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Abstract—Autonomous robots make extensive use of decisional
mechanisms, such as planning. These mechanisms are able to
take complex and adaptative decisions, but are notoriously hard
to validate. This paper reports an investigation of how redundant,
diversified models can be used to tolerate residual design faults
in such mechanisms. A fault-tolerant temporal planner has been
designed and implemented using diversity, and its effectiveness
demonstrated experimentally through fault injection. The pa-
per describes the implementation of the fault-tolerant planner
and discusses the results obtained. The results indicate that
diversification provides a noticeable improvement in planning
reliability with a negligible performance overhead. However,
further improvements in reliability will require implementation
of a on-line checking mechanism for assessing plan validity before
execution.

I. INTRODUCTION

Complex autonomous systems generally rely on planning
for selecting and organizing actions to achieve high-level goals
fixed by the user. Experimental systems using planning as
a decisional mechanism have already been implemented as
space exploration satellites, space rovers, museum tour guides,
and personal assistants. However, such systems are not yet
ready for real life utilization, as the dependability of their
decisional mechanisms remains in question. Indeed, how can
we justifiably trust planning mechanisms, whose behavior is
difficult to predict and validate? To increase the confidence
that we may have in such mechanisms so that they may
be used in critical applications, we propose in this paper a
fault tolerance approach focused on development faults in the
planner knowledge. The approach uses redundant diversified
planning models.

First, we present fault tolerance techniques that may be
applied to planning mechanisms and the implementation of
a fault tolerant planner for an autonomous system archi-
tecture. Second, we introduce the validation framework that
we developed to assess performance and efficacy of our
fault tolerance approach. Finally, we present the experimental
results produced during our validation.

II. FAULT TOLERANT PLANNING

We propose here fault tolerant techniques adapted to plan-
ners and focusing on development faults in the planner knowl-
edge. We first present issues faced by dependability techniques
when confronted to planning mechanisms. We then propose
four error detection mechanisms and two recovery mechanisms

adapted to planners and a redundancy management component
that coordinates these mechanisms. We finally present an
example of implementation of the proposed component in an
existing autonomous system architecture.

A. Dependability Issues

Planning, like other decisional mechanisms, poses sig-
nificant challenges for validation. Classic problems faced
by testing and verification are exacerbated. First, execution
contexts in autonomous systems are neither controllable nor
completely known; even worse, consequences of the system
actions are often uncertain. Second, planning mechanisms have
to be validated in the complete architecture, as they aim to
enhance functionalities of the lower levels through high level
abstractions and actions. Integrated tests are thus necessary
very early in the development cycle. Third, the oracle prob-
lem1 is particularly difficult since (a) equally correct plans
may be completely different and (b) an unforeseen adverse
environmental situation may completely prevent some goals
from being achieved, thus ineluctably degrading the system
performance, however well it behaves (for example, cliffs, or
some other feature of the local terrain, may make a position
goal unreachable).

One way to address the latter issue is to define an oracle as a
set of constraints that necessarily and sufficiently characterizes
a correct plan: plans satisfying the constraints are deemed
correct. Such a technique was used for thorough testing of
the RAX planner during the NASA Deep Space One project
[3], or in the VAL validation tool [9]. Extensive collaboration
of application and planner experts is necessary to generate the
correct set of constraints.

Automatic static analysis may also be used to ascertain
properties on planning models, whereas manual static analysis
requires domain experts to closely scrutinize models proposed
by planning developers. For example, the development tool
Planware [2] offers facilities for both types of analysis. A
Failure Recovery Analysis tool is proposed in [8] to ease
model corrections during development.

Some work has also been done on evaluating planning
dependability. A measure for planner reliability is proposed in
[5], which compares theoretical results to experimental ones,

1How to conclude on correctness of a program’s outputs to selected test
inputs?



showing a necessary compromise between temporal failures
(related to calculability of decisional mechanisms) and value
failures (related to correctness of decisional mechanisms).
Later work [4] proposes concurrent use of planners with diver-
sified heuristics to answer this compromise: a first heuristic,
quick but dirty, is used when a slower but more focussed
heuristic fails to deliver a plan in time. To our knowledge, no
other fault tolerance mechanisms have been proposed in this
domain. We strongly believe, however, that such mechanisms
are essential to provide more dependability in autonomous
systems.

B. Principles

Complementary to testing, diversity is the only known
approach to improve trust in the behavior of a critical system
regarding development faults (e.g., diversification is used in
software components of the Airbus A320, and in hardware
components of the Boeing B777). The general principle of
the mechanisms that we propose is similar to that of recovery
blocks [16] and distributed recovery blocks [11]. Diversified
variants of the planner are executed either sequentially or
concurrently. A recovery choice is made according to errors
detected in the plans produced. Diversity between the variants
is encouraged by forcing the use of different algorithms,
variable domains and parameters in the models, and different
heuristics of the variants.

1) Detection: Implementing error detection for decisional
mechanisms in general, and planners in particular, is difficult
[14]. There are often many different valid plans, which can be
quite dissimilar. Therefore, error detection by comparison of
redundantly-produced plans is not a viable option. Thus, we
must implement error detection by independent means. Here,
we propose four complementary error detection mechanisms:
a watchdog timer, a plan analyzer, a plan failure detector and
an on-line goal checker.

A watchdog timer is used to detect when the search process
is too slow or when a critical failure such as a deadlock occurs.
Timing errors can be due to faults in the planner model, in its
search engine, or ineffectiveness of the search heuristics.

A plan analyzer can be applied on the output of the
planner. It is an acceptance test (i.e., an on-line oracle) that
verifies that the produced plan satisfies a number of constraints
and properties. This set of constraints and properties can
be obtained from the system specification and from domain
expertise but it must be diverse from the planner model. This
mechanism is able to detect errors due to faults in the planner
model or heuristics, and in the search engine.

A plan failure detector is a classical mechanism used in
robotics for execution control. Failure of an action that is
part of the plan may be due to an unresolvable adverse
environmental situation, or may indicate errors in the plan due
to faults in the knowledge or in the search engine. Usually,
when such an action failure is raised, the search engine tries
to repair the plan. When this is not possible, it raises a
plan failure. We use these plan failure reports for detection
purposes.

1. begin mission
2. failed_planners ← ∅;
3. while (goals 6= ∅)
4. candidates ← planners;
5. while (candidates 6= ∅ & goals 6= ∅)
6. choose k such as (k ∈ candidates)

& (k /∈ failed_planners);
7. candidates ← candidates \ k;
8. init_watchdog(max_duration);
9. send (plan_request) to k;
10. wait % for either of these two events
11. 2 receive (plan) from k
12. stop_watchdog;
13. if analyze(plan)=OK then
14. failed_planners ← ∅;
15. k.execute_plan();

% if the plan fails goals != empty
% and then we loop to line 5 or 3

16. else
17. send(k.invalid_plan) to operator;
18. failed_planners ← failed_planners ∪ k;
19. end if
20. 2 watchdog_timeout
21. failed_planners ← failed_planners ∪ k;
22. end wait
23. if failed_planners = planners then
24. raise exception "no valid plan

found in time";
% no remaining planner,
% the mission has failed

25. end if
26. end while
27. end while
28. end mission

Fig. 1. Sequential Planning Policy

An on-line goal checker verifies whether goals are reached
while the plan is executed. Goals can only be declared as
failed when every action of the plan has been carried out. This
implies that the checker maintains an internal representation
of the system state and of the goals that have been reached.

2) Recovery: We propose two recovery mechanisms, both
using different planners based on diverse knowledge. Theo-
retically, different planners could be used to tolerate not only
faults in planning models but also in the search engine. How-
ever, no practical work has been done to test this possibility.

With the first mechanism, the planners are executed sequen-
tially, one after another. The principle is given in Figure 1.
Basically, each time an error is detected, we switch to another
planner until all goals have been reached or until all planners
fail in a row. Once all the planners have been used and there
are still some unsatisfied goals, we go back to the initial
set of planners. This algorithm illustrates the use of the four
detection mechanisms presented in Section II-B1: watchdog
timer (lines 8 and 20), plan analyzer (line 13), plan failure
detector (line 15), on-line goal checker (lines 3 and 5).

Reusing planners that have been previously detected as
failed makes sense for two different reasons: (a) a perfectly
correct plan can fail during execution due to an adverse
environmental situation, and (b) some planners, even faulty,
can still be efficient for some settings since the situation that
activated the fault may have disappeared.

It is worth noting that the choice of the planners, and the
order in which they are used, is arbitrary in this particular
example (line 6). However, the choice of the planner could



1. begin mission
2. while (goals 6= ∅)
3. candidates ← planners;
4. init_watchdog(max_duration);
5. send (plan_request) to candidates;
6. while (candidates 6= ∅)
7. wait % for either of these two events
8. 2 receive (plan) from k ∈ candidates
9. candidates ← candidates \ k;
10. pause_watchdog;
11. if analyze(plan)=OK then
12. stop_watchdog;
13. send (cancel_planning) to candidates;
14. candidates ← ∅;
15. k.execute_plan();

% if the plan fails goals != empty
% and then we loop to line 3

16. else
17. resume_watchdog;
18. send(k.invalid_plan) to operator;
19. if (candidates = ∅)
20. raise exception "no valid plan

found in time";
% no remaining planner,
% the mission has failed

21. end if
22. end if
23. 2 watchdog_timeout
24. raise exception "no valid plan

found in time";
% no remaining planner,
% the mission has failed

25. end wait
26. end while
27. end while
28. end mission

Fig. 2. Concurrent Planning Policy

take advantage of application-specific knowledge about the
most appropriate planner for the current situation or knowledge
about recently observed failure rates of the planners.

With the second recovery mechanism, presented in Figure
2, the planners are executed concurrently [13]. The main
differences with respect to the algorithm given in Figure 1
are: (a) the plan request message is sent to every planning
candidate (line 5), (b) when a correct plan is found, the other
planners are requested to stop planning (line 13), and (c) a
watchdog timeout means that all the planners have failed (line
23).

Here, the choice of planner order is implicit: the first
planner obtaining a plan is chosen. However, this could lead
to the repeated selection of the same faulty but rapid planner.
Some additional mechanism is thus required to circumvent
this problem. For example, the planner selected during the
previous round can be withdrawn from the set of candidates
for the current round.

3) Coordination: From a dependability point of view, the
fault-tolerance mechanisms have to be as independent as
possible from the decisional layer, i.e., in this case from the
planners. This is why we propose to handle both the detection
and recovery mechanisms, and the services necessary for
their implementation, in a middleware level component called
FTplan, standing for Fault-Tolerant PLANner coordinator.

This component has to integrate the fault tolerance mecha-
nisms into the robot architecture. This implies essentially com-
munication between, and synchronization and coordination of,

the error detection mechanisms and the redundant planners.
To avoid error propagation from a possibly faulty planner,

FTplan should not take any information that comes from or
depends on the planners themselves. The watchdog can easily
be implemented from the operating system timing primitives.
Action and plan failure detection are performed at the lower
plan execution control layer, so error reports can be obtained
and reused by FTplan. A plan analyzer performs simple
acceptance checks using rules expressed independently from
the planners and their knowledge.

However, implementing an on-line goal checker without
relying on information obtained through the planner is more
difficult. FTplan maintains for this purpose its own system
state representation, based on information obtained from the
plan execution control layer. This system state representation
is checked against the set of goals prescribed for the current
mission.

Whatever the particular recovery mechanism it implements,
sequential or parallel, FTplan has to manage several planners.
It needs to communicate with them, e.g., for sending plan
requests or for updating their goals and system state represen-
tations before replanning. It also needs to be able to control
their life cycle: start a new instance or even stop one when it
takes too long to produce a plan.

FTplan is intended to allow tolerance of development faults
in planners (and particularly in planning models). FTplan itself
is not fault-tolerant, but being much simpler than the planners
it coordinates, we can safely rely on classic verification and
testing to assume that it is fault-free.

C. Implementation

We present here the implementation of the proposed mecha-
nisms. We introduce the target architecture and then give some
implementation details about the FTplan component.

1) LAAS Architecture: The LAAS architecture is presented
in [1], and some recent modifications have been proposed in
[12]. It has been successfully applied to several mobile robots,
some of which have performed missions in real situations
(human interaction or exploration). It is composed of three
main components2 as presented in Figure 3: GenoM modules,
OpenPRS, and IxTeT.

The functional level is composed of a set of automatically
generated GenoM modules, each of them offering a set of ser-
vices, which perform computation (e.g., trajectory movement
calculation) or communication with physical devices (sensors
and actuators).

The procedural executive OpenPRS (Open Procedural Rea-
soning System), is in charge of decomposing and refining
plan actions into lower-level actions executable by functional
components, and executing them. This component links the
decisional component (IxTeT) and the functional level. During
execution, OpenPRS reports any action failures to the planner,
in order to re-plan or repair the plan. As several IxTeT

2An additional robustness component, R2C, is introduced in [15]. We
have not considered it in this study since its current implementation is not
compatible with our experimentation environment.
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Fig. 4. Fault tolerant planner

actions can be performed concurrently, it has also to schedule
sequences of refined actions.

IxTeT (IndeXed TimE Table) is a temporal constraint plan-
ner, combining high level actions to build plans. Each action
is described in a model file used by the planner as a set of
constraints on attributes (e.g., robot position), resources (e.g.,
energy consumption), numeric or temporal data (e.g., action
duration). Then, a valid plan is calculated combining a set of
actions in such a way that they are conflict-free and they fulfill
the goals. The description of actions in the planner model is
critical for the generation of successful plans and thus for the
dependability of the robot as a whole.

2) Fault Tolerant Planner Implementation: The fault tol-
erance principles presented in Section II-B have been imple-
mented in a fault tolerant planner component as presented in
Figure 4. This component replaces the original component
“Planner” presented in Figure 3. The FTplan component is
in charge of communicating with OpenPRS as the original
planner does.

The current version of FTplan implements the sequential
redundant planner coordination algorithm presented earlier
(Section II-B, Figure 1) with two IxTeT planners. Currently,
the plan analysis function is empty (it always return true) so
error detection relies solely on just three of the mechanisms
presented in Section II-B1: watchdog timer, plan failure de-
tection, and on-line goal checker.

The watchdog timer is launched at each start of planning. As
soon as a plan is found before the assume worst-case time limit

(40 seconds in our implementation), the watchdog is stopped.
If timeout occurs, FTplan stops the current IxTeT, and sends a
plan request to the other IxTeT planner, until a plan is found
or both planners have failed. In the latter case, the system is
put in a safe state (i.e., all activities are ceased), and an error
message is sent to the operator.

On-line goal checking is performed after each action ex-
ecuted by OpenPRS that can result in a modification in the
goal achievements (for instance, in the application considered
in Section III-B: a camera shot, a communication, movement
of the robot, etc.). This checking is carried out by analyzing
the system state at the end of an action, determining goals that
may have been accomplished and checking that no inconsistent
actions have been executed simultaneously. Unfulfilled goals
are resubmitted to the planner during the next replanning or
at the end of plan execution.

In the current implementation, FTplan checks every 10ms
if there is a message from OpenPRS or one of the IxTeT
planners. In case of an action request from a planner or
an action report from OpenPRS, FTplan updates its system
representation before transmitting the request. If the request
is a plan execution failure (the system has not been able to
perform the actions of the plan), then FTplan launches a re-
plan using the sequential mechanism. If the request indicates
that the actions are finished, then FTplan checks if the goals
have been reached.

III. EXPERIMENTS AND VALIDATION

Our validation framework relies on simulation and fault
injection. Simulation is used since it is both safer and more
practical to exercise the autonomy software on a simulated
robot than on a real one. Fault injection is used since it is the
only way to test the fault tolerance mechanisms with respect to
their specific inputs, i.e., faults in planning knowledge. In the
absence of any evidence regarding real faults, there is no other
practical choice than to rely on mutations3, which have been
found to efficiently simulate real faults in imperative languages
[7].

We now introduce successively the targeted software ar-
chitecture, the workload, the faultload, and the readouts and
measurements we obtain from system activity.

A. Software Architecture

Our simulation environment is represented in Figure 5. It
incorporates three elements: an open source robot simulator
named Gazebo, an interface library named Pocosim, and the
components of the LAAS architecture already presented in
section II-C1.

The robot simulator Gazebo4 is used to simulate the phys-
ical world and the actions of the autonomous system; it takes
as input a file describing the environment of the simulation
(mainly a list of static or dynamic obstacles containing their

3A mutation is a syntactic modification of an existing program.
4“The player/stage project”, http://playerstage.sourceforge.net



Fig. 5. Simulation environment

position, and the physical description of the robot) and exe-
cutes the movement of the robot and dynamic obstacles, and
possible interactions between objects.

The Pocosim library [10] is a software bridge between
the simulated robot (executed on Gazebo) and the software
commands generated by the GenoM modules: it transforms
commands to the actuators into movements or actions to be
executed on the simulated robot, and relays the sensor inputs
that Gazebo produces from the simulation.

Our autonomous system is based on an existing ATRV (All
Terrain Robotic Vehicle) robot, and employs GenoM software
modules interfaced with the Gazebo simulated hardware. The
upper layer of the LAAS architecture executes as presented
in the previous section. Two different models are used with
the IxTeT planners. The first model was thoroughly tested
and used on a real ATRV robot; we use it as primary model
and as target for fault injection. We specifically developed the
second model through forced diversification of the first: for
example, the robot position is characterized numerically in
the first model and symbolically in the second.

B. Workload

Our workload mimics the possible activity of a space rover.
The system is required to achieve three subsets of goals: take
science photos at specific locations (in any order), communi-
cate with an orbiter during specified visibility windows, and
be back at the initial position at the end of the mission.

To partially address the fact that the robot must operate in an
open unknown environment, we chose to activate the system’s
functionalities in some representative situations resulting from
combinations of sets of missions and worlds. A mission
encompasses the number and location of photos to be taken,
and the number and occurrence of visibility windows. A world
is a set of static obstacles unknown to the robot (possibly
blocking the system from executing one of its goals), which
introduces uncertainties and stresses the system navigation
mechanism.

We implemented four missions and four worlds, thus ap-
plying sixteen execution contexts to each mutation. Missions
are referenced as gradually more difficult M1, M2, M3 and
M4: M1 consists in two communications and three photos in
close locations, whereas M4 consists in four communications
and five far apart photos. Environments are referenced as
worlds W1, W2, W3 and W4. W1 is an empty world, with no
obstacles to hinder plan execution. W2 and W3 contains small
cylindrical obstacles, whereas W4 includes large rectangular
obstacles that may pose great difficulties to the navigation
module, and are susceptible to endlessly block the robot path.

In addition, several equivalent experiments are needed to
address the non-determinacy of the experiments. This is due
to asynchrony in the various subsystems of the robot and in
the underlying operating systems: task scheduling differences
between similar experiments may degrade into task failures
and possibly unsatisfied goals, even in the absence of faults.
We thus execute each basic experiment three times, leading
to a total of 48 experiments per mutation. More repetition
would of course be needed for statistical inference on the
basic experiments but this would have led to a total number
of experiments higher than that which could have been carried
out with the ressources available (each basic experiment lasts
about 20 minutes).

C. Faultload

To assess performance and efficacy of the proposed fault
tolerance mechanisms, we inject faults in a planning model
by random mutation of the model source code (i.e., in Model1
of Figure 5). Five types of possible mutations were identified
from the model syntax:

1) Substitution of numerical values: each numerical value
is exchanged with members of a set of real numbers that
encompasses (a) all numerical variables in all the tasks
of the model, (b) a set of specific values (such as 0, 1
or -1), and (c) a set of randomly-selected values.

2) Substitution of variables: since the scope of a variable is
limited to the task where it is defined, numerical (resp.
temporal) variables are exchanged with all numerical
(resp. temporal) variables of the same task.

3) Substitution of attribute values: in the IxTeT formal-
ism, attributes are the different variables that together
describe the system state. Attribute values in the model
are exchanged with other possible values in the range of
the attribute.

4) Substitution of language operators: in addition to classic
numerical operators on temporal and numerical values,
the IxTeT formalism employs specific operators, such
as “nonPreemptive” (that indicates that a task cannot be
interrupted by the executive).

5) Removal of a constraint relation: a randomly selected
constraint on attributes or variables is removed from the
model.

Substitution mutations were automatically generated using
the SESAME tool [6]. Using an off-line compilation, this
tool detects and eliminates binary equivalent or syntactically



incorrect mutants. Removal of random constraint relations was
carried out through a PERL script and added to the mutations
generated by SESAME. All in all, more than 1000 mutants
were generated from the first model.

For better representativeness of injected faults, we consider
only mutants that are able to find a plan in at least one mission
(we consider that models that systematically fail would easily
be detected during the development phase). As a simple opti-
mization, given our limited resources, we also chose to carry
out a simple manual analysis aimed at eliminating mutants
that evidently could not respect the above criterion.

D. Records and Measurements

Numerous log files are generated by a single experiment:
simulated data from Gazebo (including robot position and
hardware module activity), output messages from GenoM
modules and OpenPRS, requests and reports sent and received
by each planner, as well as outputs of the planning process.

Problems arise however in trying to condense this amount
of data into significant relevant measures. Contrary to more
classic mutation experiments, the result of an experiment
cannot be easily dichomotized as either failed or successful.
As previously mentioned, an autonomous system is confronted
with partially unknown environments and situations, and some
of its goals may be difficult or even impossible to achieve in
some contexts. Thus, assessment of the results of a mission
must be graded into more than just two levels. Moreover,
detection of equivalent mutants is complexified by the non-
deterministic context of autonomous systems

To answer these issues to some extent, we chose to cate-
gorize the quality of the result of an experiment with: (a) the
subset of goals that have been successfully achieved, and (b)
performance results such as the mission execution time and
the distance covered by the robot to achieve its goals. Due
to space constraints, we focus in the rest of this paper on
measurements relative to the mission goals.

IV. RESULTS

We present in this part several experimental results using
the evaluation framework previously introduced. Experiments
were executed on i386 systems with a 3.2 GHz CPU and
Linux OS. We first study the performance cost of the proposed
mechanisms, then present their efficacy in tolerating injected
faults through three mutation examples, and then global results
for 28 injected faults.

A. Fault-free Performance

To determine the overhead of the proposed fault tolerance
mechanisms, we first concentrate on supposed fault-free mod-
els. Figure 6 presents the impact of FTplan on the system
behavior.

Note that results in W4 must be treated with caution, as
this world contains large obstacles that may cause navigational
failures and block the robot path forever. As our work focuses
on planning model faults rather than limitations of functional
modules, we consider that success in this world relies more on
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Fig. 6. Impact of FTplan (without injected faults): This figure studies the
impact of the FTplan component on fault-free system behavior by comparing
three different robots: Robot1 uses our first model, Robot2 uses our second
model, and Robot1/2 contains an FTplan component that uses successively
our first and second models. For each considered activity (M1W1 to M4W4),
the figure shows five different measures: (a) (b) (c) three failure proportions to
reach the different types of goals in a mission (resp. photos, communications,
and returns to initial position), (d) failure proportion of the whole mission (a
mission is considered failed if one or more mission goals were not achieved),
and (e) the mean number of replanning operations observed during one
experiment (in the case of Robot1/2, this number is equivalent to the number
of model switches during the mission).

serendipity in the choice of plan rather than correctness of the
planner model. It is however interesting to study the system
reaction to unforeseen and unforgiving situations that possibly
arise in an open and uncontrolled environment. Note that these
results show that different models give rise to different failure
behaviors: particularly in W4, the three systems fail differently.

W4 set aside, results are globally very good: Robot1 and
Robot1/2 succeed in all their goals, while Robot2 fails a
few goals in M3, and all its return goals in M4W1. These
failures may be attributed to a larger set of constraints in this
model that may be costly in performance, and underestimated
distance declarations. The mean activity time of the systems
(that is the time until the system stops all activity in a mission)
is an average of 404 seconds for Robot1, 376 seconds for
Robot2, and 405 seconds for Robot1/2. Time performance-
wise, the three systems are thus roughly equivalent.

Although the results are mostly positive, showing that
FTplan’s main execution loop does not severely decrease goal
achievement or performance in the chosen scenarios, they are
still insufficient to assess the overhead of planner switches
(i.e., replanning requests in our implementation) as very few
occurred in these fault-free experiments. However, further
experiments involving numerous replanning requests showed
that FTplan did not severely degrade the system performance.
Due to lack of space, we do not develop this aspect here.

B. Fault-tolerance efficacy

To test the efficacy of the proposed mechanisms and the
FTplan component, we injected 38 faults in our first model,
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Fig. 7. Results for mutation 1-39

realizing more than 3500 experiments equivalent to 1200 hours
of testing. We discarded 10 mutants that were unable to find
a plan for any of the four missions5. We believe that five of
the remaining mutants are equivalent to the fault-free model.
However, the non-deterministic nature of autonomous systems
makes it delicate to define objective equivalence criteria. We
thus include the results obtained with these five mutants,
leading to a pessimistic estimation of the improvement offered
by FTplan.

The 28 considered mutations are categorized in the follow-
ing manner: three substitutions of attribute values, six substi-
tutions of variables, ten substitutions of numerical values, four
substitutions of operators, and six removals of constraints. The
mutants were executed on Robot1 and Robot1/2.

1) Examples of experimental results: We develop here the
results of three mutations as examples of our experiments.

Results for the first mutation, identified by the indice 1-
39, are presented in Figure 7. This mutation causes an overly
constrained robot position during a camera shot. It thus results
in the planner’s inability to find plans for missions where
photographs have to be taken in positions that do not respect
the overly-restrictive constraint (this is the case for missions
M2 and M4). This example illustrates the significance of the
system activity chosen for the evaluation: numerous different
missions are necessary because faults can remain dormant in
some missions. Since testing the practically infinite execution
context is well nigh impossible, this example underlines the
difficulty of testing and thus the interest of fault tolerance
mechanisms to cover residual faults in the deployed planning
models.

Figure 8 presents the results for mutation 1-589. The fault
injected in this mutation affects only a movement recovery
action of the planning model. Thus, contrary to the previ-
ous example, correct plans are established for all missions.

5In this case, Robot1/2 gives the same results as the fault-free Model2:
nearly perfect success rates in W1, W2 and W3.
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Fig. 8. Results for mutation 1-589

However, as soon as a movement action fails, the planner
is unable to find a plan allowing recovery of the movement,
which causes failure of the system. This is particularly obvious
in the case of missions M1 and M3, where short distances
between photograph locations lead to a short temporal margin
for the action movement. As acceleration, deceleration and
rotation are not considered in the planning model, movements
are susceptible to take longer than estimated, and can thus be
be interrupted by the plan execution controler and considered
failed, necessiting a recovery action. In missions M2 and
M4, movements cover greater distances, resulting in larger
temporal margins and thus fewer movement action failures.
Robot1/2 tolerates this fault to some extent: completely in
mission M2 and partially in mission M4. The high failure rate
of mission M3 for Robot1/2 can be explained by a domino
effect due to communication goals being given priority over
photography goals. When the fault is activated due to a failed
movement action, FTplan switches to Model2 and requests a
plan. However, a communication goal is now so near that the
planner is unable to find a plan to achieve it, so it abandons
goals of lesser priority, but to no avail. This example raises
two important comments:

• First, testing with numerous diversified missions and
environments is once again pointed out, as the fault is
not activated in several activities.

• Second, testing must be realized in an integrated system.
Indeed, the original plans produced by the planner are
correct, as well as the lower levels of the system. How-
ever, the planning model contains a serious fault that can
cause critical failure of the system in some executions.

The results of mutation 1-583 are presented in Figure 9. It is
the only case in our 28 experiments where the fault intolerant
Robot1 shows better results than the fault tolerant Robot1/2,
although we identified 8 other mutations where results in both
systems were similar (including the five mutants suspected to
be equivalent to the original model). The injected fault causes
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Fig. 9. Results for mutation 1-583
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Fig. 10. Impact of planner redundancy (with injected faults): This figure
presents overall results achieved for all 28 mutations, both with and without
the heavily-constrained world W4.

the duration of the robot movement to be underestimated in
plans, resulting in execution errors and replannings that lead
to some goals being missed. Failures of Robot1/2 are not
directly linked to the injected fault, but rather to the use of the
badly optimized second model. It uses more pessimistic time
constraints than the first model, thus giving up some goals,
and causing failure of all photographs in mission M4 through
a similar domino effect as that presented in the previous
example.

2) General Results: The general results, including all 28
mutations, are presented in Figure 10. These results give
objective evidence that model diversification favorably con-
tributes to fault tolerance of an autonomous system consider-
ing the proposed faultload: failure decreases for photo goals
of 62% (respectively, 50% including W4), 70% (64%) for
communication goals, 80% (58%) for returns goals, and 41%
(29%) for whole missions. Note, however, that RobotFT in
the presence of injected faults is less successful than a single
fault-free model (cf. Figure 6). This apparent decrease in
dependability is explained by the fact that, in our current
implementation, incorrect plans are only detected when their
execution has at least partially failed, possibly rendering one or
more goals unachievable, even after recovery. This underlines
the importance of plan analysis procedures to attempt to detect
errors in plans before they are executed.

V. CONCLUSION

The work presented in this paper proposes fault tolerant
mechanisms based on diversified planning models. We de-
veloped a component providing error detection and recovery
appropriate for fault-tolerant planning, and implemented it in
the LAAS architecture. This component can use four detection
mechanisms (watchdog timer, plan failure detector, on-line
goal checker and plan analyzer), and two recovery policies
(sequential planning and concurrent planning). Our current
implementation is that of sequential planning associated with
the first three error detection mechanisms.

To assess the performance overhead and the efficacy of the
proposed mechanisms, we developed a validation framework
that exercises the software on a simulated robot platform,
and carried out what we believe to be the first ever mutation
experiments on declarative models. These experiments were
conclusive in showing that the proposed mechanisms do not
severely degrade the system performance in the chosen scenar-
ios, yet usefully improve the system behavior in the presence
of model faults.

There are many directions for future research. First, imple-
mentation of a plan analyzer should allow much better goal
success levels to be achieved in the presence of faults since
it should increase error detection coverage and provide lower
latency. Implementation of the concurrent planning policy and
comparison with the sequential planning policy are also of
interest. Moreover, we would like to evaluate diversification
on planning heuristics rather than just models and investigate
also the additional detection capabilities of recent additions to
the LAAS architecture [15]. Finally, many more experiments
are needed to improve the statistical relevance of the results.
The use of a large computer grid would drastically improve the
number of experiments that could be executed in reasonable
time and eliminate the need for manual inspection to remove
trivial mutants.
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