximum deviation of the angular
frequencies no more than ωmax is imposed by choosing

zmax =

[
cos(θmax)
sin(θmax)
ωmax

]
, zmin = −zmax.

The Koopman MPC algorithm for the power grid is
summarized in Algorithm 1.

Remark 2. Note that, strictly speaking, the minimization
in (4) should be over both ui’s and zi’s. However, since
z0 and u0, . . . , uN−1 uniquely determine z0, . . . , zN via
zi+1 = Azi +Bui, the zi’s can be eliminated (solved for),
obtaining the so-called dense form of MPC. This eliminates
the dependence on zi’s and therefore on the dimension of
the embedded state z; see Korda and Mezić (2016) for
details of this transformation.



3.2 Solving optimization problem (4)

The optimization problem (4) is a convex quadratic pro-
gram and therefore can be efficiently solved by a number
of off-the-shelf solvers (e.g., CPLEX, GUROBI, MOSEK
etc). In addition, the special structure of the MPC problem
can be exploited by tailored algorithms. In our case, we
first eliminate zi’s in (4), arriving at the so-called dense
form of the problem

minimize
U∈RmNp

U>HU> + z>0 GU

subject to LU +Mz0 ≤ c
parameter z0 = ψ(xk),

(5)

where the decision variable U is

U = [u>0 , . . . , u
>
Np−1]>

and the data matrices are given by

H = R + B>QB, G = 2A>QB,

L = F + EB, M = EA, c> = [b>, . . . , b>]︸ ︷︷ ︸
Np+1 times

,

A =


I
A
A2

...
ANp

 , B =


0 0 . . . 0
B 0 . . . 0
AB B . . . 0

...
. . .

. . .

ANp−1B . . . AB B

 ,
Q = INp+1 ⊗Q, R = INp ⊗R,

E = INp+1 ⊗ E, F =

[
INp
⊗ F

02(N+m)×mNp

]
,

F =

[
02N×m
Im
−Im

]
, E =

[
IN
−IN

02m×N

]
, b =

 zmax

−zmin

umax

−umin


with ⊗ denoting the Kronecker product (i.e., IN ⊗ · is
the N-fold block-diagonalization operator). This form is
particularly suited for the active set solver qpOASES
(Ferreau et al. (2014)), which also allows for efficient warm-
starting.

3.3 Predictor construction

In this section we describe how to construct the predictor
of the form (3) from measured data. We assume that data
of the form

X = [x1, . . . , xK ] , Y = [y1, . . . , yK ] , U = [u1, . . . , uK ]
(6)

where xi = [δ>i , ω
>
i ]> and yi = f(xi, ui) with f being the

dynamics discretized with sampling period Ts. In other
words, if xi = [δ(t)>, ω(t)>], then yi = [δ(t + Ts)

>, ω(t +
Ts)
>]>, i.e, (xi, yi) is a pair of successive measurements of

the state produced by the continuous time dynamics with
the control input ui held constant during the sampling
period Ts. No relation between xi and xj , i 6= j, is
assumed; the data can but is not required to lie on a single
trajectory. The data can be collected from the real system
or artificially simulated from a model, if available.

The matrices A, B of the predictor (3) are obtained as the
solution to the least-squares problem

min
A,B
‖Ylift −AXlift −BU‖F , (7)

where ‖ ·‖F denotes the Frobenius norm 3 of a matrix and

Xlift = [ψ(x1), . . . ,ψ(xK)] , Ylift = [ψ(y1), . . . ,ψ(yK)]
(8)

with ψ defined in (2). The matrix C is obtained as

min
C
‖X− CXlift‖F . (9)

The analytic solution to these least-squares problems is

[A,B] = Ylift[Xlift,U]†, C = XX†lift, (10)

where ·† denotes the Moore-Penrose pseudoinverse of a
matrix. See (Korda and Mezić, 2016, Section 4.1) for a
more computationally efficient way to obtain the solution
for a large K.

3.4 Distributed Koopman MPC

In order to reduce communication and adhere to privacy
requirements, it is natural to consider distributed con-
trol where the control inputs are determined by several
controllers with only partial information availability for
each. In this work we consider one controller per grid with
information (in the form of generator angle and frequency
measurements) available only from within the same grid.

4. NUMERICAL RESULTS

This section summarizes numerical results of our experi-
ments. In order to design the distributed Koopman MPC
controllers we construct the predictors of the form (3) from
data as descried in Section 3.3. The data set consists of 104

trajectories of length 2.5 s sampled with period Ts = 50 ms
which were collected using the model in the pre-fault
configuration. The initial conditions of the trajectories are
drawn uniformly at random with each δ ∈ [−π/10, π/10]
and ω ∈ [−0.05, 0.05]. The control input uij in (1) is
constrained to [−0.2, 0.2], i.e., we allow at most 20 % devia-
tion from the nominal mechanical input power. When con-
structing the predictors, each control input is distributed
uniformly at random withing its bounds. We consider the
distributed Koopman MPC with one controller per grid.
The cost matrices Q and R are chosen to

Q = bdiag(0ngen×ngen
, 0ngen×ngen

, Ingen
), R = 0.01Ingen

,

where ngen = 9 is the number of generators in each grid,

i.e., we penalize
∑Np−1

i=0 ‖ωi‖22 + 0.1‖u‖22. The prediction
horizon is chosen to be 1 s, corresponding to Np = 1/Ts =
20. We do not impose any constraints on the state variables
whereas the control input, i.e., the mechanical input power
of the generators, is constrained to be between ±20 % of
the nominal value for each generator. Simulation results
with no control are depicted in Figure 4; in accordance
with Susuki et al. (2012), we observe unstable behavior
caused by the fault at time tf = 0.87 s. Results with control
are depicted in Figure 5. We observe a stable behavior,
very fast attenuation of the disturbance and a bounded
maximum frequency deviation (≈ 0.2 Hz). The quadratic
program (4) was solved using qpOASES (Ferreau et al.
(2014)) running on Matlab. The average computation
time required for evaluation of the control input was
approximately 10 ms on a laptop with macOS, 2GHz intel
i7, which would allow for a real-time implementation.
3 The Frobenius norm of a matrix A is given by ‖A‖F =√∑

i,j
A2

i,j .
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Fig. 4. Cascade instability in the interconnection of seven New England test models from Figure 1 without any control. A powerline failure
at time tf = 0.87 s causes an instability in the first grid which then propagates throughout the cascade, resulting in a desynchronization
of the generator frequencies.
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Fig. 5. Power grid transient stabilization: distributed Koopman MPC with one controller per grid. The instability due to a powerline failure
occurring at time tf = 0.87 s is attenuated by the controllers, resulting in zero frequency deviations in steady state and a new set of
generator angles.


