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Abstract: This paper continues in the work from Cibulka et al. (2019) where a nonlinear vehicle
model was approximated in a purely data-driven manner by a linear predictor of higher order,
namely the Koopman operator. The vehicle system typically features a lot of nonlinearities such
as rigid-body dynamics, coordinate system transformations and most importantly the tire.
These nonlinearities are approximated in a predefined subset of the state-space by the linear
Koopman operator and used for a linear Model Predictive Control (MPC) design in the high-
dimension state space where the nonlinear system dynamics evolve linearly. The result is a
nonlinear MPC designed by linear methodologies.
It is demonstrated that the Koopman-based controller is able to recover from a very unusual
state of the vehicle where all the aforementioned nonlinearities are dominant. The controller
is compared with a controller based on a classic local linearization and shortcomings of this
approach are discussed.

Keywords: Koopman operator, Eigenfunction, Eigenvalues, Basis functions, Data-driven
methods, Model Predictive Control

1. INTRODUCTION

A vehicle is a nonlinear system that is becoming more
interesting from the control engineering point of view with
the ever increasing number of electric vehicles. This gives
an opportunity for sophisticated control systems to take
the place of old-fashioned solutions which are currently
present in the majority of vehicles today.

This paper examines the nonlinear control of the vehicle
described by a linear predictor which is valid in a prede-
fined subset state space, which allows for exploitation of
linear control methods on the nonlinear system. The linear
predictor used in this paper is the Koopman operator
(Koopman (1931)).

The Koopman operator, an increasingly popular tool for
global linearization and analysis of nonlinear dynamics
(Mezić (2005), Korda and Mezić (2019) ,Korda and Mezić
(2018), Mezić and Banaszuk (2004)), is used in this work
to approximate the vehicle nonlinear dynamics in order
to achieve a linear representation of the system in a
predefined subspace of the state space.

This paper continues in the work from Cibulka et al.
(2019), where different methods for global linearization
of the single-track model were used. The most promising
method (described in detail in Korda and Mezić (2019))
is used for approximation of autonomous and controlled

behaviour of the nonlinear vehicle system by a high-
dimensional linear system. The resulting linear system
is then used for linear Model Predictive Control (MPC)
design and verified against a MPC based on local lin-
earization which was the prevalent approach of tackling
nonlinear systems in the past.

2. SINGLE-TRACK MODEL

The vehicle model derived in Cibulka et al. (2019) will
be reviewed here. The model is depicted in Fig. 1. State
vector of the single-track model is[

vx(m s−1), vy(m s−1), ψ̇z(rad s−1)
]>
, (1)

where vx is longitudinal velocity, vy lateral velocity and ψ̇z

is yawrate. Inputs to the model are rear longitudinal slip
ratios κr and front steering angle δf .

The vehicle body is modeled as a rigid body using Newton-
Euler equations

mv(

[
v̇x

v̇y

]
+ψ̇z

[
−vy

vx

]
) =

4∑
i=1

[
Fi,x
Fi,y

]
−1

2
cwρAw

√
v2

x + v2
y

[
vx

vy

]
(2)

and

Jzzψ̈z =

4∑
i=1

riFi, (3)



Fig. 1. The single-track model. Forces FR2
and FR4

are
not depicted in the figure because in a general case
with symmetric tires FR2

= FR1
and FR4

= FR3
.

where

r = [r1 r2 r3 r4] =

[[
lv
0
0

]
,

[
lv
0
0

]
,

[−lh
0
0

]
,

[−lh
0
0

]]
(4)

is the vector describing position of each wheel with respect

to the center of gravity and Fi =

[
Fi,x
Fi,y

]
is a vector of

forces acting on ith wheel. The vector and its elements
are depicted in Fig. 1. Note that although Fig. 1 might
suggest that the model has 2 wheels, it is defined with 4
wheels, where the left and right wheels are in the same
place. This allows for usage of asymmetrical tire models
(such as the one used in this paper). The parameters lv and
lh are distances of wheels from CG, as depicted in Fig. 1.
The wheels are numbered in this order: front-left, front-
right, rear-left, rear-right. mv is the vehicle mass, Fi,x/y is
a force acting on i-th wheel along x/y axis in body-fixed
coordinates. FRi,x is a force acting along x axis in wheel

coordinate system. The term − 1
2cwρAw

√
v2

x + v2
y

[
vx

vy

]
is

an approximation of air-resistance, cw is a drag coefficient,
ρ is air density and Aw is the total surface exposed to the
air flow. Jzz is the vehicle inertia about z-axis and JRi is
the wheel inertia about y-axis.

The forces

[
FRi,x
FRi,y

]
are calculated using the “Pacejka magic

formula” Pacejka (2012)

F = D cos(C arctan(Bx− E(Bx− arctan(Bx)))). (5)

The same formula can be used for calculating FRi,x (tire
longitudinal force) and FRi,y (tire lateral force) with a
different set of parameters for each. The argument x can be
either sideslip angle α or longitudinal slip ratio κ (usually
denoted as λ which is used for eigenvalue in this paper)
(see Pacejka (2012)) for calculating FRi,y or Fx respec-
tively. The parameters B,C,D and E are generally time-
dependent. This work uses the Pacejka tire model Pacejka
(2012) with coefficients from the Automotive challenge
2018 organized by Rimac Automobili. The transformation
of tire forces from wheel-coordinate system to car coordi-
nate system is done as follows[

Fi,x
Fi,y

]
=

[
cos(δi) − sin(δi)
sin(δi) cos(δi)

] [
FRi,x
FRi,y

]
. (6)

3. LINEAR PREDICTORS

Linear predictor is a linear model of a controlled system
that is able to provide the prediction of the future be-
haviour of the controlled system with sufficient accuracy.
The predictor used in this paper is the Koopman operator
and it will be used as a control design model for MPC. The
Koopman operator is infinite-dimensional linear system,
which is able to describe the nonlinear behaviour of the
controlled system. A finite-dimensional approximation of
the Koopman operator will be used as a control design
model for a linear MPC resulting in a control law that
is linear in the state space of the Koopman operator,
but nonlinear in the original state space of the nonlinear
controlled system.

3.1 Koopman operator

The Koopman operator is used as a linear predictor of the
nonlinear dynamics of the system Sec. 2. The basic idea
consists in transforming (lifting) the nonlinear state space
to a new high-dimensional, linearly evolving state space.
The control design is then performed in the linear state
space using linear control methodology. Let us assume
a discrete nonlinear uncontrolled system with state xk
at time step k, dynamics fu(.), output yk and output
equation h(xk):

xk+1 = fu(xk)

yk = h(xk).
(7)

The Koopman operator K : C(Rn) → C(Rn), with C(Rn)
denoting a space of continuous functions defined on Rn, is
defined as

(Kφ)(xk) = φ(fu(xk)) (8)

for each basis function φ : Rn → R where n is size of
the state vector xk. In our case, the function φ will also
be an eigenfunction of the operator K, meaning that the
following holds:

φ(xk+1) = λφ(xk), (9)

for some eigenvalue λ ∈ R. The functions φ will be
constructed from trajectories of (7) according to

φ(xjk) = φ(xjk)λ,g = λkgφ(xj0), (10)



where j is a trajectory of (7) starting in xj0 and xjk is
the point to which the system will get after k time-steps.
The state vector xjk is transformed with a function φ(xjk),
defined according to (10) for an arbitrary eigenvalue λ and
an arbitrary function gφ : Rn → R.

Note that the definition from (10) fulfills the requirement
of (9) because

φ(xjk+1) = λk+1gφ(xj0) = λ · λkgφ(xj0) = λφ(xjk). (11)

In other words, φ(xjk) evolves linearly along trajectories
of the system (7). The trajectories must fulfill certain
assumptions in order for the definition (10) to be valid.
The assumptions are beyond the scope of this paper and
are discussed in Korda and Mezić (2019).

3.2 Uncontrolled case

The functions gφ(.) can be replaced with scalars because

they are evaluated only at the starting points xj0 of the

trajectories j. Let us denote the set of starting points xj0
as Γ. The evaluation of gφ(.) on a point from Γ will be
denoted as

gjp,i = gφ(xj0), for xj0 ∈ Γ, (12)

where p denotes the number of output (p = 1, 2, ...Ny)
with Ny being the total number of outputs and i is

the associated eigenvalue. The association of gjp,i with a
specific eigenvalue and a specific output allows for a trivial
derivation of the A and C matrices, which will be discussed
further below. The values gjp,i can be optimized in a convex
manner in order to approximate the output values by

yjp,k =

NΛ∑
i=1

λki g
j
p,i, (13)

where yjp,k is the pth output of jth trajectory at time-step
k and NΛ is the number of eigenvalues. The solution of
(13) for output p can be written in matrix form as

||Lgp − Fp||22 + ζ||gp||22, (14)

where L is a matrix containing the eigenvalues λ, Fp
is a matrix of outputs from all trajectories and ζ is a
regularization term. The optimized value is the vector gp
which contains gjp,i for all λi and all trajectories.

The concrete form of the matrices in (14) can be found
in Korda and Mezić (2019), as well as the algorithm for
finding the eigenvalues λi.

In order to obtain the matrices A and C consider the
eigenfunction definition from (9), for

φ(xjk) =
[
φ1(xjk) φ2(xjk) . . . φNφ(xjk)

]>
(15)

the dynamics

zk+1 = Azk (16)

can then be written as
φ1(xjk+1)

φ2(xjk+1)
...

φNφ(xjk+1)

 =


λ1

λ2

. . .
λNφ



φ1(xjk)

φ2(xjk)
...

φNφ(xjk)

 . (17)

Choosing (9) as basis functions immediately yields the
diagonal A matrix. The output matrix C is also trivial
thanks to (13).

C =

[
1 . . . 1

1 . . . 1
1 . . . 1

]
Ny×(Ny·NΛ)

. (18)

Note that in this case, the Koopman operator defined in
(8) is implemented as the state matrix A.

3.3 Controlled case

In this work however, a controlled scenario will be consid-
ered. The discrete nonlinear controlled system with the
input uk

xk+1 = f(xk, uk)

yk = g(xk)
(19)

will be approximated by a linear system

zk+1 = Azk +Buk
yk = Czk

for z0 = φ(x0),

(20)

where zk is a lifted state vector at time-step k. The
nonlinear state vector xk will be considered as the output
yk, so yk := xk. The relationship between the two systems
is shown in Fig. 2.

Fig. 2. Discrete-time scheme showing the relationship of a
nonlinear system and its linear approximation.

Having the matrices A and C, the matrix B can be opti-
mized over the whole trajectory, allowing for multiple-step
prediction. The optimization problem can be formulated
as

min

NT∑
j=1

K∑
k=1

||g(xjk)− ŷk(xj0)||22, (21)

where NT is the number of trajectories, K is the number
of samples in each trajectory and

ŷk(xj0) = CAkzj0 +

k−1∑
i=0

CAk−i−1Buji ,

for zj0 = φ(xj0)

(22)

is a prediction of the output vector by the matrices A, B
and C.

For optimization over shorter window instead of the whole
trajectory, see Cibulka (2019).

The problem (21) can be also solved as a least-squares
problem, see Korda and Mezić (2019) for further details.



3.4 Algorithm summary

The uncontrolled dynamics is identified first according to
Sec. 3.2 using an uncontrolled dataset. Then the control is
added via the B matrix, using the approach described in
Sec. 3.3 with a controlled dataset. This results in a system

zk+1 = Azk +Buk
yk = Czk

(23)

which will be used for linear MPC design.

4. IDENTIFICATION RESULTS

4.1 Uncontrolled

The model described in Sec. 2 was discretized with time-
step Ts = 0.01s and approximated by a Koopman operator
using the following parameters: NΛ = 51, NT = 1078
and ζ = 10−12. The values of the parameters were
adopted from Cibulka (2019), they were chosen to provide
a sufficient prediction accuracy while keeping computer
resource usage at manageable levels. The starting points
for the trajectories were selected from a set with constant
kinetic energy Ek = 500 kJ, an equivalent of a 1300 kg
car driving straight at 100 km h−1. The Γ set can be seen
in Fig. 3. Areas with large |vy| and low |vx| (car sliding
sideways) contain more points because the vehicle leaves
this area of state-space rather quickly, resulting in sparse
data coverage. See Cibulka et al. (2019) for more details.
Results of the uncontrolled dynamics identification can
be seen in Fig. 4 and Fig. 5. The initial points used for
evaluation were randomly generated inside the Γ surface
depicted in Fig. 3 and the length of the trajectories used
for uncontrolled identification was 0.5 s, which was the
time after which the vehicle model managed to stabilize
itself. Note that this time is rather short because the model
defined in Sec. 2 uses longitudinal slip ratios as inputs and
they were set to 0 during the uncontrolled identification.
This allowed the tire to generate maximum force in the
y direction which resulted in such short times. Please see
Pacejka (2012) for more information on the tire model. The
starting points with ||x0||22 < 8.3 (8.3 m s−1 =̇ 30 km h−1)
were rejected from the testing dataset because the tire
model Pacejka (2012) is ill-defined at low speeds.

4.2 Controlled case

Controlled trajectories were generated with randomly gen-
erated inputs drawn from a uniform distribution, where
λr ∈ [−1, 1] and δf ∈ [−30°, 30°]. The control horizon
for the MPC was chosen as 0.1 s (adopted from Cibulka
(2019)) so the matrix B was optimized on 0.1 s long trajec-
tories. The mean RMSE was 4% (the uncontrolled RMSE
was 2.3%). The distribution of the error can be seen in
Fig. 7.

5. MPC

The identified system described in Sec. 4 was used for MPC
design. The MPC based on the Koopman operator will
be called Koopman MPC (term first used in Korda and
Mezić (2018)). The Koopman MPC framework is depicted
in Fig. 6. The Koopman MPC will be compared with
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Fig. 3. The set of initial conditions for the trajectories
used for identification. The points from this set have
a constant kinetic energy Ek = 500 kJ.
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Fig. 4. Errors of the Koopman operator in the uncon-
trolled case. Each point in the figure corresponds to
an initial condition of a 0.5 s long trajectory. The size
and color of the points correspond to the prediction
error of the associated trajectory. The mean RMSE is
6% with a standard deviation of 10.2%

MPC based on a locally linearized model, which will be
called Linear MPC. Both MPC regulators are defined as
a quadratic optimization problem

min
um

N∑
m=0

[(ym − rm)>Qy(ym − rm)+u>mRum + s>mSsm]

s.t.

zm+1 = Azm +Bum m = 0..N − 1

ym = Czm m = 0..N − 1

ymin − sm ≤ ym ≤ ymax + sm m = 0..N − 1

uminrate ≤ um+1 − um ≤ umaxrate m = 0..N − 1

umin ≤ um ≤ umax m = 0..N − 1,
(24)
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Fig. 5. A comparison of the nonlinear and linear system
on a trajectory with RMSE = 6% which is equal to
the mean RMSE of the whole dataset.
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Fig. 6. Scheme describing the Koopman MPC algorithm.
Areas operating in the lifted state-space are depicted
in orange color, The non-linear space is depicted in
violet.

where Qy,S and R are positive semidefinite cost matri-
ces, N is the prediction horizon, ymin/max are soft con-
straints on the output vector yk with slack variables s
and uminrate/maxrate are constraints on the system input
rates. The only difference between Koopman MPC and
Linear MPC are the state matrices A,B and C. Both MPC
regulators were parametrized as follows:

Qy =

[
1

1
1

]
, R =

0
100

30
0

 , S = 105 ·

[
1

1
1

]
(25)

ymin = −

[
25
2
2

]
, ymax =

[
25
2
2

]
, (26)

umin = −

 0
1

0.45
0

 , umax =

 0
1

0.45
0

 , (27)

uminrate = −

 0
0.1
0.8
0

 , umaxrate =

 0
0.1
0.8
0

 . (28)

The scheme of the Koopman MPC is depicted in Fig. 6.
The implementation of (24) was done in YALMIP Löfberg
(2019).

6. RESULTS

It can be seen in Fig. 8 that the Koopman-controlled
vehicle was able to recover from a state where the vehicle
drifts sideways in one continuous motion, unlike the MPC
based on local linearization. Notice how each algorithm
steered the vehicle in a different direction. The Koopman
MPC steered left in order to shift the momentum from
y − axis to x− axis while the locally linearized MPC
steered to the right because it was trimmed in state

x0 = [16.7 0 0]
>

. Steering to the right decreases vy (or
increases it in negative direction) in this state.
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Fig. 7. Errors of the Koopman operator in the controlled
case. Each point in the figure corresponds to an
initial condition of a 0.1 s long trajectory with ran-
dom control inputs. The size and color of the points
correspond to the prediction error of the associated
trajectory. The mean RMSE is 4% with a standard
deviation of 2.7%

Unfortunately, the Koopman MPC does not always out-
perform the local linearization. See Fig. 9 for example. In
this case, the goal was to steadily increase yawrate while
keeping vx stable. in other words, the vehicle should be
driving in an increasingly tighter spiral while keeping its
forward velocity vx the same.
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vehicle motion. The Koopman MPC stabilized the
vehicle faster in one continuous motion. The Linear
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erated to reach the desired velocity. Notice how both
algorithms steered the vehicle in different directions.

7. CONCLUSION

The Koopman MPC showed very promising results by sta-
bilizing a vehicle from a 90-degree drift while also preserv-
ing energy by shifting the vehicle’s already present side-
ways momentum into a forward momentum. This result
is in stark contrast with the fact the same controller was
unable to perform rather simple steering maneuver.The
reason behind this behaviour will be examined in our
future work.
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