
Development of a Metaobject Protocol for Fault-Tolerance
using Compile-Time Reflection

Marc-Olivier Killijian, Jean-Charles Fabre,
Juan-Carlos Ruiz-Garcia

LAAS-CNRS
7 Avenue du Colonel Roche

31077 Toulouse Cedex France
(+33) 561 336 243

{killijian,fabre,ruiz}@laas.fr

Shigeru Chiba

Institute of Information Science and Electronics,
University of Tsukuba

Tennodai, Tsukuba, Ibaraki 305-8573 Japan
chiba@is.tsukuba.ac.jp

ABSTRACT
The use of metalevel architectures for the implementation
of fault-tolerant systems is today very appealing.
Nevertheless, all such fault-tolerant systems have used a
general-purpose metaobject protocol (MOP) or are based
on restricted reflective features of some object-oriented
language. According to our past experience, we define in
this paper a suitable metaobject protocol, called FT-MOP
for building fault-tolerant systems. We briefly explain how
to realize a specialized runtime MOP using compile-time
reflection. This MOP is CORBA compliant: it enables the
execution and the state evolution of CORBA objects to be
controlled and enables the fault tolerance metalevel to be
developed as CORBA software.

Keywords
Reflection, compile-time and runtime metaobject protocol,
fault-tolerance, replication, object state, checkpointing.

INTRODUCTION
The implementation of fault tolerance in object-oriented
systems has been investigated using various approaches,
either based on the use of inheritance [1,2] and reflection
[3-8] or investigating their implementation on/within
CORBA runtime supports [9-11]. Reflective architectures
have been developed in various application fields and
research areas, in particular regarding dependability
issues. The use of reflective ideas and metaobject protocols
provides many interesting properties, such as transparency
and separation of concerns. Reflection enables an object-
oriented application to be controlled at a higher level of
abstraction, the metalevel. Mechanisms previously
developed as standard and object-oriented libraries or else
integrated into an operating system and into an ORB are
developed at the user level as metalevel software with this
approach. Beyond transparency and separation of
concerns, this approach also provides visibility of the
mechanisms that can be easily customized for a given
application or system configuration using object-oriented
techniques. Nevertheless, to our knowledge, most of the

examples are based on existing general-purpose metaobject
protocols or restricted reflective features of some object-
oriented languages. They have thus to cope with their
limits.

The corner stone of a fault-tolerant reflective architecture
is the MOP. We thus propose a special purpose MOP to
address the problems of general-purpose ones. The
definition and the implementation of an appropriate
runtime metaobject protocol for implementing fault
tolerance into CORBA applications is the main contribution
of the work reported in this paper.

This work shows that compile-time reflection is a good
approach for the development of a specialized runtime
MOP1. This MOP, called FT-MOP (Fault Tolerance
MetaObject Protocol), is sufficiently general to be used for
other aims (mobility, adaptability, migration, security).
FT-MOP provides a mean to attach dynamically fault
tolerance strategies to CORBA objects as CORBA

metaobjects, enabling thus these strategies to be
implemented as CORBA software. It also solves the
problem of user-defined inherited functions (e.g.
save_state and restore_state) for handling the state of
application objects; it is worth noting that a wrong
definition of these functions (state information missing)
prevents the fault-tolerant software to perform its recovery
actions.

METAINFORMATION NEEDED FOR FAULT-
TOLERANCE
Implementing fault tolerance using replication strategies
in a distributed system imposes being able to control the
following aspects of the runtime objects:

• object creation/deletion: depending on the fault
tolerance strategy, the object has to be created into
multiple copies (the replicas) and all copies have to

1 An extended description of the work presented in this

paper can be found in [12].

register in a communication group. Deleting an object
implies removing all copies from this group.

• object invocation: any invocation to replicated objects
involves broadcasting messages through a group
communication system which ensures, at least, that all
correct replicas will receive all messages in the same
order (this is required for replica consistency). In case of
replicated calling objects, all replicas must be able to
control multiple copies of request messages (filtering).
After execution of the method, state information transfer
(checkpoints) or synchronization among the replicas
must be performed.

• object state evolution: whatever the strategy is, the
object state must be maintained consistent among all
replicas. For active replication, the basic assumption
required is determinism of objects. In this case, the same
inputs lead to the same outputs and the same
transformation of the internal state. For strategies either
based on stable storage or passive replication, then the
object state has to be sent periodically to the stable
storage service or to the backup replica, respectively.
Being able to handle the object state (variables and
internal objects) is always required for cloning a new
object replica during the reconfiguration process after a
failure. This involves being able to handle the state of an
object-oriented program.

Handling the object state requires fine grain information of
the object program since it needs structuring information
which are language dependent: identification of attributes
and methods, type information for attributes and method
parameters, internal classes used. The reified information
needed here can only be obtained through compile-time
reflection where all the structuring and type information is
available. It is clear now that handling the object state
(including for a CORBA object) is very language dependent.
Given that and following our previous experience [5-8], we
choose Open C++ v2 [13] to implement our own runtime
metaobject protocol and for its abilities to provide fine
grained, language dependent, metainformations.

REFLECTIVE ARCHITECTURE AND FT-MOP

ORB

node 1 node 2 node 3

GS GS GS

IMOP IMOP

O1 O2 O3

MO1 MO3MO2

FT-MOP FT-MOP FT-MOP

metalevel

baselevel

service level

Fig. 1. Overall architecture

Our reference architecture, given in Fig. 1, is composed of
a meta-level architecture for structuring fault-tolerant
applications (CORBA), a collection of components

implementing the fault-tolerant strategies (the metaobjects)
and a metaobject protocol providing a nice interface
between base and meta level(s), this is FT-MOP.

Mandatory services such as a group communication
services (GS), replication domains management, error
detection and object factories constitute the basic layer.
Above this basic layer of CORBA services, metaobjects
implement fault tolerance strategies. The FT-MOP
controls the behavior and the state of base level CORBA

objects (application level). Since metaobjects are CORBA

objects they have also access to the ORB. The Inter
MetaObject Protocol (IMOP) concerns the combination of
several metaobjects at the metalevel; the composition of
such metaobjects can be achieved either recursively (as in
FRIENDS [5], or MAUD [3] since a metaobject is an object)
or based on a meta-scheduler triggering several
metaobjects within the same metalevel.

IDLIDL_MO

in
te

rf
ac

e
(I

D
L)

IDL_O

MOP

CORBA
object

metaobject

Fig. 2. Object-metaobject interaction with a MOP

In this architecture, FT-MOP is defined by two IDL
interfaces (see Fig. 2): the object side and the metaobject
side. The behavior observation consists in reifying the
different aspects of our object model: instance creation and
deletion, methods invocations and the object state. We
describe in the following paragraphs how this information
is reified.

Reifying methods invocation

Client Object Metaobject
1 2

4 3,75,68

Fig. 3. Method invocation

During an invocation (see Fig. 3), the client invokes a
method of the object, say foo, using the required
parameters (1). The MOP traps this call, packs the
parameters and call the Meta_MethodCall method of
the metaobject (2) with the packed parameters. The
metaobject may perform some actions before calling the
base level method (3). Then, the metaobject calls the
Base_HandleCall method of the object (4). This
method, according to the method number, unpacks the
parameters and call the original method (5), say

real_foo. The return value is packed and returned to
the metaobject (6). The metaobject may execute some
action before returning to the object (7) which in turns
returns to the client (8).

Reifying creation-deletion
The instantiation process creates an object of a given class.
Usually this creation process is initiated by another object
or by a program (the main procedure in C++).

During the creation process, a new runtime metaobject has
to be created for each new object. An instance of
metaobject is created using a Metaobject Factory.

As illustrated in Fig. 4, the client requests the creation of
an object, i.e. it calls the constructor (1). The constructor is
executed but it has been translated in order to trap this
call. It initializes the CORBA environment and calls the
naming service for a reference to the Metaobject Factory
(2). Then, the object constructor calls the Metaobject
Factory to create a new metaobject of a given metaclass
(3). The Metaobject Factory invokes the metaobject
constructor (4). The metaobject constructors calls the
original object constructor (5), i.e. Base_Startup which
in turns activates real_Startup of the base level object.
A reference to the metaobject is then returned to the object
(6). Finally, a reference to the object is returned to the
client.

ObjectClient Metaobject

1

3

2

4

5

6

7

Metaobject
Factory

Fig. 4. Creation of participant

The metaobject protocol is able to control both before and
after the real constructor (or destructor) of the object.

MetaobjectObjectClient
1

8

2,6

9

3

5 4,7

Metaobject
Factory

Fig. 5. Deletion of participant

Symmetrically to the creation process when the metaobject
has to be created; during the destruction process (see Fig.
5), it must be deleted.

The client requests the deletion, i.e. it invokes the
destructor (1) of the object. As previously explained, the
destructor has been translated in order to trap this

operation and thus behaves differently (2). The destructor
calls the Meta_Cleanup method of the metaobject (3).
The metaobject may execute some “pre-deletion” actions
(4) and calls the original destructor, real_Cleanup,
using the Base_Cleanup method of the base level object
(5). The metaobject may now execute some “post-deletion”
actions (7). Finally, the object invokes the Metaobject
Factory to delete the metaobject just before to destroy itself
(completion of the object destructor).

Reifying the object state
Our first objective is to handle the object state
automatically and secondly to minimize, as far as possible,
the state information to be transferred to object replicas
[14]. This is language dependent and involves a deep
analysis of the target source code using compile-time
reflection. The runtime metaobject is responsible for
handling a consistent copy of the base level object state.
The object state corresponds to the whole set of attributes.
From the initial state, the runtime metaobject can get the
part of the state that has been updated after the execution
of every method. This is called delta_state. The metaobject
triggers method execution and gets the delta-state of the
object.

The metaobject thus monitors the state evolution of the
object it controls. The way the state information is handled
by the metaobject is open and may vary according to the
various ways of implementing a given fault tolerance
strategy: the whole state can be sent to replicas after every
method execution or only a sequence of delta-states can be
sent from the initial state (notion of incremental
checkpointing). The second approach may be far more
efficient for some applications. This depends on several
static and dynamic parameters (size of the object state,
average percentage of the updated state, network
bandwidth and load, processor load etc.).

A metaobject can build the object state by getting the
initial state S1 at object creation and then delta-states ∆Si

after each method invocation.

The main problem now is to obtain the delta-state ∆Si after
the ith method invocation. To handle this problem, we use
compile-time reflection and statically analyze the program.
According to the complexity of the program, the results of
this static analysis enable the appropriate technique to be
selected for each method and each attribute of the object.
Three techniques have been investigated :

• CTO - Compile-Time-Only: This technique aims at
determining the delta-state at compile-time. Clearly, the
delta-state cannot be determined statically, except for
very simple method code. Mainly for didactic reasons,
we use here compile-time reflection to detect a write
access to an attribute. A compile-time metaobject insert
some code in the method to produce the set of modified
attributes, ∆Si.

• CRT - Compile-Run-Time: In most case, the delta-
state must be determined dynamically, i.e. which are the
attributes that will change at runtime. Indeed, attribute
modifications can be included in conditional or iterative
blocks of code. Thus, these modifications depend on
input parameters. The objective of the Compile-Run-
Time technique is to compute in two phases (at compile-
time and at runtime) the proper set of attributes ∆Si for
any method. The first phase, taking place at compile-
time, consists in determining the set of attributes which
are likely to change at runtime during a method
invocation and in inserting just after each write access an
instruction to flag the attribute. Instrumenting the code
in this way enables during the second phase (at runtime)
the exact set ∆Si to be determined at the end of an
invocation by checking the flags.

• CWS/CCS – Copy-Whole/Copy-Compare-State:
Obviously, C++ is a permissive language: the
programmer is able to use pointer arithmetic or to pass
arguments by reference as function parameters (either
using a pointer or a C++ reference). Such programming
techniques generate “unpredictable modifications” of
attributes and can lead to situations where the delta-state
cannot be determined. For instance, when pointer
arithmetic is used, any attribute can be accessed without
compile-time reification of such a write access. For safety
reasons, we assume here that all attributes change.
Thanks to compile-time reflection such situation can be
identified and computing the delta-state is done at
runtime. All attributes before a method call are saved
and compared to the new values when the method
completes. Compile-time reflection is used here to insert
code during code analysis for getting before-state, after-
state and for computing the delta-state.

CONCLUSION
The reflective approach described in this paper enables
strategies to be visible and easily customized at the
application level, although their use is kept transparent for
CORBA application programmers. The use of basic
services, such as group communication, is devoted to
metaobject programmers, specialized in a non-functional
domain (here fault-tolerance). The implementation of fault
tolerance using a metaobject protocol enables off-the-shelf
ORBs to be used. Additionally, this approach provides a
mean to develop fault tolerance software as any CORBA

software with different object-oriented languages. This is a
very good point for their reuse in many application
domains. Being able to handle the object state
automatically is the last benefit of the FT_MOP approach.

This work also illustrates the benefits of compile-time
reflection for building a specialized runtime MOP. The
same approach could be used to develop a specific runtime
MOP in other application domains. Because, a compile-
time MOP is a clever source-to-source translator, any

recommended version of a compiler (as required in the
industry) can be used to produce final binary code.

The use of the metaobject protocol described in this paper
is in fact not limited to the implementation of fault-
tolerant applications. Actually, this MOP may be used for
handling other non-functional requirements, such as
security (authentication) as done in the FRIENDS system.
The automatic handling of the object state in combination
with the runtime aspects of the MOP could also allow the
migration of objects according to operational conditions.
The dynamic linking between object and metaobjects
enables as well mobile objects to gain fault tolerance and
change strategies depending on the failure assumptions
made on the underlying node.

FT-MOP has been partially implemented on COOL-ORB, a
CORBA-compliant system available on UNIX. Handling the
creation, deletion and invocation of CORBA object using
FT-MOP has been implemented today. The full state
capture has also been implemented; it supports simple data
types, arrays and object composition whereas the delta-
state capture supports today only attribute of simple types.
Handling the object state of complex objects (arrays etc.)
and performance measurements (benchmarking) is now
carried out.

Two new Corba services have been implemented : a group
communication service using xAMp [15] and an object
factory that can create both application objects and
metaobjects. We are working on the implementation of
several fault-tolerant mechanisms as metaobjects, i.e.
Corba objects.

ACKNOWLEDGEMENT
 This work has been partially supported by the European
Esprit Project n° 20072, DEVA, by a contract with FRANCE

TELECOM (ref. ST.CNET/DTL/ASR/97049/DT) and by a grant
from CNRS (National Center for Scientific Research in
France) in the framework of international agreements
between CNRS and JSPS (Japan Society for the Promotion
of Science).

REFERENCES
1. Detlefs D., Herlihy M.P., Wing J.M., "Inheritance of

Synchronization and Recovery Properties in
Avalon/C++", Computer, 21 (12), Dec. 1988, pp. 57-
69.

2. Shrivastava S.K., Dixon G.N., Parrington G.D., "An
Overview of the Arjuna Distributed Programming
System", IEEE Software, 8 (1), 1991, pp. 66-73.

3. Agha G., Fŗ lund S., Panwar R., Sturman D., "A
Linguistic Framework for Dynamic Composition of
Dependability Protocols", in Proc. of DCCA-3, 1993,
pp. 197-207.

4. Garbinato B., Guerraoui R., Mazouni K.,
"Implementation of the GARF Replicated Objects
Plateform", Distributed Systems Engineering Journal,
(2), March 1995, pp. 14-27.

5. Fabre J.C., Pérennou T., "A Metaobject Architecture
for Fault Tolerant Distributed Systems: The FRIENDS
Approach", IEEE Transactions on Computers, Special
Issue on Dependability of Computing Systems, Jan.
1998, pp. 78-95.

6. Fabre J.C., Nicomette V., Pérennou T., Wu Z., Stroud
R.J., "Implementing Fault-tolerant Applications using
Reflective Object-Oriented Programming", in Proc. of
FTCS-25, Pasadena, USA, June 1995, pp. 489-498.

7. Fabre J.C., Pérennou T., "FRIENDS: A Flexible
Architecture for Implementing Fault Tolerant and
Secure Distributed Applications", in Proc. of EDCC-2,
LNCS 1150, Taormina, Italy, Octobre 2-4, 1996, pp. 3-
20.

8. Fabre J.C., "Desing and Implementation of the
FRIENDS System", IEEE Workshop on Fault Tolerant
Parallel Distributed Systems (FTPDS'98), Orlando,
(USA), Avril 1998, pp. 604-622.

9. Landis S., Maffeis S., "Building Reliable Distributed
Systems with Corba", Theory and Practice of Object
Systems, (special issue on the future of Corba), vol. 3
(1), 1997, pp. 59-66.

10. Moser L.E., Melliar-Smith P.M., "The Interception
Approach to Reliable Distributed CORBA Objects," P.
Narasimhan, L. E. Moser and P. M. Melliar-Smith,
Panel on Reliable Distributed Objects, in 3rd USENIX
Conference on Object-Oriented Technologies and
Systems, Portland, (Or, USA), June 1997, pp 245-248.

11. Felber P., Garbinato B., Guerraoui. R., "Towards
Reliable CORBA: Integration vs. Service Approach", in
Special Issues in Object-Oriented Programming,
Springer-Verlag, 1997.

12. Killijian M.-O., Fabre J.-C., Ruiz-García J.-C., Chiba
S., "A Metaobject Protocol for Fault-Tolerant Corba
Applications", to appear in Proc. of Symposium on
Reliable and Dependable Systems, Vancouver, CA,
Oct. 1998.

13. Chiba S., “A Metaobject Protocol for C++”, in Proc. of
OOPSLA’95 (ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications),
Austin (TX-USA), Oct. 1995, pp. 285-299.

14. Ruiz-Garcia J.C., Killijian M.O., Fabre J.C., Chiba S.,
"Optimized Object State Checkpointing using Compile-
Time Reflection", EFTS'98 (IEEE Workshop on
Embedded Fault Tolerant Systems), Mai 1998, Boston,
USA, pp. 46-48.

15. Rodrigues L., Veríssimo P., "xAMp: A Protocol Suite
for Group Communication", in Proc. Of the 11th IEEE
Int. Symp. On Reliable Distributed Systems (SRDS-
22), October 1992, pp. 112-121.

