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a b s t r a c t

This paper deals with the finite horizon stochastic optimal control problem with the expectation
of the p-norm as the objective function and jointly Gaussian, although not necessarily independent,
additive disturbance process. We develop an approximation strategy that solves the problem in a certain
class of nonlinear feedback policies while ensuring satisfaction of hard input constraints. A bound on
suboptimality of the proposed strategy in this class of nonlinear feedback policies is given for the special
case of p = 1. We also develop a recursively feasible receding horizon policy with respect to state
chance constraints and/or hard control input constraints in the presence of bounded disturbances. The
performance of the proposed policies is examined in two numerical examples.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Stochastic control is a relatively mature field, yet there is still
a considerable number of unresolved problems, mostly due to
the notorious inherent intractability of the vast majority of them.
Only a handful of stochastic optimal control problems (e.g., the
linear quadratic control) can be solved optimally, whereas the
remainder has to be tackled by various approximation techniques
most frequently arising from the dynamic programming paradigm
(Bertsekas, 2007).

Recent advances in computation and mathematical optimiza-
tion techniques have, however, opened new ways of dealing with
these problems. One of the simplest, yet in most practical appli-
cations very effective approach, is the certainty equivalent model
predictive control (CE-MPC) (Bertsekas, 2007) that solves a de-
terministic optimization problem with stochastic disturbances re-
placed by their estimates based upon the information available at
the time and proceeds in a receding horizon fashion.

Another popular class of control strategies is the affine
disturbance feedback policy which turns out to be equivalent to
the affine state feedback policy via a nonlinear transformation
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similar to the classical Q -design (Skaf & Boyd, 2010). However
convenient the paradigm of the affine disturbance feedback
may be, its use is prohibitive whenever unbounded stochastic
disturbances enter the system in the presence of hard control
input bounds since then the linear part of the policy necessarily
vanishes, which, in effect, renders the policy open loop. One
way to overcome this problem is to use a saturated nonlinear
disturbance feedback as in Hokayem, Chatterjee, and Lygeros
(2009), where this approach was developed for the quadratic cost.
In this article, we follow up on this work and on our previous
work in the context of the 1-norm (Korda & Cigler, 2011), and
develop a methodology for solving this problem in the p-norm,
with the additional assumption of the disturbances being jointly
Gaussian (but not necessarily independent). Our methodology
brings about a significant performance improvement compared
to the traditional certainty-equivalent approach while retaining
reasonable computational demands compared to sampling or
dynamic programming techniques.

The very important, though largely neglected, question of
recursive feasibility of stochastic receding horizon schemes is
addressed in a series of papers (Cannon, Kouvaritakis, & Ng,
2009; Cannon, Kouvaritakis, & Wu, 2009; Kouvaritakis, Cannon,
Raković, & Cheng, 2010). These papers assume either bounded
disturbances or only probabilistic input and state constraints, and
deal exclusively with the pre-stabilized policy parametrization. In
this article, we develop a recursively feasible algorithm for the
affine-like policy treated in this paper in the presence of bounded
disturbances and hard control input bounds.

There is a wide range of applications amenable to the presented
approach that has previously been tackled only through certainty
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equivalence. A rich source of such applications is, for instance,
building climate control, a typical stochastic environment where
cost functions including mixtures of 1-norm and 2-norm terms
are ample (Oldewurtel et al., 2010). The p-norm formulation
considered here is a natural extension giving the designer more
degrees of freedom to either fit the true cost function or to tune
the resulting dynamics by choosing possibly non-integer values of
p. For example, the choice of p between 1 and 2 or 2 and infinity
gives a blend of the control properties typically encountered with
these three traditional choices. The use of the p-norm as an
approximation to a true cost function was recently considered in
the context of max-plus linear systems in Farahani, van den Boom,
van der Weide, and De Schutter (2010).

The current paper is organized as follows. In Section 2, we
state the problem to be solved, Section 3 presents the main results
on convexity and tractability of the stated problem and derives a
bound on the suboptimality of the approach for p = 1. Recursively
feasible algorithm in the presence of bounded disturbances is
developed in Section 4. Finally, Section 5 presents two numerical
examples to illustrate our results.

1.1. Notation

From less standard notation we denote the Hessian and
Jacobian of a function by Hess(·) and Jac(·) respectively, and
the partial derivatives of a function by subscripts. We let ∥A∥∞

denote the induced infinity norm of a matrix A, i.e., ∥A∥∞ =

maxi


j |Aij|

. Note that this notation is also used for row vectors,

where it does not coincide with the standard infinity norm of a
vector, but rather with the 1-norm. The p-norm of a column vector
x is defined as∥x∥p =


i |xi|

p
1/p for any p ∈ [1, ∞). The symbols

vec(·) and ⊗ denote the vectorization and the Kronecker product,
respectively. All the random variables are defined on a common
probability space with a probability measure P; the expectation E
is taken with respect to this measure. A Gaussian random variable
with the mean µ and the covariance matrix Σ is denoted by
N (µ, Σ).

2. Problem statement

The article deals with the problem of minimizing the cost
function

J := E


∥QNxN∥

p
p +

N−1
k=0

∥Qkxk∥p
p + ∥Rkuk∥

p
p


(1)

for p ∈ [1, ∞) subject to the discrete-time system dynamics

xk+1 = Axk + Buk + wk, (2)

xk ∈ Rn, uk ∈ Rm, and hard input constraints

∥uk∥∞ ≤ Umax, k = 0, . . . ,N − 1, (3)

where Qk ∈ Rnq×n, Rk ∈ Rnr×m are weighting matrices and
N ≥ 1 is the prediction horizon. All the results derived here
generalizewith onlyminormodifications to the casewith different
bounds on individual control inputs and/or time varying bounds.
The disturbances w = [wT

0 , . . . , w
T
N−1]

T are assumed to be jointly
Gaussian with the covariance matrix Σw .

The minimization to be carried out is over all Borel measurable
causal disturbance feedback policies uk = φk(x0, w0, . . . , wk−1),
k = 0, . . . ,N − 1. This problem is, however, in general intractable
and various approximation techniques exist; see, e.g., Bertsekas
(2007). In this paper, we adopt the approach of Hokayem et al.
(2009) where the authors propose to search over a class of causal
policies affine in certain nonlinear functions of the disturbances

u = η + Ke(w)

=


η0
η1
...

ηN−1

+


0 0 . . . 0

K1,1 0 . . . 0
...

. . .
. . .

KN−1,1 . . . KN−1,N−1 0




e(w0)
e(w1)

...
e(wN−1)

 , (4)

where u = [uT
0, . . . , u

T
N−1]

T and e(w) = [e(w0)
T , . . . , e(wT

N−1)]
T .

The vector η ∈ RmN with blocks in Rm, and the strictly lower
block triangular matrix K ∈ RmN×nN with blocks in Rm×n are
optimization variables. The choice of the nonlinear function e :

Rn
→ Rn is discussed later, although it certainly must be bounded

should the hard input constraints be satisfied. The bound on
∥e(·)∥∞ is denoted by δ throughout the article.

This parametrization of the control policy is a natural way
of approximating the infinite dimensional minimization over all
measurable causal policies by a finite dimensional problem of
minimization over the subspace generated by a finite number of
nonlinear basis functions (Skaf &Boyd, 2009). The particular affine-
like parametrization (4) can also be viewed as an extension of the
traditional affine disturbance feedback allowing for hard control
input bounds in the presence of unbounded disturbance (Skaf &
Boyd, 2009).

Note that the presented approach can be immediately extended
to the case of different bounds on the individual components of the
vector-valued function e(·) and/or different functions e(·) at each
time step. The former is particularly useful when each component
of the disturbance at a given time has different variance, whereas
the latter can be beneficial when the variance changes with time
over the prediction horizon.

The bound δ on e(·) immediately provides a sufficient condition
for the satisfaction of the input constraints

|ηi| + δ∥Ki∥∞ ≤ Umax, i = 1, . . . ,mN (5)

where ηi and Ki denote the i-th rows of η and K , respectively.
Note that, providing the distribution of w is non-degenerate, this
constraint is not only sufficient but also necessary for most of the
natural choices of the nonlinear function e(·) (e.g., componentwise
saturation, sigmoid functions).

One of themain goals of the article is therefore to solve (at least
approximately) the optimization problem

minimize
η,K

J

subject to (2), (4) and (5).
(P1)

3. Main results

The optimization problem (P1) is intractable owing to the
p-norm and the nonlinear function e(w), although sampling
approximations are viable for small problems (Skaf & Boyd, 2009).
We therefore propose to solve a relaxed problem where u =

η + Ke(w) in (P1) is replaced with u = η + Kw while keeping
constraints on η and K such that the hard input constraints are
satisfied when the original control policy is used. The relaxed
problem must be convex since the objective is convex for each
disturbance realization (Boyd & Vandenberghe, 2004). In the
sequel, we show that the relaxed optimization problem is not only
convex but also tractable.

3.1. Tractability of the proposed approach

First, note that, due to the linear dynamics and the affine
parametrization of the control policy, the cost function in (P1) is a
sum of terms of the form E|X |

p, where X is a Gaussian randomwith
the two defining moments as a function of the decision variables
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η and K (see Theorem 3 for a detailed derivation). Hence, we need
an analytical expression for E|X |

p of a Gaussian random variable X .

Lemma 1. If X ∼ N (µ, σ 2) then

g(µ, σ ) := E|X |
p

=
2p/2

√
π

σ pΓ


p + 1
2


M


−
p
2
,
1
2
, −

µ2

2σ 2


(6)

and in particular for p = 1

g(µ, σ ) := E|X | =


2
π

σ e−
µ2

2σ2 + µ erf


µ

σ
√
2


, (7)

where Γ (·) is the Gamma function, erf(·) the error function and
M(·, ·, ·) the Kummer confluent hypergeometric function (Muller,
2001).
Proof. Follows by a straightforward integration from the defini-
tion of the expectation of a continuous random variable

E|X |
p

=
1

σ
√
2π

 0

−∞

(−x)pe
−(x−µ)2

2σ2 dx +


∞

0
xpe

−(x−µ)2

2σ2 dx


.

Evaluation of these integrals, possibly with the aid of a
computer algebra system, leads directly to the two formulas. The
more general expression (6) can also be found in Simon (2002,
p. 11, Eq. (2.16)). �

Now thatwe have an analytical expression for the cost function,
the gradient andHessian can be computed by a simple use of vector
calculus.

Lemma 2. If X ∼ N (µ, σ 2) for σ > 0, X = µ for σ = 0,
and µ(η, k) = µ0 + bTη, σ(η, k) = ∥a + Ck∥2 then the function
f (η, k) = (E|X |

p)(η, k) is jointly convex in (η, k), and its gradient
and Hessian are given by

∇f = fµ∇µ + fσ ∇σ , (8)

Hess(f ) = ∇µ

fµµ∇µ + fµσ ∇σ

T
+ ∇σ


fσσ ∇σ + fσµ∇µ

T
+ fσ Jac(∇σ), (9)

where, for σ > 0 and with q := CT (a + Ck)/σ ,

∇µ =


b
0


, ∇σ =


0
q


,

Jac(∇σ) =


0 0
0 (CTC − qqT )/σ


.

The expressions for the partial derivatives are

fµ =
1

√
π
2p/2µpσ p−2γM2,

fσ =
1

√
π
2p/2pσ p−3γ


σ 2M1 − µ2M2


,

fµµ =
1

3
√

π
2p/2pσ p−4γ


3σ 2M2 + µ2(p − 2)M3


,

fσσ =
1

√
π
2p/2σ p−6γ


[µ4

+ µ2(3p − 2)σ 2

+ (p − 1)pσ 4
]M1

− µ2(1 + p)

µ2

+ 2(p − 1)σ 2M4

,

fµσ =
1

3
√

π
2p/2µ(p − 2)pσ p−5γ


µ2M3 − 3σ 2M2


,

where

M1 = M


−
p
2
,
1
2
, −

µ2

2σ 2


,M2 = M


1 −

p
2
,
3
2
, −

µ2

2σ 2


,

M3 = M

2 −

p
2
,
5
2
, −

µ2

2σ 2


,M4 = M


−

p
2
,
3
2
, −

µ2

2σ 2



and

γ = Γ


p + 1
2


.

In particular for p = 1 we have a simplification

∇f = erf


µ

σ
√
2


∇µ +


2
π
e−

µ2

2σ2 ∇σ ,

Hess(f ) =


2
π
e−

µ2

2σ2

 1
σ


b

−q
µ

σ


b

−q
µ

σ

T

+ Jac(∇σ)

 .

Proof. Convexity follows from convex calculus fundamentals
since f (η, k) = E|µ0 + bTη + (a+ Ck)T w̃|

p for some w̃ ∼ N (0, I),
and the right-hand side is convex in (η, k) for every realization of
w̃. The rest is a direct computation. �

Note that, given p, the first two arguments of the hypergeomet-
ric functions are constant and the third argument is always neg-
ative, which allows for very fast computation of M1, . . . ,M4, for
instance by using methods 1 and 2 of Muller (2001).

Theorem 3. The optimization problem

minimize
η,K

J

subject to u = η + Kw structured as in (2), (4) and (5)
(P2)

with w ∼ N (0, Σw) is convex and tractable in the variables (η,
K ). Furthermore the hard input constraints (3) are satisfied under the
control policy u = η + Ke(w) provided that ∥e(·)∥∞ ≤ δ.

Proof. The objective function is a sum of terms of the form
E|qTjkxk|

p or E|rTjkuk|
p, where qjk and rjk denote the j-th rows of Qk

and Rk, respectively. Denote also Bk = [Ak−1B, . . . , B, 0, . . . , 0],
Ck = [Ak−1, . . . , I, 0, . . . , 0]F , where F comes from a decomposi-
tion of Σw as FF T , and observe that2

qTjkxk = qTjk(A
kx0 + Bku + Ckw̃)

= qTjkA
kx0 + qTjkBkη + qTjk(Ck + BkKF)w̃

with w̃ ∼ N (0, I). It is clear that qTjkxk is Gaussian with the
expectation

µ(η, k) = E(qTjkxk) = qTjkA
kx0 + qTjkBkη

and standard deviation

σ(η, k) = ∥qTjk(Ck + BkKF)∥2 = ∥CT
k qjk + (F T

⊗ qTjkBk)Sk∥2,

where Sk = vec(K)with S being a certainmatrix of zeros and ones,
and k containing only the nonzero elements of K .

Similarly

rTjkuk = rTjkvkη + rTjkvkKFw̃,

where vk is a matrix that selects k-th block row of the size m.
Consequently, the expectation and standard deviation become

µ(η, k) = rTjkvkη, σ (η, k) = ∥(F T
⊗ rTjkvk)Sk∥2.

Lemma 1 can now be used to evaluate the cost function,
whereas Lemma 2 establishes the convexity of the problem and
provides expressions for the gradient and Hessian of the cost.
Hence, the problem admits a tractable convex representation.

Finally, satisfaction of the input constraints is assured by the
constraint (5). �

2 Here and hereafter the equality of random elementsmeans the equality of their
distributions, not necessarily of the elements itself.
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Note that it also possible to handle problems stated with ∥ · ∥p

instead of ∥ · ∥
p
p, that is, cost functions of the form

Ĵ := E


∥QNxN∥p +

N−1
k=0

∥Qkxk∥p + ∥Rkuk∥p


. (10)

This can be achieved by minimizing upper bounds on the cost
function based on Jensen’s inequality (Boyd & Vandenberghe,
2004)

E∥Qkxk∥p ≤


nq
j=1

E|qTjkxk|
p

1/p

, E∥Rkuk∥p ≤


nr
j=1

E|rTjkuk|
p

1/p

.

(11)

These upper bounds can be easily shown to be convex in
(η, K), and hence the whole problem can be handled within the
framework of Theorem3with the additional compositionwith 1/p
which poses no problem.

3.2. Bound on suboptimality

In this section, we provide a bound on the suboptimality in (P1)
of the solution to the relaxed problem (P2). The bound is derived
only for the p = 1 case where the analysis of suboptimality is
straightforward and the bound turns out to be independent of the
initial state x0, which is a desirable property for a receding horizon
application. By contrast, bounds for p > 1 are of little practical
value because they are no longer independent of x0 and in general
not very tight.

The idea is to bound the difference of the costs under the
policies u = η + Kw and u = η + Ke(w) for given η, K ,
which in effect bounds the difference of the respective optima. For
ease of notation, the result is derived with time invariant weights,
i.e., Qk := Q , Rk := R (and thus qjk := qj, rjk := rj) for all k, but
generalizes immediately to the time varying case.

Lemma 4. The difference between the costs Je incurred under the
policy u = η + Ke(w) and the cost Jw incurred under the policy
u = η + Kw is bounded as

|Je − Jw| ≤ Ω∥K∥∞


N

k=0

nq
j=1

∥qTj Bk∥∞ + N
nr
j=1

∥rTj ∥∞


where Ω = E∥e(w) − w∥∞.

Proof. We have

|Je − Jw| ≤

N
k=0

nq
j=1

|E(|qTj x
e
k| − |qTj x

w
k |)|

+

N−1
k=0

nr
j=1

|E(|rTj u
e
k| − |rTj u

w
k |)|. (12)

Next, by Jensen’s inequality,

|E(|qTj x
e
k| − |qTj x

w
k |)| ≤ E

|qTj xek| − |qTj x
w
k |


≤ E(|qTj x
e
k − qTj x

w
k |)

= E|qTj BkK(e(w) − w)|, (13)

where

xek = Akx0 + Bkη + BkKe(w) + Ckw

and

xw
k = Akx0 + Bkη + BkKw + Ckw.
Furthermore

E|qTj BkK(e(w) − w)| ≤ ∥qTj BkK∥∞Ω ≤ ∥qTj Bk∥∞∥K∥∞Ω,

where submultiplicativity of the infinity norm was used in both
steps. Similar procedure can be carried out for the control inputs
to yield

|E(|rTj u
e
k| − |rTj u

w
k |)| ≤ ∥rTj ∥∞∥K∥∞Ω.

Summingup all terms in (12) now leads to the desired result,which
completes the proof. �

Now it is rather straightforward to derive the suboptimality
bound. Denote J∗e the optimal value of (P1) and the corresponding
minimizer K ∗

e , η
∗
e . Denote also J∗w the optimal value of (P2) and the

corresponding optimal solution K ∗
w , η

∗
w . Finally denote Je the cost J

under the control policy u = η∗
w + K ∗

we(w) and Jw the cost J under
the policy u = η∗

e + K ∗
e w.

Theorem 5. The solution η∗
w , K

∗
w of (P2) is not more than

β := 2Ω
Umax

δ


N

k=0

nq
j=1

∥qTj Bk∥∞ + N
nr
j=1

∥rTj ∥∞


(14)

suboptimal in (P1), that is, Je − J∗e ≤ β .

Proof. First note that, because of the constraints on η and K in
both optimization problems (P1) and (P2), the optimal feedback
matrices K ∗

e and K ∗
w for both problems necessarily satisfy ∥K ∗

e ∥∞ ≤

Umax/δ, ∥K ∗
w∥∞ ≤ Umax/δ.

Lemma 4 can nowbe invoked to obtain |Je−J∗w| ≤
β

2 , |Jw−J∗e | ≤

β

2 , and, since J∗e ≤ Je and J∗w ≤ Jw , the bound immediately follows:

0 ≤ Je − J∗e ≤ Je − J∗w + Jw − J∗e = |Je − J∗w + Jw − J∗e | ≤ β. � (15)

The term Ω = E∥e(w) − w∥∞ in (14) can be computed to
virtually arbitrary precision bymeans of a Monte Carlo simulation.
The bound also provides an intuitively obvious guide to selecting
the function e(·) in such a way that e(w) and w do not differ very
much with high probability. For instance, with the choice of e(·)
as the elementwise saturation at three or four standard deviations
of the disturbance, it is highly likely that the bound will be close to
zero and, consequently, the solution to the relaxed problemwill be
almost optimal in the original one.

Note also that the bound can be further improved by noticing
that the |Je − J∗w| term in (15) can be computed exactly. Indeed
J∗w is known since it is the optimal value of (P2), and Je can be
estimated by means of a Monte Carlo simulation with no further
online optimization necessary. Hence, the yet improved version of
the bound becomes

β̃ :=
β

2
+ |Je − J∗w|. (16)

4. Recursive feasibility

In this section, we introduce a technique to ensure that the
closed-loop state trajectories satisfy the probabilistic (or chance)
constraint

P(gT xk ≤ h) ≥ 1 − α, k = 1, 2, . . . , (17)

with α ∈ [0, 1]. The closed-loop trajectories are generated by
a receding horizon application of an affine disturbance feedback
policy u = η + Kw defined as in (4) with e(w) = w. The control
authority is bounded by Umax as in (3). For a similar approach with
a perturbed linear state-feedback, see Kouvaritakis et al. (2010).
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First of all, to ensure satisfaction of the constraint (17), it is
sufficient to guarantee that at each time k ≥ 1, the one-step
conditional constraint

P(gT xk+1 ≤ h | xk) ≥ 1 − α (18)

is satisfied under a given closed-loop control policy. This constraint
turns out to be more amenable to a receding horizon control
approach than the constraint (17).

However, in the presence of independent unbounded distur-
bances additively entering the system, it is impossible to ensure
feasibility of (18) at all times. Hence, in this section, we assume
that the disturbance sequence is i.i.d. and bounded as

∥wk∥∞ ≤ ∆, k = 0, 1, . . . , (19)

for some ∆ < ∞. In addition, we assume that the pair (A, B) in (2)
is stabilizable.

At this point, it should be stressed that, on account of the
bounded support of the disturbance, the exact results of the
previous sections no longer apply and have to be considered as
approximations only. However, a similar suboptimality analysis
as in Section 3.2 can be carried out, revealing that, as expected,
the suboptimality of this approximation depends on the degree
of dissimilarity between the true (bounded) distribution and a
Gaussian distribution. A formal derivation goes along the lines of
Section 3.2; details are omitted for brevity.

The one-step constraint (18) is handled using the standard dual
mode paradigm (Mayne, Rawlings, Rao, & Scokaert, 2000) with the
affine disturbance feedback (4) as the mode 1 policy, that is, at
times k = 0, . . . ,N − 1, and any stabilizing state feedback in
mode 2, that is, at times k ≥ N . In mode 1, we have, given xk,

P(gT xk+1 ≤ h | xk) = P(gT (Axk + Buk + wk) ≤ h)
= FgTwk

(h − gTAxk − gTBuk),

where FgTwk
is the distribution function of gTwk. Thus, to ensure

satisfaction of (18) we require that

gT (Axk + Buk) ≤ h − F−1
gTwk

(1 − α),

where F−1
gTwk

(·) is the left quantile function of gTwk, for all possible
states xk reachable at time k by the disturbance sequence up to this
time, wk−1

0 := [wT
0 , . . . , w

T
k−1]

T , under a given policy in mode 1.
For the affine disturbance feedback (4), we have

gT (Axk + Buk) = gT
[A(Akx0 + Bk(η + Kw) + Ckw)

+ B(ηk + Kkw)]

= gT (Ak+1x0 + Bk+1η) + gT (Bk+1K + ACk)w,

where ηk and Kk denote k-th block rows of size m of the
respective matrices. Thus, considering the worst case value over
all disturbances, maxw gT (Bk+1K + ACk)w = ∥gT (Bk+1K +

ACk)∥∞∆, we get a sufficient condition for recursive feasibility in
mode 1

gT (Ak+1x0 + Bk+1η) ≤ h − ∥gT (Bk+1K + ACk)∥∞∆

− F−1
gTwk

(1 − α). (20)

Note that even though the disturbance sequence along the
whole prediction horizonw appears in the above expressions, only
the disturbances up to time k−1 contribute to theworst-case value
due to the structure of the matrices involved.

In mode 2, we use a stabilizing state feedback uk = Ksxk with
the corresponding strictly stable feedback dynamics matrix Â =

A + BKs. One-step predictions in mode 2 now read

gT xN+i+1 = gT
[Âi+1x̂N + Âi+1(BNK + CN)wN−1

0

+ ÂĈiw
N+i−1
N + wN+i],
where x̂N = ANx0 + BNη and Ĉi = [Âi−1, Âi−2, . . . , I]. Thus,
considering the worst case values over wN+i−1

0 , we get a sufficient
condition

gT Âi+1(ANx0 + BNη) ≤ h − ∥gT Âi+1(BNK + CN)∥∞∆

− ∥gT ÂĈi∥∞∆ − F−1
gTwN+i

(1 − α), ∀i ≥ 0. (21)

Thanks to the stability of Â, this infinite number of constraints
can be approximated by a finite number of them. The term
∥gT Âi+1(BNK + CN)∥∞∆ tends to zero and hence can be, for
sufficiently large i, bounded by some µ, and ∥gT ÂĈi∥∞∆ tends
from below to some b < ∞. Hence, the first N̂ constraints in
(21) can be kept in its original form and the rest (conservatively)
approximated by

gT Âi+1(ANx0 + BNη) ≤ h − µ − b − F−1
gTwN+i

(1 − α), i > N̂ (22)

with the additional constraint

∥gT Âi+1(BNK + CN)∥∞∆ ≤ µ, i > N̂. (23)

Hard input constraints can be enforced explicitly in mode 1 as

|ηj| + ∆∥Kj∥∞ ≤ Umax, j = 1, . . . ,mN, (24)

where ηj and Kj denote the j-th rows of η and K , respectively.
In mode 2, the input constraints are enforced by adding another
chance constraints of the form (17) with α = 0, which are handled
according to the previous discussion.

There is still an infinite number of constraints (22) and likewise
of mode 2 input constraints, but it is known that for a stable
matrix Â, the feasible region of this set of constraints is given by
the first Ñ < ∞ of them since, because of the input constraints,
the admissible region is typically bounded, with the origin in its
interior. The minimum such Ñ can be obtained offline by solving
a sequence of linear programs (Gilbert & Tan, 1991). Finally, the
constraint (23) is clearly finitely determined since Â is stable and
∥K∥∞ is bounded by Umax/∆.

Given a feasible solution (η, K) at time zero, we are guaranteed
to have a feasible point (η̃, K̃) at time one (and hence, by induction,

at all times) constructed as η̃ =


η̂ + K(1)w0

ηL


, K̃ =

 0 0
K̂ 0
KL 0


, where

η̂ denotes the matrix η without the first block row, K̂ denotes the
matrix K without the first block row and block column and K(1)
is the first block column of K without the first block row. The last
block rows ηL and KL are given by

ηL = Ks(ANx0 + BNη) + Ks[(BNK + CN)]1:n · w0

and

KL = Ks[BNK + CN ]n+1:nN ,

where [ · ]p:q denotes the matrix given by the p-th through q-th
columns of a matrix [ · ].

To conclude this section we note that the recursively feasible
representation of the chance constraint (18) leads to affine con-
straints on η and K regardless of the disturbance distribution,
which is in stark contrast to the standard ‘open-loop’ chance con-
straints that lead to second-order-cone constraints for Gaussian
disturbances and usually have no exact representation otherwise.
This simplicity comes at the cost of a certain degree of conser-
vatism introduced by enforcing the one-step constraint (18) rather
than directly (17).
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Table 1
Comparison of cost functions at the end of the optimization horizon.

p SH-NDF NDF SH-MPC CE-MPC Opt-OL CE-OL

1 85.9 90.3 98.3 120.0 140.5 144.2
1.5 73.3 76.8 85.0 102.7 115.2 118.0
2 70.5 74.1 80.1 96.0 110.9 113.7

5. Numerical examples

We present two numerical examples that compare our method
to other control strategies. With the gradient and Hessian on hand,
the problem (P2) can be solved by a general-purpose convex
solver. For our small-scale examples we managed with a custom
primal–dual interior-point solver, although the Matlab fmincon
function would do as well.

In the first example, we consider a fixed horizon stochastic
control problem. For the systemmatrices and the noise covariance
matrix we chose A =


1 −0.4
0.1 1


, B =


0.6
0.4


,Σw = I⊗


8 5
5 6


with

wk zero-mean jointly Gaussian. We set Q = I , R = 0.1, and the
input constraints to Umax = 30. The optimization horizon is T =

12, the initial state x0 = [1, −1]T . The function e(·) was chosen
as the elementwise saturation that saturates the disturbances at
4
√
max(diag(Σw)) = 11.31. We compared our control policy

(NDF) (with the prediction horizon N = T and the control horizon
Nc = T ) against the standard certainty equivalent MPC (CE-MPC)
(Nc = 1, N = T ) and against the shrinking horizon certainty
equivalentMPC (SH-MPC) (Nc = 1,N(k) = T−k, k = 0, . . . , T−1).
Furthermore, we set against each other the proposedmethod with
K = 0 (Opt-OL) and the certainty equivalent open loop control (CE-
OL) (i.e. CE-MPC with Nc = N = T ). For the sake of completeness
we also included our method in the shrinking horizon mode (SH-
NDF) with Nc = 2,N(k) = T − k. The cost performance of the
policieswas evaluated using 1000Monte Carlo runs,which renders
the Monte Carlo error negligible compared to the difference in the
costs of the policies.

The results for the p-norm minimization (10) using the
upper-bounds (11) are summarized in Table 1, which shows
that our method (without shrinking) outperforms the others
by a significant margin, except perhaps for SH-MPC where the
difference is smaller and, naturally, our method in the shrinking
horizonmode. On the other hand, unlikewithMPC strategies, there
is no need for online optimization with our method in this setting.
It is also worth noting that our method with K = 0 (i.e., an open
loop policy) slightly outperforms the certainty equivalent open
loop control, which is in contrast with the quadratic cost case
where this strategy is optimal in the class of open loop policies.
Finally, we evaluate the bound (16), which yields β̃ = 3.3 · 10−2,
showing that the solution found by (P2) is in this case practically
optimal in (P1) for p = 1. For p > 1, no conclusions about the
suboptimality of the solution can be drawn although the superior
performance compared to SH-MPC suggests that it be should very
small.

Our second example compares the recursively feasible affine
disturbance feedback stochastic MPC (S-MPC) with the robust
affine disturbance feedback MPC. We consider the system given
by the matrices A =


1 0
1 1


, B =


1
2


, where wk is i.i.d.

with the standard normal distribution truncated at ∆ = 3. The
weighting matrices were set to Q = diag(0, 1) and R = 0, the
input constraints to Umax = 12, and the initial state to x0 =

[5, 5]T . We chose the quadratic cost, which involves solving the
problem (P2) with p = 2 and δ = ∆ = 3 augmented with
the recursively feasible chance constraints (20)–(23). Expression
(6) was used to (approximately) evaluate the cost function even
though, being quadratic, it could have been evaluated exactly. We
Table 2
Comparison of the control policies in a receding horizon mode over 10,000 time
steps. The final cost for the LQ controller is 9.9575 · 103 .

Policy LQ S-MPC Robust

J/JLQ 1 1.72 10.18
# violations 4920 1991 0

Fig. 1. Time evolution of x2 over the first 1000 time steps under the stochastic and
robust affine disturbance feedback policies in a receding horizon mode.

consider control to a constant set point x2 = −4 and a single
chance constraint P(x2 ≥ −4) ≥ 0.8, i.e., g = [0, −1]T , h = 4,
α = 0.2.

We compared our control policy with N = 8, N̂ = 10, Ñ = 1
against the affine disturbance feedback robust MPC and the LQ
optimal controller, whose gain Ks = −[0.5, 0.5] was also used
as the mode 2 controller for our algorithm. The parameters in
the mode 2 constraint (22) are µ = 0.1, b = 0 for the chance
constraint, and µ = 0.1, b = 6 for the two hard input constraints.

The controllers were examined over one very long time interval
T = 10000. Table 2 shows that, in this case, our algorithm
can fully exploit the probabilistic constraint to gain a significant
performance improvement over the robust MPC. The LQ optimal
controller, of course, outperforms the other two policies in terms
of the cost but violates the probabilistic constraint substantially.
These conclusions are also confirmed by Fig. 1, which shows the
evolution of x2 over the first 1000 time steps.

6. Conclusion

In this article we primarily dealt with the expectation of
the p-norm stochastic control problem for which we developed
an approximate solution technique ensuring bounded control
inputs in the presence of Gaussian disturbances. Moreover, we
constructed a suboptimality bound of ourmethod in a certain class
of nonlinear feedback control policies. The presented approach can
be straightforwardly extended to the output feedback case.

Furthermore, we developed a recursively feasible algorithm
with respect to chance constraints and/or hard input constraints
in the presence of bounded disturbances. The algorithm has the
nice property of introducing only additional affine constraints.
The approach, however, exhibits a certain degree of conservatism,
reduction of which should be a focus of future work.
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