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1 Introduction

Location-Based Services (LBS ) personalize the service they provide or grant access to ressouces according to
the current location of users [1]. They are used in a variety of contexts, such as geosocial network, real-time
traffic monitoring, discount tied to the visit of a particular shop or local electronic election. In most of current
schemes, the location of a user/device is determined by the device itself (e.g., through GPS) and forwarded
to the LBS provider. By doing so, a user can cheat by having his device transmitting a false location to gain
access to unauthorized resources, thus raising the issue of verifying the position claimed by a particular user.

To counter this threat, a LBS should ideally require the requesting device to formally prove that it really
is at the claimed location. This notion has been formalized through the concept of location proof [16], which
is a digital certificate attesting that someone was at a particular location at a specific moment in time. A
location proof architecture is a system by which users can obtain location proofs from neighboring witnesses
(e.g., trusted access points or other users) that can later be verified by other entities. In recent years, several
location proof architectures have been proposed in the literature [19, 16, 9, 13, 20, 17, 6]. Most of these
approaches require the users to disclose their identities or their positions to a centralized server, thus raising
privacy issues such as the possibility of tracing the movements of users of the location proof architecture.

Therefore, a main challenge is to design a location proof system that can accommodate location require-
ments of different LBS while preserving location privacy of users. To address this challenge, we propose
Props, a PRivacy-preserving lOcation Proof System aiming at preserving the privacy of all the participants
involved in the system through a decentralized architecture.

The outline of the paper is the following. First in Section 2, we describe the entities participating to
the location proof architecture and the desirable properties for a secure and privacy-aware location proof
system before briefly presenting some of the building blocks upon which Props is constructed. Afterwards,
we describe the architecture of PROPS in Section 3 and we give details about the protocols for the gathering
of a location proof, its verification and the preliminaries results of our proof of concept implementation.
Finally, we briefly conclude in Section 4.

2 Location Proof Specification and Building Blocks

2.1 Interacting Entities

Within Props, there are three types of participating entities: 1) Users, 2) the Certification Authority (CA)
and 3) the Anonymity Lifter (AL). A user is an entity using the location proof service, and also refers at the
same time to the device carried out by this individual. A user can take one or several of the following roles:
prover, witness or verifier. More precisely, a prover denotes an individual who wants to collect anonymously
location proofs from witnesses, which correspond to other users of the system that are within communication
range. A verifier is a user of the system who wants to verify the validity of a location proof certificate released
by a prover before granting him access to some resource. The Certification Authority (CA) is the trusted
third party responsible for issuing the credentials to newly registered users. Finally, the Anonymity Lifter
(AL) is a trusted third party that has the capacity to lift the anonymity of a particular user when needed
(for instance upon request from a judge).
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2.2 Security and Privacy Desiderata

In this section, we briefly define the fundamental properties that a secure and privacy-preserving location
proof system should fulfill. We classified them in two categories, namely security requirements and privacy
requirements.

Security requirements. A location proof should satisfy the correctness property, which we define by
means of soundness and completeness properties. More precisely, a malicious prover should not be able to
generate a proof for a location in which he has never been (spatial soundness property), or for a different
instant that the one at which he was visiting this location (temporal soundness property). The correctness
property has to remain valid despite possible attacks such as the distance fraud [2] or the mafia fraud [7]
(i.e., man-in-the-middle attack). Moreover, if the verifier is honest, he should always accept a location proof
provided that the location proof is authentic (completeness property).

In addition, a location proof should be tied to his owner, in the sense that the genuine owner of the
proof should be the only one able to convince a verifier that he was located at the position certified by the
location proof (non-transferability and ownership proof ). Moreover, it should also be impossible for a user to
forge a fake location proof share (unforgeability), despite potential distance hijacking [5] or malicious users
colluding together to generate a fake location proof. In addition of being unable to produce a fake location
proof for one of them, a collusion of malicious users should not have the capacity to frame an honest (i.e.,
non-colluding) user by generating a fake location proof that would make it appear as if this user was located
at a particular location in which he was not.

Privacy requirements. From a privacy point of view, the location proof as well as the proof gathering and
the proof verification protocols should not leak any information that can be used to identify the prover or
his collaborating witnesses (unlinkability and anonymity of prover and witnesses). More precisely, it should
not be possible to decide if two location proof requests have been sent by the same prover or to distinguish
if two different proof shares have been issued by the same witness. Moreover, a witness participating to
the generation of a location proof should not have to disclose his exact position (witness location privacy)
and the messages exchanged between the entities of the system should be transmitted through a secure
pairwise channel ensuring the confidentiality of the communications and the integrity of the data exchanged
(confidentiality and integrity).

Additionally, a prover should be able to keep his location proofs under his full control and decide when he
wants to show one of his location proof to a verifier. Moreover, he should be given the ability to control the
granularity of the location information revealed during the verification process of the location proof (location
sovereignty). Finally, the architecture should provide some mechanism to lift the anonymity of users in some
specific situations upon a judge request (optional anonymity removing).

2.3 Building Blocks

Props relies on cryptographic primitives such as hash function, symmetric encryption and unique group sig-
natures [8], which is an extension of group signature [4]. Within unique group signature, one can anonymously
sign a message on behalf of the group (i.e., his identity is hidden within the members of the group) unless he
signs twice the same message in which case a detection algorithm can be used to link these two signatures.
In Props, we assume the availability of a proximity testing protocol that can be used by a prover to convince
a witness that he is located close to him in the same spirit as distance-bounding protocols [2, 10, 18, 11].

To implement the location sovereignty, we use hash chains [12] for the controlled release of the granularity
of a location (which includes the spatial and temporal information) contained in a location proof. More
precisely, the primitive based on hash chains is composed of three algorithms: 1) Hide(pos, seed), which is used
by the prover to encode his precise location pos into a hash chain embedded in the location proof initialized
with the random string seed, 2) Reveal(pos, p, seed) is used by the prover to reveal to a verifier a granularity
p over his precise location pos included in the location proof, and finally 3) Check(Kpos,K

p
pos, pos|p) is used

by the verifier to verify if the location information disclosed by the prover matches the information encoded
in the location. Finally, Props is also based on CL-signature [3] that allows a user to prove the knowledge
of a certificate without revealing it.
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3 PRivacy-preserving lOcation Proof System (Props)
3.1 Architecture

Thereafter, we will use the notation UGS [8] to refer to unique group signature scheme and CLS [3] to denote
a CL-signature scheme, while

∧k
i=1 fi(x) is used as a shortcut to f1(x)∧ . . .∧ fk(x) in which fi is a boolean

function and ∧ represents the logic operator AND.
The architecture of Props consists of the following four different procedures: Init, Join, LocationProof-

Gathering and LocationProofVerification. The procedure Init is run once by the Certification Authority (CA) in
order to set up the global parameters of the location proof system. More precisely, the CA calls UGS.Init(1λ),
which corresponds to the initialization procedure of a unique group signature. This initialization procedure
generates the credentials (sk, ik, ok, gpk) and (skcert, pkcert) a private/public key compatible with a CL-
signature. The public parameters of the system are defined as pk = (gpk, pkcert). The CA keeps ik secret
and will use it to register new users to the system during the Join procedure, while ok is sent to the Anonymity
Lifter (AL) in order to be able to lift the anonymity of a user if needed.

Once the system has been correctly initialized, the CA can dynamically add users to Props using the Join
procedure. At the end of this procedure, each user receives a tuple (gsk[i],su,certu = CLS.Sign(su, skcert))
in which gsk[i] represents his private group signature key, su is his secret identifier and certsu corresponds
to a CL-signature [3] over su done using skcert. The CL-signature will be used to enable a user to prove his
possession of a signature without revealing the signature itself using a zero-knowledge proof.

When a user wants to obtain a proof of his current location, he needs to run the LocationProofGathering
procedure with each of his neighboring users (i.e., witnesses) to collect location proof shares. For security
reasons, each witness is allowed to generate at most one location proof share in response to a prover’s location
proof request. After collecting at least k shares, the prover can produce a location proof certifying his position
(cf. Section 3.2). Later, this location proof can then be used by its true owner to prove his location to a
verifier by running the LocationProofVerification procedure.

The two sections detail the LocationProofGathering and LocationProofVerification procedures.

3.2 Location Proof Gathering

The location proof gathering protocol between a prover and a witness, summarized in Fig. 1, consists of the
following six rounds.

Witness Prover

c1 = Commit(su, rand1)
m = (pos||c1||Kpos||a)

1. request < m||σG,P (m) >

2. reply < Encrypt((Kpos||r), kAB)||b >

3. commit < Encrypt((ZKProofr{(certsu , su) : c1})||Kpos||seed), kAB) >

s = {c1||Kpos}

c2 = Commit(su, rand2)
4. {ProximityTesting(δ, su)}

5. ZKproof < Encrypt((ZKProof{(su) : c1, c2}), kAB) >

6. share < Encrypt((s||σ(s)), kAB) >

Fig. 1. Sketch of the location proof gathering protocol.

1. The prover P generates a random seed and computesKpos = Hide(pos, seed). P also computes a, a random
share for a Diffie-Hellman key agreement scheme. Finally, the prover P generates a random string rand1
and computes c1 = Commit(su, rand1), which corresponds to the commitment of his secret identifier
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su under rand1. Then, P broadcasts locally a request for a location proof to neighboring users over an
insecure (i.e., unencrypted and unauthenticated) channel: P → ∗ : {m = (pos||c1||Kpos||a)||σG,P (m)}.
The request contains the following information: a message m composed of the concatenation of pos, the
current position of the user (which also contains the current timestamp), c1 a commitment of P on his
secret string su, Kpos an encoding of the position (including the time information) of P via a hash chain,
a the share of the Diffie-Hellman key agreement and finally σG,P (m) a group signature on the message
m. The variables c1 and Kpos can be considered as being the identifiers of the location proof, thus these
values will be common to the k shares collected by the prover.

2. Upon reception of the previous request, a witness W first verifies if the request sent by the prover P
seems to be valid by checking the authenticity of the group signature σG,P (m) and the plausibility to
the location pos claimed in the request. If this verification succeeds, then the witness W generates a
random share b of a Diffie-Hellman key agreement and combines it with a in order to generate a session
key kAB . This session key kAB will then be used to encrypt all subsequent communications between
P and W by relying on a symmetric cryptosystem, thus ensuring the confidentiality and integrity of
communications (cf. Section 2.2). Afterwards, the witnessW sends to the prover P the encryption under
the session key kAB of Kpos concatenated with a freshly generated nonce r, as well as in clear the value
of b, the second share of the Diffie-Hellman key agreement: W → P : {Encrypt((Kpos||r), kAB)||b}.

3. The prover P can combine b with a in order to reconstruct the session key kAB of the Diffie-Hellman
key agreement. Afterwards, P decrypts the message sent by W at the previous round in order to learn
r while also checking that W has been able to encrypt Kpos with the session key. Finally, P sends to W
the following message, which corresponds to the encryption of the commitment c1 concatenated with a
zero-knowledge proof and the information needed to verify that Kpos is a correct encoding of pos:
P → W : {Encrypt((ZKProof{(certsu , su) : c1})||Kpos||seed), kAB)}. More precisely, the zero-knowledge
proof contained in the message is a Groth-Sahai proof that the commitment c1 contains a secret value
su for which P possesses a valid signature (i.e., certificate) over the secret value su.

ZKProof{(certsu , su) : c1} ← ZKProof
{
(certsu , su) :

VerifyCommit(c1, su, rand1) = 1 ∧
CLS.VerifySign(su, certsu , pkcert) = 1

}
.

In order to ensure the freshness of the proof, the zero-knowledge proof will also depend on r, the nonce
generated by the witness at the previous step, which is made possible by the zero-knowledge proofs based
on CL-signatures.

4. Then, P starts the proximity testing tool with W , denoted by P ↔W : {ProximityTesting(δ, su)}. At the
end of this procedure, beside being convinced that the prover is close to him, the witness also receives as
output a new commitment c2 = Commit(su, rand2), a commitment on the identity su of the prover under
a new random string rand2 only known by the prover.The distance threshold δ is a global parameter of
the system.

5. If the ProximityTesting(δ, su) procedure outputs accept, W is now convinced that P is located at the
claimed position pos and receives as output c2 at the end of the protocol. Otherwise, if the proximity
testing procedure outputs reject, then the location proof gathering protocol is aborted. If the protocol
proceeds, P sends a zero-knowledge proof that the value su contained in the committed value contained
in the commitments c1 and c2 is the same by calling the EqualityCommitment functionality on c1, c2,
rand1 and rand2.

6. Afterwards, W verifies the correctness of both zero-knowledge proofs (i.e., the one that proved that c1
is a commitment on a secret value for which P possesses a certificate and the one proving the equality
of the committed value in c1 and c2) and that Kpos is a correct encoding value of pos using seed. If
all these steps succeed, W creates a share s = {c1||Kpos} as well as σj(s) = UGS.SignGroup(s, gsk[j]),
which corresponds to a unique group signature of witness (i.e., user) j on the share s using the private
signature key gsk[j] of W . Finally, the witness sends to the prover: W → P : {Encrypt((s||σ(s)), kAB)}.
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3.3 Location Proof Verification

After collecting at least k different shares coming from unique witnesses, the prover P can aggregate them
into a location proof that we denote thereafter as certificate = {s, σ1(s), . . . , σk(s)}. Before showing a location
proof to a verifier, the prover and the verifier have to agree on the granularity of the location information
that has to be revealed in order to benefit from the service. For instance, this could be done by running a
service level agreement protocol between the prover and the verifier. The location proof verification protocol
consists of the following consecutive steps. If one of these steps fails, the protocol aborts.

1. The prover P chooses the precision p for which he accepts to reveal his position and computes the
pair (pos|p,Kp

pos) = Reveal(pos, p, seed) in which pos|p denotes the position pos partially blinded up
to granularity p and Kp

pos represents the value of the hash chain corresponding to the d − p right
digits of pos. Then, P sends to the verifier V the location proof certificate as well as pos|p and Kp

pos:
P → V : {certificate||pos|p||Kp

pos}.
2. The verifier V checks for each location share σi(s) in certificate whether UGS.VerifySignGroup(s, σi(s), gpk)

returns accept. More precisely, the function UGS.VerifySignGroup(s, σi(s), gpk) verifies the validity of the
group signature of each of the k share σi(s):∧k
i=1(UGS.VerifySignGroup(s, σi(s), gpk)) = true.

3. The verifier V validates the uniqueness of the shares in certificate by verifying that all these shares have
been generated by different witnesses:∧k
i=1

∧k
j=i+1(UGS.Detect(s, σi(s), σj(s))) = false.

4. The verifier V anonymously authenticates the prover P as the legal owner of certificate by running a
zero-knowledge proof protocol with him. At the end of this step, V should be convinced that P knows
the secret su used to generate the commitment c contained in s.

5. Finally, using the information (pos|p,Kp
pos), the verifier V computes Check(Kpos,K

p
pos, pos|p) in order to

verify the validity of the location claimed by the prover.

3.4 Proof-of-concept Implementation

In this section, we briefly report on the current proof-of-concept implementation of Props. Our main objec-
tive is to demonstrate that most of the architecture of Props can be implemented with currently available
technology. Our implementation relies on Idemix4 version 2.3.4, a Java library containing advanced cryp-
tographic primitives such as CL-signatures, commitment schemes and zero-knowledge proofs. Moreover, we
have implemented unique group signatures by relying on the concept of domain pseudonym offered by Idemix.
In a nutshell, a domain pseudonym can be used to link all the group signatures that are performed by a
user within the same domain. Within the context of Props, we set the domain to be equal to the value r
included in the location proof, thus allowing a verifier to check if several signatures have been issued by the
same user on a specific domain (i.e., location proof).

Our proof-of-concept implementation of Props consists of Java classes modeling the different participants
of the location proof system, namely the CA, a prover, a witness, a verifier and the AL. Currently, we have
implemented the registration phase, the location proof gathering protocol and the location proof verification.
The measurements that we report for each phase have been computed by averaging over 100 independent
trials run on an Intel i5-2435M dual-core processor at 2.4 Ghz with 4 GB of 1333 Mhz DDR3 SDRAM
running OSX 10.8.3. The registration phase requires on average 0.27 ± 0.04 s from the prover while the
interaction between a prover and a witness have an average running time of 0.75±0.05 s in order to produce
a location share of 3444 bytes. The verification of a location share takes around 0.46±0.03 s to be computed
by a verifier. We have not been able to test the proximity testing protocol as current implementations of
distance-bounding (e.g., [15, 14]) consist only of hardware proof-of-concepts, and are not mature enough to
be used directly on standard devices.

4 http://www.zurich.ibm.com/security/idemix/
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4 Conclusion

In this paper, we introduced Props, a novel privacy-preserving location proof system based on a collaborative
and distributed architecture. To the best of our knowledge, this protocol is the first to ensure the privacy all
participating users, from the location proof gathering up to the verification phase. Moreover, due to the use
of unique group signatures, Props can detect, though not identify, a malicious user that tries to generate
several location shares under the same identity. Finally, Props is secure against classical localization attacks
such as the distance, mafia and terrorist frauds. While our proof-of-concept implementation is based on
off-the-shelf software components, we are currently developing a prototype running on devices carried by
users (e.g., smartphones) in order to validate the approach in real-life. In the long term, our aim is to
use the proposed architecture as a building block to provide secure, privacy-aware and fully distributed
location-based services.
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