Certification of fixed computation time first-order optimization-based
controllers for a class of nonlinear dynamical systems
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Abstract— This paper proposes a stability verification method
for systems controlled by an early terminated first-order
method (e.g., an MPC problem approximately solved by a fixed
number of iterations of the fast gradient method).

The method is based on the observation that each step
of the vast majority of first-order methods is characterized
by a Karush-Kuhn-Tucker (KKT) system which (provided
that all data are polynomial) is a basic semialgebraic set; M
steps of a first-order method is then characterized by a basic
semialgebraic set given by the intersection of )/ coupled KKT
systems. Using sum-of-squares techniques, one can then search
for a polynomial Lyapunov function that decreases between two
consecutive time instances for all control inputs belonging to
this coupled KKT system.

The proposed method applies to nonlinear dynamical systems
described by polynomial (or trigonometric) data affected by
a (possibly state-dependent) disturbance; in particular the
method is not restricted to linear systems and/or convex cost
functions. To the best of the authors’ knowledge, this is the
first verification approach for early terminated optimization
schemes with this level of generality.

Keywords: First-order methods, model predictive control, early
termination, certification.

I. INTRODUCTION

Verification of the stability of optimization-based con-
trollers (e.g., MPC) under tight constraints on the com-
putation time is a topic of active research and is crucial
for practical deployment of these controllers, especially on
embedded platforms.

One way of verifying stability is to first compute the
number of iterations of a given optimization method to
achieve a given precision £ and then enforce the stability
of the closed-loop system under this imprecise control law,
typically treating the solution inaccuracy ¢ as a disturbance.
This approach typically suffers from two problems: First,
the number of iterations needed to achieve a given precision
is difficult to analyze and existing iteration bounds are
often conservative and/or computationally difficult to obtain
(e.g., requiring the solution of a mixed-integer optimization
problem, whose size grows quickly with the input data
dimension) [2], [18]. Second, treating the solution inaccuracy
€ as a disturbance often leads to conservative robust MPC
formulations where stability is enforced by design, often at
the cost of a significant deterioration of control performance.

Another way of certifying stability of early terminated
optimization schemes is to use the fact that the optimization
problem underlying a traditional stabilizing MPC setup can
be warm-started using a shifted sequence of the previous
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control inputs and that this warm-starting ensures a Lya-
punov decrease. Augmenting the optimization problem by
a constraint enforcing the Lyapunov decrease in conjunction
with an optimization method ensuring primal feasibility after
each iteration warm-started by the shifted sequence then
guarantees stability; see [20] for details. This approach,
however, assumes that the MPC problem is designed in such
a way that the closed-loop system is stable when solved to
the full accuracy and that the shifted sequence is feasible
and ensures a Lyapunov decrease. This premise, although
theoretically convenient, is rarely satisfied in practice.

The approach proposed in this paper tackles the problem
of stability of early terminated optimization-based controllers
from a very different angle — we propose a verification
procedure that provides computational certificates for the sta-
bility of a dynamical system controlled by an optimization-
based controller where the underlying optimization problem
is solved by a first-order method. In particular we do not
a priori assume that the optimization-based controller is
stabilizing when solved to full accuracy, let alone possesses
any robustness properties.

The proposed approach builds on the idea of Primbs
in [14] who noticed that the Karush-Kuhn-Tucker (KKT)
system associated to an optimization problem with convex
quadratic cost function subject to linear dynamics and poly-
topic constraints is a basic semialgebraic set! and used the S-
procedure to seek a quadratic Lyapunov function decreasing
under the control law implicitly characterized by the KKT
system. This work brings Primbs’ approach one step further
by characterizing each step of a given first-oder method by a
KKT system and searching for a Lyapunov function decreas-
ing on the conjunction of M coupled KKT systems corre-
sponding to M steps of the first-order method. In addition
our approach applies not only to linear systems with convex
quadratic cost but to all problems with polynomial data;
this is possible by replacing the S-procedure by powerful
sum-of-squares (SOS) programming techniques. Moreover,
the approach readily extends to the case of trigonometric
data using sum-of-squares representation of non-negative
trigonometric polynomials [6]. To the best of the authors’
knowledge, this is the first verification approach for early
terminated optimization schemes that applies to nonlinear
dynamical systems described by polynomial or trigonometric
data with no assumptions of convexity.

The approach is based purely on convex optimization,
in fact on semidefinite programming (SDP). The size of

IBasic semialgebraic set is the intersection of (sub/super)-level sets of
finitely many polynomials.



the SDP problem to be solved depends on the problem
dimensions and on the richness of the candidate Lyapunov
functions we search over, which is a tuning parameter.
The approach is easy to implement using high-level SOS
modeling tools (e.g., Yalmip [9], SOSTOOLS [13] or more
recently SOSOPT [15]).

II. PROBLEM STATEMENT

We consider the nonlinear discrete-time dynamical system

vt = f(z,u), (1)

where z € R™ is the state, u € R™ the control input, z+
the successor state and f : R” x R™ — R™ a polynomial
transition mapping.

The goal of the paper is to provide computational cer-
tificates of stability of the system (1) when controlled by a
controller which at each time instant approximately solves
the optimization problem

imize J
minimize (z.y)
s.t. q(z,y) <0 2)
Geq(,y) =0,

where the scalar function J : R™ x R™ — R and the vector-
valued functions ¢ : R™ x R™ — R" and h : R™ x
R™ — R™ea are assumed polynomial. The optimization
problem (2) is purposely stated in a fairly general form so
that particularities do not obstruct the main idea. However,
in most cases the cost function J(z,y) will correspond
to the cost of an MPC problem, the decision variables y
to the control inputs along a prediction horizon and the
constraints ¢(z,y) > 0 and geq(z,y) = 0 to state and/or
input constraints.

Given an (approximate) solution y to problem (2), the
control input u applied to the system is given by u = k(y),
where k£ : R" — R™ is a polynomial. For instance, if y
is the control sequence along the prediction horizon of an
MPC problem, then x(-) is simply the selection of the first m
components of y.

We focus our attention on the case when the problem (2)
is solved approximately using (typically a small number of)
iterations of a first-order method. Our approach applies to
most of the existing first-order methods — the key property
a method must satisfy is that each step of such a method
is characterized by a system of polynomial equations. To be
more specific we detail the approach on the probably simplest
method — (primal) projected gradient — and later on comment
on the particularities of other common approaches.

At this point we would like to stress that we make no
assumptions on the problem data ensuring that a given first-
order method converges (to local/global optimum or other-
wise), nor do we assume that the underlying optimization
problem results in closed-loop stability when solved to the
full accuracy. In fact, the optimization problem (2) may have
nothing to do with the system to be controlled (although
then it is, of course, unlikely to obtain a stable closed-loop
behavior).

III. MAIN IDEA

When applied to problem (2), the projected gradient
method produces a sequence of points given by

Yk+1 = PC (yk - Tvy‘](xv yk))7 (3)

where Pc(-) denotes the Euclidean projection operator on
the constraint set

C={yeR"™|q(z,y) <0, geq(z,y) = 0}

and 7 > 0 is a step size.
Equation (3) can be equivalently written as
vyt = argmin glly = (g = 7V, I (@ 50))3
ye ny
st q(z,y) <0 @
Geq (2, y) = 0.

We assume that the projected gradient iterations (4) are
initialized with yo := ko(z), where ko(-) is a polynomial
(e.g., zero, an LQ controller Kjqx, etc.) and that a fixed
number M > 0 of iterations is performed. After that the
control input k(yas) is applied to the system.

We make the following standing assumption:

Assumption 1. 1) (Feasibility) The problem (4) is feasi-
ble for all x € R" and y;, € R™v.
2) (Solvability) The minimum in (4) is attained for all
z € R” and y;, € R™v.
3) (Constraint qualification) There exists a set of La-
grange multipliers characterising each global mini-
mum of the problem (4).

Note that at this level of generality the problem (4) may
be a difficult nonconvex optimization problem; however, in
most practical cases when the projected gradient method is
computationally viable, the constraint set of (4) has a simple
form allowing for a fast, often analytical, solution of (4).
Note also that Assumption 1 implies that the problem (2) is
feasible. This is a consequence of using the simple projected
gradient method to explain the approach — more sophisticated
first-order methods (e.g., ADMM treated in Section VI-B)
allow for problem (2) to be infeasible while still having
iterates characterized by an optimization problem satisfying
Assumption 1.

Under this assumption, using the Karush-Kuhn-Tucker
(KKT) necessary conditions of optimality, the last iterate yas
and therefore the control input x(yys) are characterized by
the following system of polynomial equalities and inequali-
ties

ki1 — (ye — 7V (2, 91)) + (Jacy q(, Yrr1)) " Aksa

+ (Jacy Geq (@, Yrt1)) Vi1 =0 ®)
Geq (T, Yr41) =0 (6)
Ner14(2, Y1) =0 (7
q(z,yr1) <0 ®)
Aks1 >0, 9

k=0,...,M —1, yg = ko(x). Here Jac(-) is the Jacobian
matrix, and A1 € R™ and vi1 € R™%a are respectively



the Lagrange multipliers associated to the inequality and
equality constraints at step k + 1. Grouping all optimization
variables and Lagrange multipliers together as

T T

y:[yf,...,y?v}] , )\:[A{w..,)\%},l/i...,l/ﬂ] ,

this system of equations can be written compactly as
h(z,y,A) =0 (10
g(z,y,A) <0, (11)

for some polynomials h and g.
Thus, the closed-loop evolution under the control given by
M iterations of the projected gradient method is

vt = f(z,k(yn))
subject to the polynomial equalities and inequalities (10)
and (11).
A sufficient condition for the closed-loop system (12) to be
globally asymptotically stable is the existence of a Lyapunov
function V' (z,y, A) such that

V($+7y+7)\+) - V(Jf,y,)\) < _Hxng
V(z,y,A) > [z
V(z,y,Ay",A%) €K,

12)

13)
(14)

where

K={(z,y, A, y", A7) | h(z,y,A) =0, g(z,y,A) <0,
h(zt,yT ., A7) =0, g(at,y*, A7) <0}, (19

and o+ = f(w, k(yar)).

These equations require that the function V' decreases
on the basic semialgebraic set K implicitly characterizing
the closed-loop control law = — k(yas(x)). Therefore we
can tractably seek a Lyapunov function for system (12) by
restricting V' to be a polynomial of a pre-defined degree and
replacing the inequalities (13) and (14) by sufficient sum-of-
squares® (SOS) conditions. Setting

z:= (9.2, y", A7),
these SOS conditions read
Vie,y,A) =V, gt A7) — ||z = (16)
= 00(2) +01(2) g(,y, A) + 02(2)Tg(2™,y " AT)
+p1(z) h(z,y,A) + pa(2) Rz, y T, AT),

213 = V(z, y,A) = (17)
=60(2) +71(2) g(z, ¥, A) + 52(2) g(z,y T, AT)
+51(2) h(z,y, ) + pa(2)Th(z T,y AT),

where o;(z) and G;(z) are SOS multipliers and p(z) and
p(z) polynomial multipliers of compatible dimensions and
pre-specified degrees (selection of the degrees is discussed in
Section IV). The satisfaction of (16) implies the satisfaction

2A polynomial o(x) is sum-of-squares (SOS) if it can be expressed as
o(z) = >, s2(x) for some polynomials s;(z). A sufficient condition for
a polynomial p(z) to be nonnegative on a given set {z | g;(xz) < 0} is
p(x) =00 — >, 0i(x)gi(x) where o; are sum-of-squares.

of (17) and the satisfaction of (14) implies the satisfaction
of (13) for all z € K; this follows readily since o; and &;
are globally nonnegative, g is nonnegative on K and h is
zero on K (see also footnote 2).

Therefore, the problem of verifying the stability of the
closed-loop system (12) boils down (via sufficient condi-
tions) to the following SOS feasibility problem

find V,00,01,02,p1,p2,00,01,02,D1, P2

s.t. (16), (17)
00,01,02,00,01,02
V,p1,p2,D1, P2

SOS polynomials
polynomials,

(18)
where the optimization is over the coefficients of the poly-
nomials sought.

The following proposition summarizes the results of this
section.

Proposition 1. If optimization problem (18) is feasible, then
the closed-loop system (12) is globally asymptotically stable.

IV. COMPUTATIONAL ASPECTS

After specifying the degrees of the polynomials in (18),
the problem (18) immediately translates to a semidefinite
program (SDP). Indeed, the constraints (16) and (17) are
affine in the coefficients of the polynomials sought and
the constraint that a polynomial o(z) of degree 2d is a
sum-of-squares is equivalent to the existence of a positive-
semidefinite matrix Q = 0 such that o(z) = v(x)TQu(x),
where v(z) is a vector of monomials of total degree up
to d; see [11] or [8] for details. The transformation from
the abstract form (18) can be carried out automatically
using freely available modeling tools such as Yalmip [9],
SOSTOOLS [13] or SOSOPT [15] and solved using SDP
solvers such as SeDuMi [12] or MOSEK.

The computational tractability of the resulting SDP cru-
cially depends on the degrees of the polynomials in (18).
There a tradeoff has to be made between the richness of the
class of Lyapunov functions we search over and tractability.
The most important decision to make is on the degree of
the Lyapunov function V. It is impossible to give general
guidelines on how to select this degree for the general
problem (2); however, for the standard setup with a linear
system and quadratic cost minimized over a finite prediction
horizon N, we found it sufficient to take V' quadratic jointly
n (z,y), thereby encompassing the optimal value function of
the problem (2) as already pointed out in [14]. For a general
nonlinear MPC problem we recommend selecting V' such
that the cost J(z,y) of (2) is among the class of Lyapunov
functions V' searched over.

Once the degree of V is selected, we need to select the
degree of the polynomial multipliers o; and p; in (16) and
o; and p; in (17). The smallest possible degree we can
select is the one that makes the degree of the products
between the multipliers and the functions g and h in (16) and
(17) equal to the degree of the Lyapunov candidate V'; this
corresponds to the so-called Lasserre’s relaxation of order



one [8]. Increasing the degree of the polynomial multipliers
then generates a hierarchy of semidefinite programs covering
an increasingly richer class of functions V. In this case, this
hierarchy is not guaranteed to be convergent in the sense of
asymptotically covering all polynomial Lyapunov functions
V' of the prescribed degree; this is due to the discrepancy
between SOS and nonnegative polynomials (see, e.g., [3])
since, in general, the set K defined in (24) need not be
compact. Indeed, it is possible to manufacture an example
of a dynamical system which admits a unique (up to a
scaling) quadratic Lyapunov function whose derivative along
the vector field is globally non-positive but not (minus) sum-
of-squares [1, Section III].

In practical terms we often find the Lasserre’s relaxations
of order one sufficient but recommend to try out higher
orders if the first one is infeasible. Crucially, even if a
higher degree of the polynomial multipliers is selected,
it is possible to discard some (typically, for this problem
class, a large portion) of the monomials comprising these
multipliers based on monomial reduction techniques (such
as the Newton polytope [17]); this reduction is carried out
automatically by SOS modeling tools such as Yalmip [9]
or SOSOPT [15]. In particular SOSOPT carries out more
efficient reduction techniques described in [16] and typically
arrives at a more tractable SDP problem to be solved.
However, for larger problems, the monomial reduction
phase itself may become the bottleneck of the whole
procedure and therefore care must be taken when selecting
the degrees of the polynomial multipliers. One can, for
instance, solve the problem for a small number of iterations
of the gradient M, look at what monomials were discarded
by SOSOPT and extrapolate from there the selection of
monomials for a larger M; this heuristic procedure often
significantly reduces the reduction phase and requires only
a marginal additional effort on the side of the user.

V. LOCAL VERSION — STATE CONSTRAINTS

The method presented in Section 2 addresses the verifi-
cation of global asymptotic stability. In order to get a local
version and/or incorporate state constraints we follow the
approach of Primbs [14] who proposes to simply enforce
the Lyapunov conditions (13) and (14) on the intersection of
the set K defined in (24) with the constraint set (or a given
region of interest)

Provided that the functions v;(-) defining X are polynomials,
the set

K:={(z, 9. Ay " A" | (z,y9, A y",A") e K,z € X}

is basic semialgebraic, leading to a verification SOS problem
completely analogous to (18). However, the pitfall here is
that the satisfaction of Lyapunov conditions (13) and (14)
does not ensure invariance of the closed-loop evolution in
the set X. Asymptotic stability is guaranteed only on the
largest sub-level set of V' contained in X. To be more precise

asymptotic stability is guaranteed in the largest sub-level set
contained in X of the function

V(z) = zuf{V(x,y,A) | (,9,) € K},

where
K :={(z,4,7) | g(z,y,A) <0,h(z,y,A) = 0,z € X}.

Note that if we choose V' as a function of = only, then
trivially V(z) = V(). In general, however, the function
V(z) is a solution to a complicated parametric polynomial
optimization problem and therefore not known analytically.
Therefore, we resort to computing an inner approximation
to the largest super level set of V() included in X by first
approximating V/(z) from above by a polynomial function
p(z) of a prescribed degree and computing the largest sub-
level set of p(x) included in X. Approximating V' (z) from
above can be done using the following SOS optimization
problem

Inin%n)lize Jx p(x) dx

s.t. p(x) > V(z,y,A) Y (z,9,A) K.

) (19)
Since the set K is basic semialgebraic, the constraint imme-
diately translates to an SOS constraint (with conservatism
inversely proportional to the degree of the SOS multipliers),
and the objective is a linear combination of the coefficients
of the polynomial p(z), where the coefficients of the linear
combination are the moments of the Lebesgue measure
over X. Problem (19) therefore immediately translates to
an SDP.

Once p(-) is found an inner approximation to the max-
imum level set of V(x) contained in X can be found by
solving

maximize
vER1 {00,:},{00,i}
s.t. —vi(x) = 0o i(x)+o1:(x)(y —p(z)), i € {1,... ,ny}
{00,i}, {014} SOS polynomials
(20)

The satisfaction of the first constraint implies that 1;(x) < 0
for all z such that p(z) < ~ and all i € {1,...,ny};
therefore {x | p(z) < 4} C X for any v feasible
in (20). Maximizing 7 then maximizes the size of the inner
approximation.

Problem (20) is only quasi-convex because of the bilinear-
ity between o7 and v but can be efficiently solved using a
bi-section on +. Indeed, for a fixed value of -y problem (20)
is an SDP which can be efficiently solved.

The following Lemma summarizes the results of this
section.

Lemma 1. If a polynomial p(-) is feasible in (19) and v €
R feasible in (20), then the set {x | p(x) < v} provides an
inner approximation to the maximum sub-level set of V(X)
included in X.

This immediately leads to the following proposition.

Proposition 2. If a polynomial V (-,-,-) is feasible in (18),
polynomial p(-) feasible in (19) and v € R feasible in (20),



then all trajectories of the closed-loop system (12) starting
from the set {x | p(x) < ~v} are asymptotically stable and
lie in the constraint set X.

VI. OTHER FIRST-ORDER METHODS

The main idea of the verification procedure described in
Section IIT extends to many other first-order methods. This
section presents a by no means exhaustive list of some of
the more commonly encountered methods amenable to the
presented approach.

A. Fast gradient

The approach immediately extends, with identical com-
putation cost, to the fast gradient method whose iterates
proceed as

Yk+1 = Pe(zr — 7V J (2, 21))
21 = Y1 + B (Yr+1 — Yk)

for a suitably chosen momentum sequence [; [10]. Indeed,
as for the projected gradient method, each step involves one
projection step that can be characterized via a KKT system in
exactly the same fashion as before. The auxiliary sequence
z 1s a linear combination of y; and yr_; and therefore
does not enter the KKT system (5)-(9) as a new variable.
Consequently, the dimension of the verification problem
remains the same.

B. ADMM

The alternating direction method of multipliers (ADMM)
(see, e.g., the survey [4]) can also be handled. In order to
apply ADMM we assume that the general problem (2) can
be written in the special form

. . . J J
Jinimize i@, y) + (2, 2) 1)
s.t. A(x)y + B(x)z = c(x),

where J;(x,y) are polynomial and the matrices A(x), B(x)
and the vector ¢(z) depend polynomially on z. The function
Ja(z,z) (which take values in the extended real line) is
assumed to have a proximal operator [5] that can be charac-
terized by a KKT system described by polynomial equalities
and inequalities; typically, Jo(z, ) is the indicator function®
of a basic semialgebraic constraint set.

Casting the general problem (2) in the form (21) can be
done in various ways, each leading to different computational
properties of the resulting problem. In problem formulations
arising from control, the function .J; (z, y) often corresponds
to the cost J(x,y) in (2), J2(z,x) is typically the indicator
function of the constraint set and the equality constraint
of (21) a consensus constraint y — z = 0.

3By indicator function of a set we mean a function which is equal to zero
on the set and +oo otherwise.

The ADMM iterations are
Y41 = argmin{ Jy (z,y)+
yER™Y

+ (p/2)|| A(z)y + B(x)zr — () + w |3}
21 = arengnizn{JQ(m, z)+

+ (/2| A(@)yr 1 + B(x)z — cx) + w3}
Wi = Wi + (A@)yr1 + B(@)2p41 — c()),

where p > 0 is a fixed parameter. We assume that the minima
in both steps are attained and that a constraint qualification
assumption analogous to Assumption (1) holds.

Then, the first two steps can be characterized by two
KKT systems and therefore ADMM is also amenable to the
approach of Section 2, leading to a verification problem of
roughly twice the size of that of the (fast) gradient method.
However, in most cases where it is viable to deploy ADMM,
the first step admits an analytic solution (e.g., it is an
unconstrained minimization of a strictly convex quadratic)
and therefore only one KKT system for the second step is
needed, leading to the same computation complexity as for
the gradient methods.

An accelerated version of ADMM using an over-relaxation
step applied to the sequence of wy, (see, [7, Algorithm 8]) can
also be handled in an analogous fashion to the fast gradient.

The alternating minimization algorithm (AMA) proposed
in [19] can also be handled analogously to ADMM.

VII. ROBUST VERSION

This section describes how the proposed approach extends
to the case where the controlled system is affected by a
disturbance at each time taking values in a given basic semi-
algebraic set (which can possibly depend on z). Consider the
dynamical system

t = f(xvuvw)a w e W(IC), (22)
where the disturbance set W (x) is given by
W(z) = {w € R™ | ¢y (z,w) <0}, (23)

where the components of the vector function ), : R*T7"v —
R™w are polynomial. Note that we do not a priori assume
that the set W (z) is compact.
The extension is straightforward. Defining
Ko={(z.y, X wy" X" w") | ha,y,A) =0, 4
9(z,9.A) <0,h(z", 4" A7) =0, gla",y", A") <0
Yo (2, w) < 0,9 (z",w™) <0},
we can seek an input-to-state (ISS) Lyapunov function
V(z,y, A, w) such that
Vet yt AT wh) = Viz,y, A w) < — )3 + allw]3

25
V(e g A w) > )2 (33

v (ZL’, ya wa >‘7 erv A+7 w+) € Kw?
where 21 = f(z, k(yp ), w) with x(-) being the polynomial

extracting the control input applied to the system from the
M iterate of a first-order method, and o € R



Since the set K, is basic semialgebraic, the condi-
tions (25) and (26) translate immediately to sum-of-squares
conditions analogous to (16) and (17), leading to an SOS
problem analogous to (18). Instead of solving a feasibility
problem as in (18) we can minimize the ISS gain o which
still leads to a convex SOS problem. Feasibility of this
optimization problem implies that the closed-loop system
is globally input-to-state stable provided that Assumption 1
holds for the optimization problem characterizing the iterates
of the first-order method considered and provided that W ()
is non-empty for all x € R"™.

VIII. NUMERICAL EXAMPLE

This section illustrates the approach on two numeri-
cal examples. The SOS problems were modeled using
SOSOPT [15] and solved using MOSEK. For both examples
we report the parsing time of SOSOPT, the time to carry out
monomial reduction by SOSOPT and solve time of MOSEK.
The bottleneck of the approach is the monomial reduction
phase (which, however, is very effective in the sense of
reducing the size of the problem significantly). The authors
expect that a more efficient implementation of the reduction
phase and polynomial handling in general would allow the
approach to scale much beyond what is presented here.

A. Global asymptotic stability of an uncertain system

Consider the Quanser active suspension model in
continuous-time # = A,z + B.u with

0 1 0 -1
A _ _KS/MS _BS/MS 0 BS/MS
¢ 0 0 0 1
K‘S/Mus Bs/Mus _Kus/Mus _(Bs +Bus)/Mus

B.=1[0 1/Ms 0 —1/Mu]",

where K, = 1205, K,s = 2737, M,s = 1.5, Bs = 20,
B,s = 20 and the mass M, is unknown and possibly
time-varying in the interval [2.85,4]. After discretization*
with sampling period 0.01, this model can be written as
2t = (Ag + Ayw)x + (By + Biw)x, where w := 1/M, €
[1/4,1/2.85].

The optimization problem considered (2) is the standard
constrained LQ problem with cost function given by matrices
@ = I and R = 20 minimized over prediction horizon N
subject to input constraint |u| < 250 and nominal dynamics
T = Agx+ Bou. This problem is expressed in a dense form
(i.e., the state is eliminated using the dynamics equation) to
which we apply M steps of the projected gradient method (3)
initialized with the LQ solution and seek a quadratic ISS
Lyapunov function V' while minimizing the ISS gain «
in (26). The robust version of the SOS problem (18) de-
scribed in Section VII is feasible (for all combinations of
M and N tested) when we take the SOS multipliers o1, o2
in equation (16) of degree two in (x,y) and the polynomial
multipliers p;, pe of degree one in (z,y,A). The list of
monomials v(z, y, A, w) constituting the multiplier o in the

4The matrices Ap, A1, Bo, B1 were found as a least-squares fit of
the continuous-time dynamics discretized on a grid of values of w €
[1/4,1/2.85].

form v(z,y, A, w)T Qu(x,y,\,w), @ = 0, is determined
automatically by SOSOPT and contains monomials linear in
A, x, y and w, and products z-w and y-w. In Eq. (17) we set
all multipliers to zero except for 6y, monomials of which are
again determined automatically by SOSOPT. Determining
the smallest list of monomials v(x,y, A, w) takes the most
time of the whole procedure; this is documented by Table I
reporting the time breakdown for different values of N and
M. The optimal ISS gain « is equal to zero, showing closed-
loop global robust asymptotic stability (i.e., convergence
lzxl] — O for any sequence {wy € [1/4,1/2.85]}%2,).
Figure 1 shows a sample trajectory of |lxg||, V(xg) (the
Lyapunov function is function of = only in this case) and
ug and wy for N = M = 4.

TABLE I
Global asymptotic stability of an uncertain system — timing breakdown as
a function of the number of iteration of the projected gradient method M
and the horizon length IV used in the cost function. The parsing and
monomial reduction was carried out by SOSOPT; the SDP solve by

MOSEK.
parsing monomial reduction SDP solve
M,N=1,1 093s 12 s 0.11 s
M,N =22 268s 1455 035 s
M,N =3,3 45s 350s 14 s
M,N =44 1053s 9450 s 9 s

B. Local stability of a quadcopter

This example investigates stability of a linearized attitude
and vertical velocity model of a quadcopter. The system
has seven states (Roll, Pitch and Yaw angles and angular
velocities, and velocity in the vertical direction) and four
control inputs (the thrusts of the four rotors). The sys-
tem is controlled by a one-step MPC controller which at
time k approximately minimizes the cost 2} Qzy +u} Ruy,+
$£+1P517k+1, where Q = I, R = 10l and P is the
infinite-time LQ matrix associated to the cost matrices ()
and R, using one step of the projected gradient method (3)
subject to the input constraints ||u|lc < 1. This model
is open-loop unstable and therefore we investigate closed-
loop stability in the region X = [—1,1]7 as described in
Section V. The SOS problem (18) is feasible when seeking
a quadratic Lyapunov function using SOS multipliers oy,
o2 in equation (16) of degree two in = and the polynomial
multipliers p;, pa of degree one in (x,y,A). The smallest
set of monomials constituting o is chosen automatically by
SOSOPT. In (17), we chose all multipliers zero except for &
whose monomials are determined automatically by SOSOPT.
Computing the largest v such that {z | V(z) < ~} is
included in X yields v = 6.37; this proves that all trajectories
starting in {z | V(x) < ~} stay there and converge to
the origin. One closed-loop trajectory of |z||2, V(x) and
u are depicted in Figure 2; note that this trajectory does not
start in {x | V(z) < ~} but still converges to the origin
and the Lyapunov function decreases. The parsing time and
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Fig. 2. Local stability of a quadcopter — trajectories of the norm of the state ||z ||, the Lyapunov function V' (xy ), the control input uy, for initial condition

zo=[1111111]7T.

monomial reduction carried out by SOSOPT took 2.7s and
16.2s, respectively; the MOSEK solve time was 0.55s.

IX. CONCLUSION

This paper presents a verification method for early-
terminated first-order methods. The method is based on the
observation that any control input generated by the vast ma-
jority of first-order methods terminated after a finite number
of iterations belongs to a basic semialgebraic set related to
the KKT systems characterizing each step of the first-order
method. One can then seek a polynomial Lyapunov function
decreasing on this semialgebraic set using sum-of-squares
programming which reduces to a semidefinite program.

The sum-of-squares problem can be easily modeled us-
ing freely available high-level tools (e.g., SOSOPT [15]
or Yalmip [9]). At present, the parsing and pre-processing
phase carried out by these modeling tools seem to be the
computational bottleneck of the method, not the size of the
resulting semidefinite program. The authors are currently
investigating alternative polynomial representations and more
efficient monomial reduction techniques that could signifi-
cantly improve scalability of the approach.
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