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1 Introduction

Object-oriented concepts have been now used in many fault tolerant systems in order to
provide better flexibility than with classical system structuring solutions. Various approaches have
been used either based on inheritance [1,2], with CORBA [3,4,5,6] or using reflective ideas and
metaobject protocols [7,8,9]. Most of the fault tolerance strategies implemented in these systems
impose saving and restoring the state of objects during operation and recovery actions respectively.
These operations are often user defined which is not acceptable: any omission in this definition leads
to the total inefficiency of the fault tolerance mechanisms used. Conventional solutions based on dirty
bits or flagged memory pages enable the modified state of a runtime entity to be automatically saved.
Nevertheless, this solution is often hardware dependent and does not ensure an optimal amount of
information to be saved.

The approach to this problem is investigated here using compile-time reflection which
provides consistency of the object state saved and optimizes the amount of information necessary to
checkpoint the state of application objects.

2 Delta-Checkpointing

2.1 Definitions

We consider objects as composed of an arbitrary number of attributes, some of them being reference
to other objects. The idea is to identify at runtime the attributes modified by a method execution. Only
the part which has been modified since the last method execution is transmitted in a checkpoint
message called Delta-Checkpoint.

Reflection [10] is defined as the behavior exhibited by a reflective system, where a reflective system is
a computational system that includes a meta-model of itself. Since this model is ìcausally connectedî
to the real behavior of the system, its internal data structures and actions can be retrieved and altered
by the user through that meta-model. The process of retrieving is called ìreificationî and the process of
altering is called ìreflectionî. The meta-models of the reflective systems are often built with a set of
objects. These objects are called metaobjects [11] to distinguish them from normal (base-level)
objects. These metaobjects can exist at runtime, as in Open C++ v1 [12], or at compile-time, as Open
C++ v2 [13]. In this later case all meta-computation is performed at compile time, so runtime
penalties inserted by this metaobjects is almost zero.
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2.3 Techniques Overview

We define at compile-time a collection of meta-operations, which explore each method code
to determine when an attribute is modified. Each attribute has a flag whose management is performed
by the meta-compilation: it is initialized to false before each method call and set to true when a write
access is performed on it. The role of the compile time metaobjects is to detect how many attributes
are likely to change. The necessary code for obtaining the modified attributes at runtime is added at
the end of the methodís code. The modified attributes are packed into a buffer called Delta-State
which represents the checkpoint information. This general solution can be summarized as follows: (i)
attribute-flags initialization and code customization, at compile time, (ii) object's method execution,
attribute-flags test and updating Delta-State, at runtime. In the remainder, we'll refer to this general
solution as Compile-Run-Time technique (CRT).

In C++, the type of objectís attributes can be a built-in C++ type or a complex type (arrays,
structures, etc.). However, objectís state can encapsulate the state of other objects through
composition links. CRT is thus applied recursively to handle composed objects and for obtaining a
Delta-State of each sub-object. The final Delta-State will be the aggregation of all the Delta-States
obtained by this recursive process. The recursion stops as soon as a basic type attribute or even a
complex type attribute (not an object reference) is encountered.

The detection of every object's attribute modification relies on the analysis of the object
method's source code. Local variable definitions, pointers to attributes, direct or indirect attribute
modification and ì†illegal†î reference pointer modification are identified. However, this is not
sufficient for obtaining a 100% coverage of the modified state, which is mandatory. When a method
statement do not match any of the above filtering patterns, then a C++ syntactic analyzer determines
when any attribute is referenced directly or indirectly. Actually, some situations, e.g. passing an
attribute reference as a function argument or performing arithmetic operations on  pointers which refer
to an attribute, can compromise objectís state integrity and are difficult, even impossible, to handle. In
this case, we consider that some uncontrolled actions may be performed on objectís attributes and we
apply the Copy-Compare-State (CCS) technique. All the attributes are saved beforehand and a
global object's state comparison is performed at the completion of the method execution to determine
the Delta-State. The drawback of this technique is that a runtime overhead is introduced. Necessary
tradeoffs between state comparison and networking overheads have to be evaluated on a case-by-case
basis.

Finally, for attribute modifications that can be detected at compile time we have defined the
Compile-Time-Only (CTO) technique.

3. Implementation Issues and Concluding Remarks

The implementation of these techniques using compile time reflection is done with Open C++
V2. It enables source-to-source translation from extended C++ to regular C++ driven by compile time
metaobjects. Any class of object can be associated to a class metaobject which defines how this class
is translated. The associated metaobject knows exactly the definition of the object class which is
necessary to detect each member object call. During the analysis of each methodís code, we look for
statements where attributes or pointers to attributes are used, we detect any assignment of an attribute
address to a pointer, enabling the technique to be determined for each attribute. The resulting code is
compiled using a standard C++ compiler (like gcc).

Handling object state in object-oriented fault tolerance application is a major issue and relying
on user-defined virtual functions is not acceptable. Relying on dirty bits is not optimal and orthogonal
to the object model. Compile time reflection enables objects state to be analyzed and the object code
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to be prepared to determine attribute modifications at runtime. As far as possible, the proposed
techniques optimize the object’s state to be transferred possibly to a different node, but performance
tradeoffs have to be evaluated according to object’s attributes number and size, memory space,
network bandwidth. However, the major contribution of such techniques is that the object’s state is
automatically handled. The efficiency of fault tolerance mechanisms at upper layers is not annihilated
by an incorrect definition of the recovery state.
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