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Abstract

We study the convergence rate of the moment-sum-of-squares hierarchy of semidef-
inite programs for optimal control problems with polynomial data. It is known that
this hierarchy generates polynomial under-approximations to the value function of the
optimal control problem and that these under-approximations converge in the L1 norm
to the value function as their degree d tends to infinity. We show that the rate of this
convergence is O(1/ log log d). We treat in detail the continuous-time infinite-horizon
discounted problem and describe in brief how the same rate can be obtained for the
finite-horizon continuous-time problem and for the discrete-time counterparts of both
problems.

Keywords: optimal control, moment relaxations, polynomial sums of squares, convergence rate,
semidefinite programming, approximation theory.

1 Introduction

The moment-sum-of-squares hierarchy (also known as the Lasserre hierarchy) of semidefi-
nite programs was originally introduced in [10] in the context of polynomial optimization.
It allows one to solve globally non-convex optimization problems at the price of solving
a sequence, or hierarchy, of convex semidefinite programming problems, with convergence
guarantees; see e.g. [13] for an introductory survey, [11] for a comprehensive overview and
[3] for control applications.

This hierarchy was extended in [12] to polynomial optimal control, and later on in [6] to
global approximations of semi-algebraic sets, originally motivated by volume and integral
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estimation problems. The approximation hierarchy for semi-algebraic sets derived in [6] was
then transposed and adapted to an approximation hierarchy for transcendental sets relevant
for systems control [2], such as regions of attraction [7] and maximal invariant sets for
controlled polynomial differential and difference equations [9], still with rigourous analytic
convergence guarantees.

Central to the moment-sum-of-squares hierarchies of [12, 7, 9] are polynomial subsolu-
tions of the Hamilton-Jacobi-Bellman equation, providing certified lower bounds, or under-
approximations, of the value function of the optimal control problem. It was first shown in
[12] that the hierarchy of polynomial subsolutions of increasing degree converges locally (i.e.
pointwise) to the value function on its domain. Later on, as an outcome of the results of [7],
global convergence (i.e. in L1 norm on compact domains, or equivalently, almost uniformly)
was established in [8].

The current paper is motivated by the analysis of the rate of convergence of the moment-
sum-of-squares hierarchy for static polynomial optimization achieved in [14]; see also [4] and
references therein for latest developments. We show that a similar analysis can be carried out
in the dynamic case, i.e. for assessing the rate of convergence of the moment-sum-of-squares
hierarchy for polynomial optimal control. For ease of exposition, we focus on the discounted
infinite-horizon continuous-time optimal control problem and briefly describe (in Section 5)
how the same convergence rate can be obtained for the finite-time continuous version of the
problem and for the discrete counterparts of both problems.

Our main Theorem 4 gives estimates on the rate of convergence of the polynomial under-
approximations to the value function in the L1 norm. As a direct outcome of this result, we
derive in Corollary 2 that the rate of convergence is in O(1/ log log d), where d is the degree
of the polynomial approximation. As far as we know, this is the first estimate of this kind
in the context of moment-sum-of-squares hierarchies for polynomial optimal control.

1.1 Notation

The set of all continuous functions on a set X ⊂ Rn is denoted by C(X); the set of all k-
times continuously differentiable functions is denoted by Ck(X). For h ∈ C(X), we denote
‖h‖C0(X) := maxx∈X |h(x)| and for h ∈ C1(X) we denote ‖h‖C1(X) := maxx∈X |h(x)| +
maxx∈X ‖∇h(x)‖2 where ∇h is the gradient of h. The L1 norm with respect to a measure
µ0 of a measurable function h : Rn → R is denoted by ‖h‖L1(µ0) :=

∫
Rn h(x)µ0(dx). The

set of all multivariate polynomials in a variable x of total degree no more than d is denoted
by R[x]d. The symbol R[x]nd denotes the n-fold cartesian product of this set, i.e., the set of
all vectors with n entries, where each entry is a polynomial from R[x]d. The interior of a
set X ⊂ Rn is denoted by intX.
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2 Problem setup

Consider the discounted infinite-horizon optimal control problem

V ?(x0) := inf
u(·), x(·)

∫∞
0
e−βtl(x(t), u(t)) dt

s.t. x(t) = x0 +
∫ t
0
f(x(s), u(s)) ds

x(t) ∈ X, u(t) ∈ U ∀t ≥ 0

(1)

where β > 0 is a given discount factor, f ∈ R[x, u]ndf and l ∈ R[x, u]dl are given multivariate
polynomials and the state and input constraint sets X and U are of the form

X = {x ∈ Rn : gXi (x) ≥ 0, i = 1, . . . , nX},

U = {u ∈ Rm : gUi (u) ≥ 0, i = 1, . . . , nU},
where gXi ∈ R[x]dXi and gUi ∈ R[u]dUi are multivariate polynomials. The function V ∗ in (1) is
called the value function of the optimal control problem (1).

Let us recall the Hamilton-Jacobi-Bellman inequality

l(x, u)− βV (x, u) +∇V (x, u) · f(x, u) ≥ 0 ∀ (x, u) ∈ X × U (2)

which plays a crucial role in the derivation of the convergence rates. In particular, for any
function V ∈ C1(X) that satisfies (2) it holds

V (x) ≤ V ?(x) ∀x ∈ X. (3)

The following polynomial sum-of-squares optimization problem provides a sequence of lower
bounds to the value function indexed by the degree d:

max
V ∈R[x]d

∫
X
V (x) dµ0(x)

s.t. l − βV +∇V · f ∈ Qd+df (X × U),
(4)

where µ0 is a given probability measure supported on X (e.g., the uniform distribution), and

Qd+df (X × U) :=
{
s0 +

nX∑
i=1

gXi s
i
X +

nU∑
i=1

gUi s
i
U :

s0 ∈ Σb(d+df )/2c, s
i
X ∈ Σb(d+df−diX)/2c, s

i
U ∈ Σb(d+df−diU )/2c

}
,

is the truncated quadratic module associated with the sets X and U (see [13] or [11]), where
Σd is the cone of sums of squares of polynomials of degree up to d. Note that whenever V is
feasible in (4), then V satisfies Bellman’s inequality (2), because polynomials in Qd+df (X×U)
are non-negative on X × U by construction. Therefore any polynomial V feasible in (4)
satisfies also (3) and hence is an under-approximation of V ? on X.

The truncated quadratic module is essential to the proof of convergence of the moment-
sum-of-squares hierarchy in the static polynomial optimization case [10] which is based on
Putinar’s Positivstellensatz [15]. We recall that some polynomials of degree d + df non-
negative on X × U may not belong to Qd+df (X × U) [11]. On the other hand, optimizing
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over the polynomials belonging to Qd+df (X × U) is “simple” (it translates to semidefinite
programming) while optimizing over the cone of non-negative polynomials is very difficult
in general. In particular, the optimization problem (4) translates to a finite-dimensional
semidefinite programming problem (SDP). The fact that the truncated quadratic module
has an explicit SDP representation and hence can be tractably optimized over is one of the
main reasons for the popularity of the moment-sum-of-squares hierarchies across many fields
of science.

Throughout the paper we impose the following standing assumptions.

Assumption 1 The following conditions hold:

(a) X ⊂ [−1, 1]n and U ⊂ [−1, 1]m.

(b) The sets of polynomials (gXi )nXi=1 and (gUi )nUi=1 both satisfy the Archimedian condition1.

(c) 0 ∈ intX and 0 ∈ int U .

(d) The function ∇V ? is Lipschitz continuous on X.

(e) The set f(x, U) is convex for all x ∈ X and the function v 7→ inf
u∈U
{l(x, u) : v = f(x, u)}

is convex for all x ∈ X.

The Assumption (a) and (b) are made without loss of generality since the sets X and U
are assumed to be compact and hence they can be scaled such that they are included in
the unit ball; adding redundant ball constraints 1 − ‖x‖2 and 1 − ‖u‖2 in the description
of X and U then implies the Archimedian condition. Assumption (c) essentially requires
that the sets X and U have nonempty interiors (a mild assumption) since then a change
of coordinates can always be carried out such that the origin is in the interior of these
sets. Assumption (d) is an important regularity assumption necessary for the subsequent
developments. Assumption (e) is a standard assumption ensuring that the value function of
the so-called relaxed formulation of the problem (4) coincides with V ? (see, e.g., [18]) and
is satisfied, e.g., for input-affine2 systems with input-affine cost function provided that U is
convex. This class of problems is by far the largest and practically most relevant for which
this assumption holds although other problems exist that satisfy this assumption as well3.

Under Assumption 1, the hierarchy of lower bounds generated by problem (4) converges
from below in the L1 norm to the value function V ?; see e.g. [8]:

Theorem 1 There exists d0 ≥ 0 such that the problem (4) is feasible for all d ≥ d0. In
addition V ≤ V ? for any V feasible in (4) and limd→∞ ‖V ? − V ?

d ‖L1(µ0) = 0, where V ?
d is an

optimal solution to (4).

The goal of this paper is to derive bounds on the convergence rate of V ?
d to V ?.

1A sufficient condition for a set of polynomials (gi)
n
i=1 to satisfy the Archimedian condition is gi = N−‖x‖22

for some i and some N ≥ 0, which is a non-restrictive condition provided that the set defined by the gi is
compact and an estimate of its diameter is known. For a precise definition of this condition see Section 3.6.2
of [13].

2A system is input-affine if f(x, u) = fx(x) + fu(x)u for some functions fx and fu.
3For example, consider l(x, u) = x2, f(x, u) = x + u2, U = [−1, 1].
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3 Convergence rate

The convergence rate is a consequence of the following fundamental results from approxima-
tion theory and polynomial optimization.

Theorem 2 (Bagby et al. [1]) If h : X → R is a function such that ∇h is Lipschitz
continuous on X, then there exists a sequence of polynomials (pd)

∞
d=1 ⊂ R[x]d such that

‖h− pd‖C1(X) ≤ c1/d for some constant c1 ≥ 0 depending on h and X only.

Now we turn to the second fundamental result. Given a polynomial p ∈ R[x]d expressed in
a multivariate monomial basis as

p(x) =
∑
α∈Nn
|α|≤d

pαx
α

with |α| =
∑n

i=1 αi and xα =
∏n

i=1 x
αi , we define

‖p‖R[x] = max
α

|pα|(|α|
α

) , (5)

where the multinomial coefficient
(|α|
α

)
is defined by(

|α|
α

)
:=

|α|!
α1! · . . . · αn!

.

Theorem 3 (Nie & Schweighofer [14]) Let p ∈ R[x, u]dp and let

pmin := min
(x,u)∈X×U

p(x, u) with pmin > 0.

Then p ∈ Qd(X × U) provided that

d ≥ c2 exp
(
d2p(n+m)dp

‖p‖R[x,u]
pmin

)c2
, (6)

where the constant c2 depends only on the algebraic description of the sets X and U .

In the following developments it will be crucial to bound the norm ‖·‖R[x] of a polynomial by
its supremum norm ‖ · ‖C(X). We remark that such a bound is possible only for a “generic”
set X such that any polynomial vanishing on X necessarily vanishes everywhere. A sufficient
condition for this is intX 6= ∅. This is the reason for Assumption 1 (c).

Lemma 1 If p ∈ R[x]d, x ∈ Rn, then

‖p‖R[x] ≤ 3d+1‖p‖C([−1,1]n) (7)

for all d ≥ 0.
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Proof: The idea is to use a multivariate Markov inequality to bound the derivatives of the
polynomial at zero (and hence its coefficients) in terms of its supremum norm on [−1, 1]n.

Let p =
∑

α pαx
α ∈ R[x]d. From [17, Theorem 6], we have∣∣∣∂|α|p

∂xα
(0)
∣∣∣ ≤ |T (|α|)

d (0) + iS
(|α|)
d (0)| · ‖p‖C([−1,1]n)

for all multiindices α satisfying |α| ≤ d, where i =
√
−1, Td(y) = cos(d arccos(y)), y ∈ [−1, 1],

denotes the d-th univariate Chebyshev polynomial of the first kind, Sd(y) = sin(d arccos(y)) =
d−1
√

1− x2T ′d(y), y ∈ [−1, 1], and h(k) denotes the k-th derivative of a function h : R→ R.

It is easy to see that S
(k)
d (0) = d−1T

(k+1)
d (0) and hence

|T (|α|)
d (0) + iS

(|α|)
d (0)| ≤ |T (|α|)

d (0)|+ 1

d
|T (|α|+1)
d (0)| = |α|! · |td,|α||+

(|α|+ 1)!

d
· |td,|α|+1|

≤
[
|α|! +

(|α|+ 1)!

d

]
t̄d,

where td,k denotes the k-th coefficient of Td when expressed in the monomial basis (i.e.,

Td(y) =
∑d

k=0 td,ky
k) and t̄d = maxk∈{0,...,d} |td,k|.

Since pα = (α1! · . . . · αn!)−1 ∂
|α|p
∂xα

(0), we get

|pα|(|α|
α

) =
(α1! · . . . · αn!)|pα|

|α|!
=

1

|α|!

∣∣∣∂|α|p
∂xα

(0)
∣∣∣ ≤ [1 +

|α|+ 1

d

]
t̄d‖p‖C([−1,1]n).

In view of (5) and since |α| ≤ d we get

‖p‖R[x] ≤
[
2 +

1

d

]
t̄d‖p‖C([−1,1]n).

It remains to bound t̄d. From the generating recurrence of Td+1(y) = 2yTd(y) − Td−1(y)
starting from T0 = 1 and T1 = y, it follows that t̄d ≤ t̃d, where t̃d solves the linear difference
equation

t̃d+1 = 2t̃d + t̃d

with the initial condition t̃0 = 1 and t̃1 = 1. The solution to this equation is

t̃d = (1 +
√

2)d
(√2

2
+

1

2

)
+ (1−

√
2)d
(1

2
−
√

2

2

)
≤ 3d, d ≥ 1.

Therefore t̄d ≤ 3d for d ≥ 1 and hence

‖p‖R[x] ≤
[
2 +

1

d

]
3d‖p‖C([−1,1]n) ≤ 3d+1‖p‖C([−1,1]n), d ≥ 1.

Since ‖p‖R[x] = ‖p‖C([−1,1]n) for d = 0, the result follows. �

In order to state an immediate corollary of this result, crucial for subsequent developments,
we define

r :=
1

sup{s > 0 : [−s, s]n+m ⊂ X × U}
, (8)

which is the reciprocal value of the length of the side of the largest box centered around the
origin included in X × U . By Assumption 1 (a) and (c), we have r ∈ [1,∞).
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Corollary 1 If p ∈ R[x, u]d, then

‖p‖R[x,u] ≤ k(d)‖p‖C(X×U), (9)

where k(d) = 3d+1rd with r defined in (8).

Proof: Set p̃((x, u)) := p(r−1(x, u)). Then we have

‖p̃‖C([−1,1]n+m) = ‖p‖C([−1/r,1/r]n+m) ≤ ‖p‖C(X×U) (10)

since [−1/r, 1/r]n+m ⊂ X × U by definition of r (8). In addition

‖p̃‖R[x,u] = max
α

r−|α|
|pα|(|α|
α

) = r−d max
α

rd−|α|
|pα|(|α|
α

) ≥ r−d‖p‖R[x,u]. (11)

Combining (10), (11) and Lemma 1 we get

‖p‖R[x,u] ≤ rd‖p̃‖R[x,u] ≤ 3d+1rd‖p̃‖C([−1,1]n+m) ≤ 3d+1rd‖p‖C(X×U) = k(d)‖p‖C(X×U).

as desired. �

Now we turn to analyzing the Bellman inequality (2). The following immediate property of
this inequality will be of importance:

Lemma 2 Let V satisfy (2) and let a ∈ R. Then Ṽ := V − a satisfies

l − βṼ +∇Ṽ · f ≥ βa ∀ (x, u) ∈ X × U.

Proof: We have l − βṼ +∇Ṽ · f = l − βV +∇V · f + βa ≥ βa, since V satisfies (2). �

We will also need a result which estimates the distance between the best polynomial approx-
imation of a given degree to the value function and polynomials of the same degree satisfying
Bellman’s inequality. A similar result in discrete time and with discrete state and control
spaces can be found in [5].

Lemma 3 Let
V̂d ∈ arg min

V ∈R[x]d
‖V − V ?‖C1(X).

Then there exists a polynomial Ṽd ∈ R[x]d satisfying (2) and such that

‖Ṽd − V ?‖C1(X) ≤ ‖V̂d − V ?‖C1(X)

(
2 +
‖f‖C0(X)

β

)
. (12)

Proof: Let Ṽd := V̂d−a. We will find an a ≥ 0 such that Ṽd satisfies the Bellman inequality.
We have

l − βṼd +∇Ṽdf = l − βV̂d +∇V̂df + βa

= l − βV ? +∇V ?f + β(V ? − V̂d) + (∇V̂d −∇V ?)f + βa

≥ β(V ? − V̂d) + (∇V̂d −∇V ?)f + βa

≥ −β‖V̂d − V ?‖C1(X) − ‖V̂d − V ?‖C1(X)‖f‖C0(X) + βa,
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and hence if

a :=
(

1 +
‖f‖C0(X)

β

)
‖V̂d − V ?‖C1(X),

then Ṽd satisfies Bellman’s inequality (2) and estimate (12) holds. �

Now we are in position to prove our main result which bounds the gap, in L1 norm, between
the value function V ? of the optimal control problem (1) and any optimal solution V ?

d of the
sum-of-squares program (4):

Theorem 4 It holds that ‖V ? − V ?
d ‖L1(µ0) < ε for all integer

d ≥ c2 exp
{(

3d2p,ε(3r(n+m))dp,ε
[2M
βε

+
‖f‖C0

β
+ 2
])c2}

(13)

= O
(

exp
{ 1

ε3c
′
2
(3(n+m)r)

c3
ε

})
, (14)

where dp,ε =
⌈
2c1
ε

(
2 +

‖f‖C0

β

)
+ df

⌉
, M = ‖l − βV ? + ∇V ? · f‖C0(X×U) < ∞, r is defined

in (8), c3 = 3c1c2(2β+‖f‖C0)/β, the constant c1 depends only on V ? and X and U , whereas
the constant c2 depends only on the algebraic description of X and U and c′2 is any constant
greater than c2.

Proof: According to Theorem 2 and Lemma 3 we can find a polynomial Ṽd̃ of degree no
more than

d̃ =
⌈2c1
ε

(
2 +
‖f‖C0

β

)⌉
such that ‖V ? − Ṽd̃‖C1 ≤ ε

2
and such that Ṽd̃ satisfies the Bellman inequality (2). Let V be

an arbitrary polynomial feasible in (4) for some d ≥ 0. Then

‖V ?−V ?
d ‖L1 ≤ ‖V ?−V ‖L1 ≤ ‖V ?−V ‖C0 ≤ ‖V ?−Ṽd̃‖C0+‖V −Ṽd̃‖C0 ≤ ε

2
+‖V −Ṽd̃‖C0 . (15)

Hence, the goal is to find a degree d ≥ 0 and a polynomial V feasible in (4) for that d
satisfying ‖V − Ṽd̃‖C0 ≤ ε/2. Setting V := Ṽd̃ − ε/2, we clearly have ‖V − Ṽd̃‖C0 ≤ ε/2; in
addition, using Lemma 2 we know that

l − βV +∇V · f ≥ 1

2
βε > 0 (16)

and hence V strictly satisfies the Bellman inequality and as a consequence of Putinar’s
Positivstellensatz [15] there exists a degree d ≥ 0 such that V is feasible in (4). To bound
the degree d we apply the bound of Theorem 3 on p := l − βV + ∇V · f . From (16) we
know that pmin ≥ 1

2
βε. Next, we need to bound ‖p‖R[x,u] by bounding ‖p‖C0(X×U) and using

Corollary 1. We have

‖p‖C0 = ‖l − βV +∇V · f‖C0 = ‖l − βṼd̃ +∇Ṽd̃ · f +
1

2
βε‖C0

≤ ‖l − βV ? +∇V ? · f + ‖C0 + β‖V ? − Ṽd̃‖C0 + ‖V ? − Ṽd̃‖C1‖f‖C0 +
1

2
βε

≤M +
1

2
βε+

1

2
ε‖f‖C0 +

1

2
βε = M + βε+

1

2
ε‖f‖C0 .
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Finally, we need to estimate the degree of p. We have (assuming without loss of generality
that d̃+ df − 1 ≥ deg l)

deg p = deg
(
l − βV +∇V · f

)
≤ d̃+ df − 1 ≤

⌈2c1
ε

(
2 +
‖f‖C0

β

)
+ df

⌉
Setting dp :=

⌈
2c1
ε

(
2 +

‖f‖C0

β

)
+ df

⌉
and using Theorem 3 and Corollary 1, we conclude that

for

d ≥ c2 exp
[(

2d2p(n+m)dp
k(dp)(M + βε+ (ε/2)‖f‖C0)

βε

)c2]
,

the polynomial V is feasible in (4). Since ‖Ṽd̃ − V ‖C0 ≤ ε
2
, we conclude from (15) that

‖V ? − V ?
d ‖L1 ≤ ε. Inserting the expression for k(d) = 3d+1rd from Corollary 1 yields (13)

and carrying out asymptotic analysis for ε→ 0 yields

d ≥ O
(

exp
{ 1

ε3c
′
2
(3(n+m)r)

c3
ε

})
,

which is (14).

�

Corollary 2 It holds ‖V ? − V ?
d ‖L1(µ0) = O(1/ log log d).

Proof: Follows by inverting the asymptotic expression (14) using the fact that

(3(n+m)r)
2c3
ε ≥ 1

ε3c
′
2
(3(n+m)r)

c3
ε

for small ε. �

4 Discussion

The bound on the convergence rate O(1/ log log d) should be compared with the bound

O(1/ c2
√

log d) derived in [14] for static polynomial optimization problems (here c2 ≥ 1 is
the, in general, unknown constant from Theorem 3). The additional logarithm appearing
in our bound seems to be unavoidable due to fundamental results of approximation theory
(known as Bernstein inequalities) implying that Lipschitz continuous functions cannot be
approximated by polynomials with rate faster than 1/d (in the sense that there exists a
Lipschitz continuous function whose best degree-d approximation converges to f with the
rate exactly C/d, C > 0, in the supremum norm on [−1, 1]n); this implies the 1/ε dependence
of dp from Theorem 4 which then propagates to doubly exponential dependence on 1/ε
through Theorem 3.

Therefore the primary point of improvement of the bound from Theorem 4 and Corollary 2
is the fundamental bound of Theorem 3 derived in [14]. As the authors of [14] remark, this
bound is far from tight, at least in two special cases: the univariate case (i.e., n+m = 1 in our
setting) or the case of a single constraint defining X×U . In these cases the exponential in (6)
can be dropped, which results in O(1/ log d) asymptotic rate of convergence in Corollary 2.
In the general case, however, it is unknown whether the exponential in (6) can be dropped
or whether the bound (6) can be improved otherwise [14].
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5 Extensions

The approach for deriving this bound can be extended to other settings. In particular, similar
bounds, with identical O(1/ log log d) asymptotics, hold for the finite-horizon version of the
problem, both in continuous and discrete time, as well as for the discounted discrete-time
infinite-horizon variant (the former was treated using the moment-sum-of-squares approach,
in continuous time, in [12] and the latter was treated in [16]). The derivation in discrete-time
is completely analogous and the results hold under milder assumptions (Assumption 1 (d)
can be replaced by V ? Lipschitz and Assumption 1 (e) can be dropped completely). For
the finite-horizon continuous-time problem, the only difference is in Lemma 3, where the
constant shift Ṽ (x) = V̂ (x)−a, is replaced by the affine shift Ṽ (t, x) = V̂ (t, x)−a− b(T − t)
for suitable a > 0, b > 0 ensuring that Ṽ satisfies the corresponding finite-time Bellman
inequality and its boundary condition (hence the two degrees of freedom).
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